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Abstract

We study the least squares regression problem

min

⇥2Rp1⇥···⇥pD

kA(⇥) � bk2
2,

where ⇥ is a low-rank tensor, defined as ⇥ =

P

R

r=1 ✓(r)
1 � · · · � ✓(r)

D

, for vectors
✓(r)
d

2 Rpd for all r 2 [R] and d 2 [D]. Here, � denotes the outer product of
vectors, and A(⇥) is a linear function on ⇥. This problem is motivated by the fact
that the number of parameters in ⇥ is only R · PD

d=1 p
d

, which is significantly
smaller than the

Q

D

d=1 p
d

number of parameters in ordinary least squares regression.
We consider the above CP decomposition model of tensors ⇥, as well as the
Tucker decomposition. For both models we show how to apply data dimensionality
reduction techniques based on sparse random projections � 2 Rm⇥n, with m ⌧ n,
to reduce the problem to a much smaller problem min⇥ k�A(⇥)��bk2

2, for which
k�A(⇥)��bk2

2 = (1±")kA(⇥)�bk2
2 holds simultaneously for all ⇥. We obtain

a significantly smaller dimension and sparsity in the randomized linear mapping �

than is possible for ordinary least squares regression. Finally, we give a number of
numerical simulations supporting our theory.

1 Introduction
For a sequence of D-way design tensors A

i

2 Rp1⇥···⇥pD , i 2 [n] , {1, . . . , n}, suppose we observe
noisy linear measurements of an unknown D-way tensor ⇥ 2 Rp1⇥···⇥pD , given by

b = A
i

(⇥) + z, b, z 2 Rn, (1)

where A(·) : Rp1⇥···⇥pD ! Rn is a linear function with A
i

(⇥) = hA
i

, ⇥i = vec(A
i

)

>vec(⇥) for
all i 2 [n], vec(X) is the vectorization of a tensor X , and z = [z1, . . . , zn]

> corresponds to the
observation noise. Given the design tensors {A

i

}n
i=1 and noisy observations b = [b1, . . . , bn]

>, a
natural approach for estimating the parameter ⇥ is to use the Ordinary Least Square (OLS) estimation
for the tensor regression problem, i.e., to solve

min

⇥2Rp1⇥···⇥pD

kA(⇥) � bk2
2. (2)

Tensor regression has been widely studied in the literature. Applications include computer vision
[8, 19, 34], data mining [5], multi-model ensembles [32], neuroimaging analysis [15, 36], multitask
learning [21, 31], and multivariate spatial-temporal data analysis [1, 11]. In these applications,
modeling the unknown parameters as a tensor is what is needed, as it allows for learning data that
has multi-directional relations, such as in climate prediction [33], inherent structure learning with
multi-dimensional indices [21], and hand movement trajectory decoding [34].
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The authors acknowledge support from University of Minnesota Startup Funding and Doctoral Dissertation
Fellowship from University of Minnesota.
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Due to the high dimensionality of tensor data, structured learning based on low-rank tensor de-
compositions, such as CANDECOMP/PARAFAC (CP) decomposition and Tucker decomposition
models [13, 24], have been proposed in order to obtain tractable tensor regression problems. As
discussed more below, requiring the unknown tensor to be low-rank significantly reduces the number
of unknown parameters.

We consider low-rank tensor regression problems based on the CP decomposition and Tucker
decomposition models. For simplicity, we first focus on the CP model, and later extend our analysis
to the Tucker model. Suppose that ⇥ admits a rank-R CP decomposition, that is,

⇥ =

R

X

r=1

✓(r)
1 � · · · � ✓(r)

D

, (3)

where ✓(r)
d

2 Rpd for all r 2 [R], d 2 [D], and � is the outer product of vectors. For convenience, we
reparameterize the set of low-rank tensors by its matrix slabs/factors:

S
D,R

,
n

[[⇥1, . . . , ⇥D

]] | ⇥
d

= [✓(1)
d

, . . . , ✓(R)
d

] 2 Rpd⇥R, for all d 2 [D]

o

.

Then we can rewrite model (1) in a compact form

b = A(⇥

D

� · · ·� ⇥1)1R + z, (4)

where A = [vec(A1), · · · , vec(A
n

)]

> 2 Rn⇥
QD

d=1 pd is the matricization of all design tensors,
1

R

= [1, . . . , 1] 2 RR is a vector of all 1s, ⌦ is the Kronecker product, and � is the Khatri-Rao
product. In addition, the OLS estimation for tensor regression (2) can be rewritten as the following
nonconvex problem in terms of low-rank tensor parameters [[⇥1, . . . , ⇥D

]],

min

#2S�D,R

kA# � bk2
2, where (5)

S�D,R

,
n

(⇥

D

� · · ·� ⇥1)1R 2 R
QD

d=1 pd
�

�

[[⇥1, . . . , ⇥D

]] 2 S
D,R

o

.

