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Abstract

Reinforcement learning (RL) in partially observable settings is challenging be-
cause the agent’s observations are not Markov. Recently proposed methods can
learn variable-order Markov models of the underlying process but have steep
memory requirements and are sensitive to aliasing between observation histories
due to sensor noise. This paper proposes dynamic-depth context tree weighting
(D2-CTW), a model-learning method that addresses these limitations. D2-CTW
dynamically expands a suffix tree while ensuring that the size of the model, but
not its depth, remains bounded. We show that D2-CTW approximately matches
the performance of state-of-the-art alternatives at stochastic time-series prediction
while using at least an order of magnitude less memory. We also apply D2-CTW
to model-based RL, showing that, on tasks that require memory of past observa-
tions, D2-CTW can learn without prior knowledge of a good state representation,
or even the length of history upon which such a representation should depend.

1 Introduction
Agents must often act given an incomplete or noisy view of their environments. While decision-
theoretic planning and reinforcement learning (RL) methods can discover control policies for agents
whose actions can have uncertain outcomes, partial observability greatly increases the problem
difficulty since each observation does not provide sufficient information to disambiguate the true
state of the environment and accurately gauge the utility of the agent’s available actions. Moreover,
when stochastic models of the system are not available a priori, probabilistic inference over latent
state variables is not feasible. In such cases, agents must learn to memorize past observations and
actions [21, 9], or one must learn history-dependent models of the system [15, 8].

Variable-order Markov models (VMMs), which have long excelled in stochastic time-series pre-
diction and universal coding [23, 14, 2], have recently also found application in RL under partial
observability [13, 7, 24, 19]. VMMs build a context-dependent predictive model of future observa-
tions and/or rewards, where a context is a variable-length subsequence of recent observations. Since
the number of possible contexts grows exponentially with both the context length and the number
of possible observations, VMMs’ memory requirements may grow accordingly. Conversely, the fre-
quency of each particular context in the data decreases as its length increases, so it may be difficult
to accurately model long-term dependencies without requiring prohibitive amounts of data.

Existing VMMs address these problems by allowing models to differentiate between contexts at non-
consecutive past timesteps, ignoring intermediate observations [13, 22, 10, 24, 4]. However, they
typically assume that either the amount of input data is naturally limited or there is a known bound on
the length of the contexts to be considered. In most settings in which an agent interacts continuously
with its environment, neither assumption is well justified. The lack of a defined time limit means
the approaches that make the former assumption, e.g., [13, 24], may eventually and indiscriminately
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use all the agent’s physical memory, while those that assume a bound on the context length, e.g.,
[19], may perform poorly if observations older than this bound are relevant.

This paper proposes dynamic-depth context tree weighting (D2-CTW), a VMM designed for general
continual learning tasks. D2-CTW extends context tree weighting (CTW) [23] by allowing it to dy-
namically grow a suffix tree that discriminates between observations at different depths only insofar
as that improves its ability to predict future inputs. This allows it to bound the number of contexts
represented in the model, without sacrificing the ability to model long-term dependencies.

Our empirical results show that, when used for general stochastic time-series prediction, D2-CTW
produces models that are much more compact than those of CTW while providing better results in
the presence of noise. We also apply D2-CTW as part of a model-based RL architecture and show
that it outperforms multiple baselines on the problem of RL under partial observability, particularly
when an effective bound on the length of its contexts is not known a priori.

2 Background
2.1 Stochastic Time-Series Prediction

Let an alphabet Σ = {σ1, σ2, . . . , σ|Σ|} be a discrete set of symbols, and let Π(Σ) represent the
space of probability distributions over Σ (the (|Σ|−1)-simplex). Consider a discrete-time stochastic
process that, at each time t ≥ 0, samples a symbol σt from a probability distribution pt ∈ Π(Σ). We
assume that this stochastic process is stationary and ergodic, and that pt is a conditional probability
distribution, which for some (unknown) constant integer D with 0 < D ≤ t has the form:

pt(σ) = P (σt = σ |σt−1, σt−2, . . . , σt−D). (1)

Let σt−D:t−1 = (σt−D, σt−D+1, . . . σt−1, ) be a string of symbols from time t−D to t− 1. Since
σt−D:t−1 ∈ ΣD and Σ is finite, there is a finite number of length-D strings on which the evolution
of our stochastic process can be conditioned. Thus, the stochastic process can also be represented
by a time-invariant function F : ΣD → Π(Σ) such that pt =: F (σt−D:t−1) at any time t ≥ D.

Let s be a string of symbols from alphabet Σ with length |s| and elements [s]i=∈{1,...,|s|}. Further-
more, a string q with |q| < |s| is said to be a prefix of s iff q1:|q| = s1:|q|, and a suffix of s iff
q1:|q| = s|s|−|q|:|s|. We write sq or σs for the concatenation of strings s and q or of s and symbol
σ ∈ Σ. A complete and proper suffix set is a set of strings S such that any string not in S has exactly
one suffix in S but no string in S has a suffix in S.

Although D is an upper bound on the age of the oldest symbol on which the process F depends, at
any time t it may depend only on some suffix of σt−D:t−1 of length less thanD. Given the variable-
length nature of its conditional arguments, F can be tractably encoded as a D-bounded tree source
[2] that arranges a complete and proper suffix set into a tree-like graphical structure. Each node at
depth d ≤ D corresponds to a length-d string and all internal nodes correspond to suffixes of the
strings associated with their children; and each leaf encodes a distribution over Σ representing the
value of F for that string.

Given a single, uninterrupted sequence of σ0:t generated by F , we wish to learn the F̃ :
ΣD → Π(Σ) that minimises the average log-loss of the observed data σ0:t. Letting
PF̃ (· |σi−D, . . . , σi−1) := F̃ (σi−D:i−1):

l(σ0:t | F̃ ) = −1

t

t∑
i=D

logPF̃ (σi |σi−D, . . . , σi−1). (2)

2.2 Context Tree Weighting

The depth-K context tree on alphabet Σ is a graphical structure obtained by arranging all possible
strings in ΣK into a full tree. A context tree has a fixed depth at all leaves and potentially encodes
all strings in ΣK , not just those required by F . More specifically, given a sequence of symbols
σ0:t−1, the respective length-K context σt−K:t−1 induces a context path along the context tree
by following at each level d ≤ K the edge corresponding to σt−d. The root of the context tree
represents an empty string ∅, a suffix to all strings. Furthermore, each node keeps track of the input
symbols that have immediately followed its respective context. Let sub(σ0:t−1, s) represent the
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string obtained by concatenating all symbols σi in σ0:t−1 such that its preceding symbols verify
σi−k = sk for k = 1, . . . , |s|. Then, each node s in the context tree maintains its own estimate of
the probability of observing the string sub(σ0:t−1, s).

Context tree weighting (CTW) [23] learns a mixture of the estimates of P (sub(σ0:t−1, s)) at all
contexts s of length |s| ≤ K and uses it to estimate the probability of the entire observed sequence.
Let P se (σ0:t−1) represent the estimate of P (sub(σ0:t−1, s)) at the node corresponding to s, and let
P sw(σ0:t−1) be a weighted representation of the same measure, defined recursively as:

P sw(σ0:t−1) :=

{
1
2P

s
e (σ0:t−1) + 1

2

∏
σ∈Σ P

σs
w (σ0:t−1) if |s| < K,

P se (σ0:t−1) if |s| = K.
(3)

Since sub(σ0:t−1, ∅) = σ0:t−1 by definition of the empty context, P ∅w(σ0:t−1) is an estimate
of P (σ0:t−1). The conditional probability of symbol σt is approximated as PF̃ (σt|σ0:t−1) =

P ∅w(σ0:t)/P
∅
w(σ0:t−1).

The (unweighted) estimate P se (σ0:t−1) at each context is often computed by keeping |Σ| incre-
mentally updated counters [cs,t]i=1,...,|Σ| ∈ N0, where for each σi ∈ Σ, [cs,t]i represents the total
number of instances where the substring sσi can be found within σ0:t−1. The vector of counters cs,t
can be modelled as the output of a Dirichlet-multinomial distribution with concentration parameter
vector α = [αi]i=1,...,|Σ|. An estimate of the probability of observing symbol σk at time t + 1 can
then be taken as follows: if s is on the context path at time t and σt = σk is the next observed
symbol, then [cs,t+1]k = [cs,t]k + 1, and [cs,t+1]i = [cs,t]i for all i 6= k. Then:

P se (σk|σ0:t) :=
PDirM (cs,t+1 |α)

PDirM (cs,t |α)
=

[cs,t]k + [α]k

c+
s,t + α+

, (4)

where α+ =
∑|Σ|
i=1[α]i, c+

s,t =
∑|Σ|
i=1[cs,t]i, and PDirM is the Dirichlet-multimomial mass function.