The number of parameters for a general tensor ⇥ 2 Rp1⇥···⇥pD is
Q

D

d=1 p
d

, which may be prohibitive
for estimation even for small values of {p

d

}D
d=1. The benefit of the low-rank tensor model (3) is that

it dramatically reduces the degrees of freedom of the unknown tensor from
Q

D

d=1 p
d

to R ·PD

d=1 p
d

,
where we are typically interested in the case when R  p

d

for all d 2 [D]. For example, a typical
MRI image has size 256

3 ⇡ 1.7 ⇥ 10

7, while using the low-rank model with R = 10, we reduce the
number of unknown parameters to 256 ⇥ 3 ⇥ 10 ⇡ 8 ⇥ 10

3 ⌧ 10

7. This significantly increases the
applicability of the tensor regression model in practice.

Nevertheless, solving the tensor regression problem (5) is still expensive in terms of both computation
and memory requirements, for typical settings, when n � R ·PD

d=1 p
d

. In particular, the per iteration
complexity is at least linear in n for popular algorithms such as block alternating minimization and
block gradient descent [27, 28]. In addition, in order to store A, it takes n · QD

d=1 p
d

words of
memory. Both of these aspects are undesirable when n is large. This motivates us to consider data
dimensionality reduction techniques, also called sketching, for the tensor regression problem.

Instead of solving (5), we consider the simple Sketched Ordinary Least Square (SOLS) problem:

min

#2S�D,R

k�A# � �bk2
2, (6)

where � 2 Rm⇥n is a random matrix (specified in Section 2). Importantly, � will satisfy two
properties, namely (1) m ⌧ n so that we significantly reduce the size of the problem, and (2) � will
be very sparse so that �v can be computed very quickly for any v 2 Rn.

Naïvely applying existing analyses of sketching techniques for least squares regression requires
m = ⌦(

Q

D

d=1 p
d

), which is prohibitive (for a survey, see, e.g., [30]). In this paper, our main
contribution is to show that it is possible to use a sparse Johnson-Lindenstrauss transformation as
our sketching matrix for the CP model of low-rank tensor regression, with constant column sparsity
and dimension m = R ·PD

d=1 p
d

, up to poly-logarithmic (polylog) factors. Note that our dimension
matches the number of intrinsic parameters in the CP model. Further, we stress that we do not assume
anything about the tensor, such as orthogonal matrix slabs/factor, or incoherence; our dimensionality
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reduction works for arbitrary tensors. We show, with the above sparsity and dimenion, that with
constant probability, simultaneously for all # 2 S�,D,R

,

k�A# � �bk2
2 = (1 ± ")kA# � bk2

2.

This implies that any solution to (6) has the same cost as in (5) up to a (1 + ")-factor. In partic-
ular, by solving (6) we obtain a (1 + ")-approximation to (5). We note that our dimensionality
reduction technique is not tied to any particular algorithm; that is, if one runs any algorithm or
heuristic on the reduced (sketched) problem, obtaining an ↵-approximate solution #, then # is also a
(1+✏)↵-approximate solution to the original problem. Our result is the first non-trivial dimensionality
reduction for this problem, i.e., dimensionality reduction better than

Q

D

d=1 p
d

, which is trivial by ig-
noring the low-rank structure of the tensor, and which achieves a relative error (1 + ")-approximation.

While it may be possible to apply dimensionality reduction methods directly in alternating minimiza-
tion methods for solving tensor regression, unlike our method, such methods do not have provable
guarantees and it is not clear how errors propagate across iterations. However, since we reduce the
original problem to a smaller version of itself with a provable guarantee, one could further apply
dimensionality reduction techniques as heuristics for alternating minimization on the smaller problem.

Our proof is based on a careful characterization of Talagrand’s functional for the parameter space
of low-rank tensors, providing a highly nontrivial analysis for what we consider to be a simple and
practical algorithm. One of the main difficulties is dealing with general, non-orthogonal tensors, for
which we are able to provide a careful re-parameterization in order to bound the so-called Finsler
metric; interestingly, for non-orthogonal tensors it is always possible to partially orthogonalize them,
and this partial orthogonalization turns out to suffice for our analysis. We give precise details below.
We also provide numerical evaluations on both synthetic and real data to demonstrate the empirical
performance of our algorithm.