The estimate of the probability of the full sequence is then P se (σ0:t) =
∏t
τ=0 P

s
e (στ |σ0:τ−1).

This can be updated in constant time as each new symbol is received. The choice of α affects the
overall quality of the estimator. We use the sparse adaptive Dirichlet (SAD) estimator [11], which
is especially suited to large alphabets.

In principle, a depth-K context tree has |Σ|K+1 − 1 nodes, each with at most |Σ| integer counters.
In practice, there may be fewer nodes since one need only to allocate space for contexts found in the
data at least once, but their total number may still grow linearly with the length of the input string.
Thus, for problems such as partially observable RL, in which the amount of input data is unbounded,
or for large |Σ| and K, the memory used by CTW can quickly become unreasonable.

Previous extensions to CTW and other VMM algorithms have been made that do not explicitly
bound the depth of the model [6, 22]. However, these still take up memory that is worst-case linear
in the length of the input sequence. Therefore, they are not applicable to reinforcement learning. To
overcome this problem, most existing approaches artificially limitK to a low value, which limits the
agent’s ability to address long-term dependencies. To our knowledge, the only existing principled
approach to reducing the amount of memory required by CTW was proposed in [5], through the use
of a modified (Budget) SAD estimator which can be used to limit the branching factor in the context
tree to B < |Σ|. This approach still requires K to be set a priori, and is best-suited to prediction
problems with large alphabets but few high frequency symbols (e.g. word prediction), which is not
generally the case in decision-making problems.

2.3 Model-Based RL with VMMs

In RL with partial observability, an agent performs at each time t an action at ∈ A, and receives
an observation ot ∈ O and a reward rt ∈ R with probabilities P (ot|o0:t−1, r0:t−1, a0:t−1) and
P (rt|o0:t−1, r0:t−1, a0:t−1) respectively. This representation results from marginalising out the la-
tent state variables and assuming that the agent observes rewards. The agent’s goal is to maximise the
expected cumulative future rewards E{

∑∞
τ=t+1 rt + λτ−trτ} for some discount factor λ ∈ [0, 1).

Letting R = {rt : P (rt|o0:t−1, r0:t−1, a0:t−1) > 0 ∀o0:t−1, r0:t−1, a0:t−1} represent the set of
possible rewards and zt ∈ {1, . . . , |R|} the unique index of rt ∈ R, then a percept (ot, zt) is
received at each time with probability P (ot, zt|o0:t−1, z0:t−1, a0:t−1). VMMs such as CTW can
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then learn a model of this process, using the alphabet Σ = O×{1, . . . , |R|}. This predictive model
must condition on past actions, but its output should only estimate the probability of the next percept
(not the next action). This is solved by interleaving actions and percepts in the input context, but only
updating its estimators based on the value of the next percept [19]. The resulting action-conditional
model can be used as a simulator by sample-based planning methods such as UCT [12].

2.4 Utile Suffix Memory

Utile suffix memory (USM) [13] is an RL algorithm similar to VMMs for stochastic time-series
prediction. USM learns a suffix tree that is conceptually similar to a context tree with the following
differences. First, each node in the suffix tree directly maintains an estimate of expected cumulative
future reward for each action. To compute this estimate, USM still predicts (immediate) future
observations and rewards at each context, analogously to VMM methods. This prediction is done in
a purely frequentist manner, which often yields inferior prediction performance compared to other
VMMs, especially given noisy data.

Second, USM’s suffix tree does not have a fixed depth; instead, its tree is grown incrementally, by
testing potential expansions for statistically significant differences between their respective predic-
tions of cumulative future reward. USM maintains a fixed-depth subtree of fringe nodes below the
proper leaf nodes of the suffix tree. Fringe nodes do not contribute to the model’s output, but they
also maintain count vectors. At regular intervals, USM compares the distributions over cumulative
future reward of each fringe node against its leaf ancestor, through a Kolmogorov-Smirnov (K-S)
test. If this test succeeds at some threshold confidence, then all fringe nodes below that respective
leaf node become proper nodes, and a new fringe subtree is created below the new leaf nodes.

USM’s fringe expansion allows it to use memory efficiently, as only the contextual distinctions that
are actually significant for prediction are represented. However, USM is computationally expensive.
Performing K-S tests for all nodes in a fringe subtree requires, in the worst-case, time linear in the
amount of (real-valued) data contained at each node, and exponential in the depth of the subtree.
This cost can be prohibitive even if the expansion test is only run infrequently. Furthermore, USM
does not explicitly bound its memory use, and simply stopping growth once a memory bound is hit
would bias the model towards symbols received early in learning.

3 Dynamic-Depth Context Tree Weighting
We now propose dynamic-depth context tree weighting (D2-CTW). Rather than fixing the depth a
priori, like CTW, or using unbounded memory, like USM, D2-CTW learns F̃ with dynamic depth,
subject to the constraint |F̃t| ≤ L at any time t, where L is a fixed memory bound.

3.1 Dynamic Expansion in CTW
To use memory efficiently and avoid requiring a fixed depth, we could simply replicate USM’s fringe
expansion in CTW, by performing K-S tests on distributions over symbols (P se ) instead of distribu-
tions over expected reward. However, doing so would introduce bias. The weighted estimates
P sw(σ0:t) for each context s depend on the ratio of the probability of the observed data at s itself,
P se (σ0:t), and that of the data observed at its children, P s

′

w (σ0:t) at s′ = σs∀σ ∈ Σ. These estimates
depend on the number of times each symbol followed a context, implying that cs,t =

∑
σ∈Σ cs′,t.

Thus, the weighting in (3) assumes that each symbol that was observed to follow the non-leaf con-
text s was also observed to follow exactly one of its children s′. If this was not so and, e.g., s was
created at time 0 but its children only at τ > 0, then, since P s

′

w (στ :t) ≥ P s
′

w (σ0:t), the weighting
would be biased towards the children, which would have been exposed to less data.

Fortunately, an alternative CTW recursion, originally proposed for numerical stability [20], over-
comes this issue. In CTW and for a context tree of fixed depth K, let βst be the likelihood ratio
between the weighted estimate below s and the local estimate at s itself:

βst :=

{ ∏
σ∈Σ P

σs
w (σ0:t)

P se (σ0:t)
if |s| < K,

1 if |s| = K.
(5)

Then, the weighted estimate of the conditional probability of an observed symbol σt at node s is:

P sw(σt|σ0:t−1) :=
P sw(σ0:t)

P sw(σ0:t−1)
=

1
2P

s
e (σ0:t) (1 + βst )

1
2P

s
e (σ0:t−1)

(
1 + βst−1

) =: P se (σt|σ0:t−1)
1 + βst

1 + βst−1

. (6)

4



Furthermore, βst can be updated for each s as follows. Let Ct represent the set of suffixes on the
context path at time t (the set of all suffixes of σ0:t−1). Then:

βst =

{
P s
′
w (σt|σ0:t−1)
P se (σt|σ0:t−1) β

s
t−1 if s ∈ Ct,

βst = βst−1 otherwise,
(7)

where s′ = σt−1−|s|s is the child of s that follows it on the context path. For any context, we set
βs0 = 1. This reformulation allows the computation of P sw(σt|σ0:t−1) using only the nodes on the
context path and while storing only a single value in those nodes, βst , regardless of |Σ|.
Since this reformulation depends only on conditional probability estimates, we can perform fringe
expansion in CTW and add nodes dynamically without biasing the mixture. Disregard the fixed
depth limit K and consider instead a suffix tree where all leaf nodes have a depth greater than the
fringe depth H > 0. For any leaf node at depth d, its ancestor at depth d − H is its frontier node.
The descendants of any frontier node are fringe nodes. Let ft represent the frontier node on the
context path at time t. At every timestep t, we traverse down the tree by following the context path
as in CTW. At every node on the context path and above ft, we apply (6) and (7) while treating ft
as a leaf node. For ft and the fringe nodes on the context path below it, we apply the same updates
while treating fringe nodes normally. Thus, the recursion in (6) does not carry over to fringe nodes,
but otherwise all nodes update their values of β in the same manner.

Once the fringe expansion criterion is met (see Section 3.2), the fringe nodes below ft simply stop
being labeled as such, while the values of β for the nodes above ft must be updated to reflect the
change in the model. Let P̄ ftw (σ0:t) represent the weighted (unconditional) output at ft after the
fringe expansion step. We have therefore P̄ ftw (σ0:t) := 1

2P
ft
e (σ0:t)(1 + βftt ), but prior to the

expansion, P ftw (σ0:t) = P fte (σ0:t). The net change in the likelihood of σ0:t, according to ft, is:

αftexp :=
P̄ ftw (σ0:t)

P ftw (σ0:t)
=

1 + βftt
2

. (8)

This induces a change in the likelihood of the data according to all of the ancestors of ft. We need
to determine α∅exp =: P̄ ∅w(σ0:t)/P

∅
w(σ0:t), which quantifies the effect of the fringe expansion on

the global output of the weighted model.