Notation. For scalars x, y 2 R, let x = (1 ± ")y if x 2 [(1 � ")y, (1 + ")y], x . (&)y if
x  (�)c1y, poly(x) = xc2 and polylog(x, y) = (log x)

c3 · (log y)

c4 for some universal constants
c1, c2, c3, c4 > 0. We also use standard asymptotic notations O(·) and ⌦(·). Given a matrix
A 2 Rm⇥n, we denote kAk2 as the spectral norm, span(A) ✓ Rm as the subspace spanned by the
columns of A, �max(A) and �min(A) as the largest and smallest singular values of A, respectively,
and 

A

= �max(A)/�min(A) as the condition number. We use nnz(A) to denote the number
of nonzero entries of A, and P

A

as the projection operator onto span(A). Given two matrices
A = [a1, . . . , an

] 2 Rm⇥n and B = [b1, . . . , bq] 2 Rp⇥q , A⌦B = [a1⌦B, . . . , a
n

⌦B] 2 Rmp⇥nq

denotes the Kronecker product, and A�B = [a1⌦b1, . . . , an

⌦b
n

] 2 Rmp⇥n denotes the Khatri-Rao
product with n = q. We let B

n

⇢ Rn be the unit sphere in Rn, i.e., B
n

= {x 2 Rn | kxk2 = 1},
P(·) be the probability of an event, and E(·) denotes the expectation of a random variable. Without
further specification, we denote

Q

=

Q

D

d=1 and
P

=

P

D

d=1. We further summarize the dimension
parameters for ease of reference. Given a tensor ⇥, D is the number of ways, p

d

is the dimension of
the d-th way for d 2 [D]. R is the rank of ⇥ for all ways under the CP decomposition, and R

d

is the
rank of the d-th way under the Tucker decomposition for d 2 [D]. n is the number of observations
for tensor regression. m is the sketching dimension and s is the sparsity of each column in a sparse
Johnson-Lindenstrauss transformation.

2 Background

We start with a few important definitions.

Definition 1 (Oblivious Subspace Embedding). Suppose ⇧ is a distribution on m⇥n matrices where
m is a function of parameters n, d, and ". Further, suppose that with probability at least 1 � �, for
any fixed n ⇥ d matrix A, a matrix � drawn from ⇧ has the property that k�Axk2

2 = (1 ± ")kAxk2
2

simultaneously for all x 2 X ✓ Rd. Then ⇧ is an (", �) oblivious subspace embedding (OSE) of X .

An OSE � preserves the norm of vectors in a certain set X after linear transformation by A. This is
widely studied as a key property for sketching based analyses (see [30] and the references therein).
We want to show an analogous property when X is parameterized by low-rank tensors.

Definition 2 (Leverage Scores). Given A 2 Rn⇥d, let Z 2 Rn⇥d have orthonormal columns that
span the column space of A. Then `2

i

(A) = ke>
i

Zk2
2 is the i-th leverage score of A.
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Leverage scores play an important role in randomized matrix algorithms [7, 16, 17]. Calculating
the leverage scores naïvely by orthogonalizing A requires O(nd2

) time. It is shown in [3] that
the leverage scores of A can be approximated individually up to a constant multiplicative factor in
O(nnz(A) log n + poly(d)) time using sparse subspace embeddings. In our analysis, there will be a
very mild dependence on the maximum leverage score of A and the sparsity for the sketching matrix
�. Note that we do not need to calculate the leverage scores.

Definition 3 (Talagrand’s Functional). Given a (semi-)metric ⇢ on Rn and a bounded set S ⇢ Rn,
Talagrand’s �2-functional is

�2(S, ⇢) = inf

{Sr}1
r=0

sup

x2S

1
X

r=0

2

r/2 · ⇢(x,S
r

), (7)

where ⇢(x,S
r

) is a distance from x to S
r

and the infimum is taken over all collections {S
r

}1
r=0 such

that S0 ⇢ S1 ⇢ . . . ⇢ S with |S0| = 1 and |S
r

|  2

2r

.

A closely related notion of the �2-functional is the Gausssian mean width: G(S) = E
g

sup

x2Shg, xi,
where g ⇠ N

n

(0, I
n

). For any bounded S ⇢ Rn, G(S) and �2(S, k · k2) differ multiplicatively by at
most a universal constant in Euclidean space [25]. Finding a tight upper bound on the �2-functional
for the parameter space of low-rank tensors is key to our analysis.

Definition 4 (Finsler Metric). Let E, E0 ⇢ Rn be p-dimensional subspaces. The Finsler metric of
E and E0 is ⇢Fin(E, E0

) = kP
E

� P
E

0k2, where P
E

is the projection onto the subspace E.

The Finsler metric is the semi-metric used in the �2-functional in our analysis. Note that ⇢Fin(E, E0
) 

1 always holds for any E and E0 [23].

Definition 5 (Sparse Johnson-Lindenstrauss Transforms). Let �
ij

be independent Rademacher
random variables, i.e., P(�

ij

= 1) = P(�
ij

= �1) = 1/2, and let �
ij

: ⌦

�

! {0, 1} be random
variables, independent of the �

ij

, with the following properties:

(i) �
ij

are negatively correlated for fixed j, i.e., for all 1  i1 < . . . < i
k

 m, we have
E
⇣

Q

k

t=1 �
it,j

⌘

 Q

k

t=1 E (�
it,j) =

�

s

m

�

k;

(ii) There are s =

P

m

i=1 �
ij

nonzero �
ij

for a fixed j; and
(iii) The vectors (�

ij

)

m

i=1 are independent across j 2 [n].

Then � 2 Rm⇥n is a sparse Johnson-Lindenstrauss transform (SJLT) matrix if �

ij

=

1p
s

�
ij

�
ij

.

The SJLT has several benefits [4, 12, 30]. First, the computation of �x takes only O(nnz(x)) time
when s is a constant. Second, storing � takes only sn memory instead of mn, which is significant
when s ⌧ m. This can often further be reduced by drawing the entries of � from a limited
independent family of random variables.

We will use an SJLT matrix as the sketching matrix � in our analysis and our goal will be to
show sufficient conditions on the sketching dimension m and per-column sparsity s such that the
analogue of the OSE property holds for low-rank tensor regression. Specifically, we provide sufficient
conditions for the SJLT matrix � 2 Rm⇥n to preserve the cost of all solutions for tensor regression,
i.e., bounds on m and s for which

E
�

sup

x2T

�

�k�xk2
2 � 1

�

� <
"

10

, (8)

where " is a given precision and T is a normalized space parameterized as the union of certain
subspaces of A, which will be further discussed in the following sections. Note that by linearity, it is
sufficient to consider x with kxk2 = 1 in the above, which explains the form of (8). Moreover, by
Markov’s inequality, (8) implies that simultaneously for all # = vec(⇥) 2 S�D,R

, where ⇥ admits a
low-rank tensor decomposition, with probability at least 9/10, we have

k�A# � �bk2
2 = (1 ± ")kA# � bk2

2, (9)

which allows us to minimize the much smaller sketched problem to obtain parameters # which, when
plugged into the original objective function, provide a multiplicative (1 + ")-approximation.
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3 Dimensionality Reduction for CP Decomposition

We start with the following notation. Given a tensor ⇥ =

P

R

r=1 ✓(r)
1 � · · · � ✓(r)

D

, where ✓(r)
d

2 Rpd

for all d 2 [D] and r 2 [R], we fix all but ✓(r)
1 for r 2 [R], and denote

A

n

✓

(r)
\1

o

=

h

A✓

(1)
\1 , . . . , A✓

(R)
\1

i

2 Rn⇥Rp1 ,

where A✓

(i)
\1

=

P

pD

jD=1 · · ·
P

p2

j2=1 A(jD,...,j2)✓(i)
D,jD

· · · ✓(i)
2,j2

, ✓(i)
d,jd

is the j
d

-th entry of ✓(i)
d

, and
A(jD,...,j2) 2 Rn⇥p1 is a column submatrix of A indexed by j

D

2 [p
D

], . . . , j2 2 [p2], i.e.,
A =

⇥

A(1,...,1), . . . , A(pD,...,p2)
⇤ 2 Rn⇥

Q

pd . The above parameterization allows us to view tensor
regression as preserving the norms of vectors in an infinite union of subspaces, described in more
detail in the full version of our paper [10]. Then we rewrite the observation model (4) as

b = A ·
R

X

r=1

✓(r)
D

⌦ · · ·⌦ ✓(r)
1 + z =

R

X

r=1

A✓

(r)
\1 · ✓(r)

1 + z = A

n

✓

(r)
\1

o

·
h

✓(1)>
1 . . . ✓(R)>

1

i>
+ z.

3.1 Main Result

The parameter space for the tensor regression problem (1) is a subspace of R
Q

pd , i.e., S�D,R

⇢
R

Q

pd . Therefore, a naïve application of sketching requires m & Q

p
d

/"2 in order for (9) to hold
[18]. The following theorem provides sufficient conditions to guarantee (1 + ")-approximation of the
objective for low-rank tensor regression under the CP decomposition model.

Theorem 1. Suppose R  max

d

p
d

/2 and max

i2[n] `
2
i

(A)  1/(R
P

D

d=2 p
d

)

2. Let

T =

[

r2[R],d2[D]

n

A#�A'

kA#�A'k2

�

�

�

# =

P

R

r=1 ✓(r)
D

⌦· · ·⌦ ✓(r)
1 , ' =

P

R

r=1 �(r)
D

⌦· · ·⌦ �(r)
1 , ✓(r)

d

, �(r)
d

2 B
pd

o

and let � 2 Rm⇥n be an SJLT matrix with column sparsity s. Then with probability at least 9/10, (9)
holds if m and s satisfy, respectively,

m & R
X

p
d

log

⇣

DR
A

X

p
d

⌘

polylog(m, n)/"2 and s & log

2
⇣

X

p
d

⌘

polylog(m, n)/"2.