Proposition 1. Let f be a string corresponding to a frontier node, and let pd be the length-d suffix

of f (with p0 = ∅). Also let ρf :=
∏|f |−1
d=0

β
pd
t

1+β
pd
t

, and αfexp :=
1+βft

2 . Then:

α∅exp :=
P̄ ∅w(σ0:t)

P ∅w(σ0:t)
= 1 + ρf

(
αfexp − 1

)
.

The proof can be found in the supplementary material of this paper (Appendix A.1). This formu-
lation is useful since, for any node s in the suffix tree with ancestors (p0, p1, . . . , p|s|−1) we can

associate a value ρst =
∏|s|−1
d=0

β
pd
t

1+β
pd
t

= ρ
p|s|−1

t
β
p|s|−1|
t

1+β
p|s−1|
t

that measures the sensitivity of the whole

model to changes below s, and not necessarily just fringe expansions. Thus, a node with ρs ' 0
is a good candidate for pruning (see Section 3.3). Furthermore, this value can be computed while
traversing the tree along the context path. Although the computation of ρs for a particular node still
requires O(|s|) operations, the values of ρ for all ancestors of s are also computed along the way.

3.2 Fringe Expansion Criterion

As a likelihood ratio, αfexp provides a statistical measure of the difference between the predictive
model at each frontier node f and that formed by its fringe children. Analogously, α∅exp can be seen
as the likelihood ratio between two models that differ only on the subtree below f . Therefore, we can
test the hypothesis that the subtree below f should be added to the model by checking if α∅exp > γ

for some γ > 1. Since the form of P ∅w(·) is unknown, we cannot establish proper confidence levels
for γ; however, the following result shows that the value of γ is not especially important, since if the
subtree below f improves the model, this test will eventually be true given enough data.
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Theorem 1. Let S and Sexp be two proper suffix sets such that Sexp = (S \ f)∪F where f is suffix
to all f ′ ∈ F . Furthermore, let M and Mexp be the CTW models using the suffix trees induced by S
and Sexp respectively, and P ∅w(σ0:t;M), P ∅w(σ0:t;Mexp) their estimates of the likelihood of σ0:t.

If there is a T ∈ N such that, for any τ > 0:

T+τ∏
t=τ

P fe (σt|σ0:t−1;M) <

T+τ∏
t=τ

∏
σ∈Σ

Pσfw (σt|σ0:t−1;Mexp),

then for any γ ∈ [1,∞), there is T ′ > 0 such that P ∅w(σ0:T ′ ;Mexp)/P
∅
w(σ0:T ′ ;M) > γ.

The proof can be found in the supplementary material (Appendix A.2). Using α∅exp > γ as a
statistical test instead of K-S tests yields great computational savings, since the procedure described
in Proposition 1 allows us to determine this test inO(|ft|), typically much lower than theO(|Σ|H+1)
complexity of K-S testing all fringe children.

Theorem 1 also ensures that, if sufficient memory is available, D2-CTW will eventually perform as
well as CTW with optimal depth bound K = D. This follows from the fact that, for every node s at
depth ds ≤ D in a CTW suffix tree, if βst ≥ 1 for all t > τ , then the D2-CTW suffix tree will be at
least as deep as ds at context s after some time t′ ≥ τ . That is, at some point, the D2-CTW model
will contain the “useful” sub-tree of the optimal-depth context tree.

Corollary 1. Let l(· | F̃CTW , D) represent the average log-loss of CTW using fixed depth K when
modeling a D−bounded tree source, and l(· | F̃D2−CTW , γ,H,L) the same metric when using D2-
CTW. For any values of γ > 1 andH > 1, and for sufficiently high L > 0, there exists a time T ′ > 0
such that, for any t > T ′, l(σT ′:t | F̃D2−CTW , γ,H,L) ≤ l(σT ′:t | F̃CTW , D).