From Theorem 1, we have that for an SJLT matrix � 2 Rm⇥n with m = ⌦(R
P

p
d

) and s =

⌦(1), up to logarithmic factors, we can guarantee (1 + ")-approximation of the objective. The
sketching complexity of m is nearly optimal compared with the number of free parameters for the CP
decomposition model, i.e., R(

P

p
d

� D + 1), up to logarithmic factors. Here wo do not make any
orthogonality assumption on the tensor factors ✓(r)

d

, and show in our analysis that the general tensor
space T can be paramterized in terms of an orthogonal one if R  max

d

p
d

/2 holds. The condition
R  max

d

p
d

/2 is not restrictive in our setting, as we are interested in low-rank tensors with R  p
d

.
Note that we achieve a (1 + ")-approximation in objective function value for arbitrary tensors; if one
wants to achieve closeness of the underlying parameters one needs to impose further assumptions on
the model, such as the form of the noise distribution or structural properties of A [20, 36].

Our maximum leverage score assumption is very mild and much weaker than the standard inco-
herence assumptions used for example, in matrix completion, which allow for uniform sampling
based approaches. For example, our assumption states that the maximum leverage score is at most
1/(R

P

D

d=2 p
d

)

2. In the typical overconstrained case, n � Q

p
d

, and in order for uniform sampling
to provide a subspace embedding, one needs the maximum leverage score to be at most R

P

p
d

/n

(see, e.g., Section 2.4 of [30]), which is much less than 1/(R
P

D

d=2 p
d

)

2 when n is large, and so
uniform sampling fails in our setting. Moreover, it is also possible to apply a standard idea to flatten
the leverage scores of a deterministic design A based on the Subsampled Randomized Hadamard
Transformation (SRHT) using the Walsh-Hadamard matrix [9, 26]. Note that applying the SRHT to
an n ⇥ d matrix A only takes O(nd log n) time, which if A is dense, is the same amount of time one
needs just to read A (up to a log n factor). Further details are deferred to the full version of our paper
[10].
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3.2 Proof Sketch of Our Analysis for a Basic Case

We provide a sketch of our analysis for the case when R = 1 and D = 2, i.e., ⇥ is rank 1 matrix. The
analysis for more general cases is more involved, but with similar intuition. Details of the analyses
are deferred to the the full version of our paper, where we start with a proof for the most basic cases
and gradually build up the proof for the most general case.

Let Av

=

P

p2

i=1 A(i)v
i

, where A = [A(1), . . . , A(p2)
] 2 Rn⇥p2p1 with A(i) 2 Rn⇥p1 for all

i 2 [p2], V =

S

fW {span[Av1 , Av2
]}, and fW = {v1, v2 2 B

p2 with hv1, v2i = 0}. We start with an
illustration that the set T can be reparameterized to the following set with respect to tensors with
orthogonal factors:

T =

[

E2V
{x 2 E | kxk2 = 1} .

Suppose hv1, v2i 6= 0. Let v2 = ↵v1 + �z for some ↵, � 2 R and a unit vector z 2 Rp2 , where
hv1, zi = 0. Then we have

Ax � Ay

kAx � Ayk2
=

Av1u1 � Av2u2

kAv1u1 � Av2u2k2
=

Av1
(u1 � ↵u2) � Az

(�u2)

kAv1
(u1 � ↵u2) � Az

(�u2)k2
,

which is equivalent to hv1, v2i = 0 by reparameterizing z as v2.

Based on known dimensionality reduction results [2, 6] (see further details in the full version [10]), the
main quantities needed for bounding properties of � are the quantities ⇢V , �2

2(V, ⇢Fin), N (V, ⇢Fin, "0),
and

R

"0

0
(logN (V, ⇢Fin, t))

1/2 dt, where N (V, ⇢Fin, t) is the covering number of V under the Finsler
metric using balls of radius t and pV = sup

v1,v22Bp2 ,hv1,v2i=0 dim {span (Av1,v2
)}  2p1. Bounding

these quantities for the space of low-rank tensors is new and is our main technical contribution. These
will be addressed separately as follows.

Part 1: Bound pV . Let Av1,v2
= [Av1 , Av2

]. It is straightforward that pV  2p1.

Part 2: Bound �2
2(V, ⇢Fin). By the definition of �2-functional in (7) for the Finsler metric, we have

�2(V, ⇢Fin) = inf

{Vk}1
k=0

sup

A

v1,v22V

1
X

k=0

2

k/2 · ⇢Fin(A
v1,v2 ,V

k

),

where V
k

is an "
k

-net of V , i,e., for any Av1,v2 2 V there exist v1, v2 2 B
p2 with hv1, v2i = 0,

kv1 � v1k2  ⌘
k

, and kv2 � v2k2  ⌘
k

, such that Av1,v2 2 V
k

and ⇢Fin(Av1,v2 , Av1,v2
)  "

k

.

From Lemma 6, we have ⇢Fin(Av1,v2 ,V
k

)  2
A

⌘
k

for kv1 � v1k2  ⌘
k

and kv2 � v2k2 
⌘
k

. On the other hand, we have that ⇢Fin(Av1,v2 ,V
k

)  1 always holds. Therefore, we have
⇢Fin(Av1,v2 ,V

k

)  min{2
A

⌘
k

, 1}. Let k0 be the smallest integer such that 2
A

⌘
k

0  1. Then

�2(V, ⇢Fin) 
1
X

k=0

2

k/2⇢Fin(A
v1,v2 ,V

k

) 
k

0
X

k=0

2

k/2
+

1
X

k=k

0+1

2

k/2⇢Fin(A
v1,v2 ,V

k

). (10)

Starting from ⌘0 = 1 and |V0| = 1, for k � 1, we have ⌘
k

< 1 and |V
k

|  (3/⌘
k

)

p2 [29]. Also from
the �2-functional, we require |V

k

|  2

2k  (3/⌘
k

)

p2 , which implies

k

0
X

k=0

2

k/2
=

2

k

0
/2

p
2 � 1

.
r

p2 log

1

⌘
k

0
. (11)

For k > k0, we choose ⌘
k+1 = ⌘2

k

such that (3/⌘
k+1)

p2  2

2k+1

. Then we have |V
k+1|  2

2k+1

.
By choosing k0 to be the smallest integer such that (3/⌘

k

0+1)
p2  2

2k0+1

holds, we have
1
X

k=k

0+1

2

k/2 · ⇢Fin(A
v1,v2 ,V

k

) = 2

k

0
/2 ·

1
X

t=1

2

t/2 ·
✓

1

2

◆2t

 2

k

0
/2 .

r

p2 log

1

⌘
k

0
. (12)
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Combining (10) – (12), and choosing a small enough "0 such that "0  2
A

⌘
k

0 , we have

�2
2(V, ⇢Fin) . p2 log


A

"0
.

Part 3: Bound N (V, ⇢Fin, "0) and
R

"0

0
[logN (V, ⇢Fin, t)]1/2dt. From our choice from Part 2, "0 2

(0, 1) is a constant. Then it is straightforward that N (V, ⇢Fin, "0) 
⇣

3
"0

⌘2p2

. From direct integration,
this implies

Z

"0

0

[logN (V, ⇢Fin, t)]
1/2dt."0

r

p2 log

1

"0
.

Combining the results in Parts 1, 2, and 3, we have that (9) holds if m and s satisfy, respectively

m &

⇣

p2 log

A
"0

+ p1 + p2 log

1
"0

⌘

· polylog(m, n)

"2
and

s &

⇣

log

2 1
"0

+ "2
0(p1 + p2) log

1
"0

⌘

· polylog(m, n)

"2
.

We finish the proof by taking "0 = 1/(p1 + p2).

4 Dimensionality Reduction for Tucker Decomposition

We start with a formal model description. Suppose ⇥ admits the following Tucker decomposition:

⇥ =

R1
X

r1=1

· · ·
RD
X

rD=1

G(r1, . . . , rD) · ✓(r1)
1 � · · · � ✓(rD)

D

, (13)

where G 2 RR1⇥···⇥RD is the core tensor and ✓(rd)
d

2 Rpd for all r
d

2 [R
d

] and d 2 [D]. Let

A✓

(r1,...,rD)

\1
=

P

pD

jD=1 · · ·
P

p2

j2=1 A(jD,...,j2)✓(rD)
D,jD

· · · ✓(r2)
2,j2

and

A

⇢

✓

{rd}
\1

�

=



P

R2

r2=1 · · ·
P

RD

rD=1A✓

(r1,...,rD)

\1 G(1, r2, . . . , rD), . . . ,
P

R2

r2=1 · · ·
P

RD

rD=1A✓

(r1,...,rD)

\1 G(R1, r2, . . . , rD)

�

.

Then the observation model (4) can be written as

b = A
P

R1

r1=1 · · ·
P

RD

rD=1 G(r1, . . . , rD)✓(rD)
D

⌦ · · ·⌦ ✓(r1)
1 + z = A

⇢

✓

{rd}
\1

�

h

✓(1)>
1 . . . ✓(R1)>

1

i>
+ z.

The following theorem provides sufficient conditions to guarantee (1 + ")-approximation of the
objective function for low-rank tensor regression under the Tucker decomposition model.

Theorem 2. Suppose nnz(G)  max

d

p
d

/2 and max

i2[n] `
2
i

(A)  1/(

P

D

d=2 R
d

p
d

+ nnz(G))

2.

Let T =

[

r2[R],d2[D]

n A# � A'

kA# � A'k2

�

�

�

# =

R1
X

r1=1

· · ·
RD
X

rD=1

G1(r1, . . . , rD) · ✓(rD)
D

⌦ · · ·⌦ ✓(r1)
1 ,

' =

R1
X

r1=1

· · ·
RD
X

rD=1

G2(r1, . . . , rD) · �(rD)
D

⌦ · · ·⌦ �(r1)
1 , ✓(rd)

d

, �(rd)
d

2 B
pd

o

and � 2 Rm⇥n be an SJLT matrix with column sparsity s. Then with probability at least 9/10, (9)
holds if m and s satisfy

m & C1 · log

⇣

C1D
A

R1

p

nnz(G)

⌘

· polylog(m, n)/"2 and s & log

2 C1 · polylog(m, n)/"2,

where C1 =

P

R
d

p
d

+ nnz(G).

From Theorem 2, we have that using an SJLT matrix � with m = ⌦(

P

R
d

p
d

+ nnz(G)) and
s = ⌦(1), up to logarithmic factors, we can guarantee (1+")-approximation of the objective function.
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The sketching complexity of m is near optimal compared with the number of free parameters for
the Tucker decomposition model, i.e.,

P

R
d

p
d

+ nnz(G) �P

R2
d

, up to logarithmic factors. Note
that nnz(G)  Q

R
d

, and thus the condition that nnz(G)  max

d

p
d

/2 can be more restrictive
than R  max

d

p
d

/2 in the CP model when nnz(G) > R. This is due to the fact that the Tucker
model is more “expressive” than the CP model for a tensor of the same dimensions. For example, if
R1 = · · · = R

D

= R, then the CP model (3) can be viewed as special case of the Tucker model (13)
by setting all off-diagonal entries of the core tensor G to be 0. Moreover, the conditions and results
in Theorem 2 are essentially of the same order as those in Theorem 1 when nnz(G) = R, which
indicates the tightness of our analysis.

5 Experiments
We study the performance of sketching for tensor regression through numerical experiments over
both synthetic and real data sets. For solving the OLS problem for tensor regression (2), we use a
cyclic block-coordinate minimization algorithm based on a tensor toolbox [35]. Specifically, in a
cyclic manner for all d 2 [D], we fix all but one ⇥

d

of [[⇥1, . . . , ⇥D

]] 2 S
D,R

and minimize the
resulting quadratic loss function (2) with respect to ⇥

i

, until the decrease of the objective is smaller
than a predefined threshold ⌧ . For SOLS, we use the same algorithm after multiplying A and b with
an SJLT matrix �. All results are run on a supercomputer due to the large scale of the data. Note
that our result is not tied to any specific algorithm and we can use any algorithm that solves OLS for
low-rank tensors for solving SOLS for low-rank tensors.

For synthetic data, we generate the low-rank tensor ⇥ as follows. For each d 2 [D], we generate R

random columns with N (0, 1) entries to form non-orthogonal tensor factors ⇥

d

= [✓(1)
d

, . . . , ✓(R)
d

]

of [[⇥1, . . . , ⇥D

]] 2 S
D,R

independently. We also generate R real scalars ↵1, . . . , ↵R

uniformly
and independently from [1, 10]. Then ⇥ is formed by ⇥ =

P

R

r=1 ↵
r

✓(r)
1 � · · · � ✓(r)

D

. The n tensor
designs {A

i

}n
i=1 are generated independently with i.i.d. N (0, 1) entries for 10% of the entries chosen

uniformly at random, and the remaining entries are set to zero. We also generate the noise z to have
i.i.d. N (0, �2

z

) entries, and the generation of the SJLT matrix � follows Definition 5. For both OLS
and SOLS, we use random initializations for ⇥, i.e., ⇥

d

has i.i.d. N (0, 1) entries for all d 2 [D].

We compare OLS and SOLS for low-rank tensor regression under both the noiseless and noisy
scenarios. For the noiseless case, i.e., �

z

= 0, we choose R = 3, p1 = p2 = p3 = 100, m =

5 ⇥ R(p1 + p2 + p3) = 4500, and s = 200. Different values of n = 10

4, 10

5, and 10

6 are chosen to
compare both statistical and computational performances of OLS and SOLS. For the noisy case, the
settings of all parameters are identical to those in the noiseless case, except that �

z

= 1. We provide
a plot of the scaled objective versus the number of iterations for some random trials in Figure 1. The
scaled objective is set to be kA#t

SOLS � bk2
2/n for SOLS and kA#t

OLS � bk2
2/n for OLS, where

5 10 15 20 25
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105 SOLS n1
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O
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O
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tiv
e

(b) �z = 1

Figure 1: Comparison of SOLS and OLS on synthetic data. The vertical axis corresponds to the scaled
objectives kA#t

SOLS � bk2
2/n for SOLS and kA#t

OLS � bk2
2/n for OLS, where #t is the update in the

t-th iteration. The horizontal axis corresponds to the number of iterations (passes of block-coordinate
minimization for all blocks). For both the noiseless case �

z

= 0 and noisy case �
z

= 1, we set
n1 = 10

4, n2 = 10

5, and n3 = 10

6 respectively.
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#t

SOLS and #t

OLS are the updates in the t-th iterations of SOLS and OLS respectively. Note the we are
using k�A#SOLS � �bk2

2/n as the objective function for solving the SOLS problem, but looking at
the original objective kA#SOLS� bk2

2/n for the solution of SOLS is ultimately what we are interested
in. However, we have that the gap between k�A#SOLS � �bk2

2/n and kA#SOLS � bk2
2/n is very

small in our results (< 1%). The number of iterations is the number of passes of block-coordinate
minimization for all blocks. We can see that OLS and SOLS require approximately the same number
of iterations for comparable decrease in objective function value. However, since the SOLS instance
has a much smaller size, its per iteration computational cost is much lower than that of OLS.

We further provide numerical results on the running time (CPU execution time) and the optimal
scaled objectives in Table 1. Using the same stopping criterion, we see that SOLS and OLS achieve
comparable objectives (within < 5% differences), matching our theory. In terms of the running time,
SOLS is significantly faster than OLS, especially when n is large compared to the sketching dimen
sion m. For example, when n = 10

6, SOLS is more than 200 times faster than OLS while achieving
a comparable objective function value with OLS. This matches with our theoretical results on the
computational cost of OLS versus SOLS. Note that here we suppose that the rank is known for our
simulation, which can be restrictive in practice. We observe that if we choose a moderately larger
rank than the true rank of the underlying model, then the results are similar to what we discussed
above. Smaller values of the rank result in a much deteriorated statistical performance for both OLS
and SOLS.

We also examine sketching of low-rank tensor regression on a real dataset of MRI images [22]. The
dataset consists of 56 frames of a human brain, each of which is of dimension 128 ⇥ 128 pixels, i.e.,
p1 = p2 = 128 and p3 = 56. The generation of design tensors {A

i

}n
i=1 and linear measurements

b follows the same settings as for the synthetic data, with �
z

= 0. We choose three values of
R = 3, 5, 10, and set m = 5⇥R(p1 + p2 + p3). The sample size is set to n = 10

4 for all settings of
R. Analogous to the synthetic data, we provide numerical results for SOLS and OLS on the running
time (CPU execution time) and the optimal scaled objectives. The results are provided in Table 2.
Again, we have that SOLS is much faster than OLS and they achieve comparable optimal objectives,
under all settings of ranks.

Table 1: Comparison of SOLS and OLS on CPU execution time (in seconds) and the optimal scaled
objective over different choices of sample sizes and noise levels on synthetic data. The results are
averaged over 50 random trials, with both the mean values and standard deviations (in parentheses)
provided. Note that we terminate the program after the running time exceeds 3 ⇥ 10

4 seconds.

Variance of Noise �z = 0 �z = 1

Sample Size n = 104 n = 105 n = 106 n = 104 n = 105 n = 106

Time
OLS

175.37 3683.9 > 3⇥ 104 168.62 2707.3 > 3⇥ 104

(65.784) (1496.7) (NA) (24.570) (897.14) (NA)

SOLS
120.34 128.09 132.93 121.71 124.84 128.65

(35.711) (37.293) (38.649) (34.214) (33.774) (32.863)

Objective
OLS

< 10�10 < 10�10 < 10�10 0.9153 0.9341 0.9425
(< 10�10) (< 10�10) (< 10�10) (0.0256) (0.0213) (0.0172)

SOLS
< 10�10 < 10�10 < 10�10 0.9376 0.9817 0.9901

(< 10�10) (< 10�10) (< 10�10) (0.0261) (0.0242) (0.0256)

Table 2: Comparison of SOLS and OLS on CPU execution time (in seconds) and the optimal scaled
objective over different choices of ranks on the MRI data. The results are averaged over 10 random
trials, with both the mean values and standard deviations (in parentheses) provided.

OLS SOLS
Rank R = 3 R = 5 R = 10 R = 3 R = 5 R = 10

Time 2824.4 8137.2 26851 196.31 364.09 761.73
(768.08) (1616.3) (8320.1) (68.180) (145.79) (356.76)

Objective 16.003 11.164 6.8679 17.047 11.992 7.3968
(0.1378) (0.1152) (0.0471) (0.1561) (0.1538) (0.0975)
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