3.3 Ensuring the Memory Bound

In order to ensure that the memory bound |F̃t| ≤ L is respected, we must first consider whether
a potential fringe expansion does not require more memory than is available. Thus, if the subtree
below frontier node f has size Lf , we must test if |F̃t|+ Lf ≤ L. This means that fringe nodes are
not taken into account when computing |F̃t|, as they do not contribute to the output of F̃t and are
therefore considered as memory overhead, and discarded after training.

Once |F̃t| is such that no fringe expansions are possible without violating the memory bound, it may
still be possible to improve the model by pruning low-quality subtrees to create enough space for
more valuable fringe expansions. Pruning operations also have a quantifiable effect on the likelihood
of the observed data according to F̃t. Let P sw(σ0:t) represent the weighted estimate at internal node
s after pruning its subtree. Analogously to (8), we can define αsprune := P sw(σ0:t)/P

s
w(σ0:t) =

2/(1 + βst ). We can also compute α∅prune, the global effect on the likelihood, using the procedure
in Proposition 1. Since α∅prune = 1 + ρs

(
αsprune − 1

)
, typically with αsprune < 1, if a fringe

expansion at f increases P ∅w(σ0:t) by a factor of α∅exp but requires space Lf such that |F̃t|+Lf > L,
we should prune the subtree below s 6= f that frees Ls space and reduces P ∅w(σ0:t) by α∅prune if 1)
α∅exp × α∅prune > 1; 2) |F̃t| + Lf − Ls ≤ L; and 3) s is not an ancestor of f . The latter condition
requiresO(|f |−|s|) time to validate, while the former can be done in constant time if ρs is available.

In general, some combination of subtrees could be pruned to free enough space for some combina-
tion of fringe expansions, but determining the best possible combination of operations at each time
is too computationally expensive. As a tractable approximation, we compare only the best single ex-
pansion and prune at nodes f∗ and s∗ respectively, quantified with two heuristicsHfexp := logα∅expf
andHsprune := − logα∅prunes, such that f∗ = arg maxf Hfexp and s∗ = arg minf Hsprune.
As L is decreased, the performance of D2-CTW may naturally degrade. Although Corollary 1 may
no longer be applicable in that case, a weaker bound on the performance of memory-constrained
D2-CTW can be obtained as follows, regardless of L: let dtmin denote the minimum depth of any
frontier node at time t; then the D2-CTW suffix tree covers the set of dtmin-bounded models [23].
The redundancy of D2-CTW, measured as the Kullback-Leibler divergence DKL(F ||F̃t), is then at
least as low as the redundancy of a multi-alphabet CTW implementation with K = dtmin [17].
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Figure 1: Calgary Corpus performance with CTW (red) and D2-CTW (blue). For average log-loss,
lower is better: (a)-(c) using optimal parameters; (d) with a bound on the number of nodes; (e) with
size bound and uniform noise; (f) log-loss vs. γ on ‘book2’, with 10% noise (over 30 runs).

3.4 Complete Algorithm and Complexity

The complete D2-CTW algorithm operates as follows (please refer to Appendix A.3 for the respec-
tive pseudo-code): a suffix tree is first initialized containing only a root node; at every timestep, the
suffix tree is updated using the observed symbol σt, and the preceding context (if it exists) from
time t− dtmax−H where dtmax is the current maximum depth of the tree and H is the fringe depth.
This update returns the weighted conditional probability of σt, and it also keeps track of the best
known fringe expansion and pruning operations. Then, a post-processing step expands and possibly
prunes the tree as necessary, ensuring the memory bound is respected. This step also corrects the
values of β for any nodes affected by these topological operations. D2-CTW trains on each new
symbol in O(dtmax + H) time, the same as CTW with depth bound K = dtmax + H . A worst-
case O((dtmax +H)|Σ|) operations are necessary to sample a symbol from the learned model, also
equivalent to CTW. Post-processing requires O(max{|f∗|, |s∗|}) time.

4 Experiments
We now present empirical results on byte-prediction tasks and partially-observable RL. Our code and
instructions for its use is publicly available at: https://bitbucket.org/jmessias/vmm_py.

Byte Prediction We compare the performance of D2-CTW against CTW on the 18-file variant
of the Calgary Corpus [3], a benchmark of text and binary data files. For each file, we ask the
algorithms to predict the next byte given the preceding data, such that |Σ| = 256 across all files.

We first compare performance when using (approximately) optimal hyperparameters. For CTW,
we performed a grid search taking K ∈ {1, . . . , 10} for each file. For D2-CTW, we investigated
the effect of γ on the prediction log-loss across different files, and found no significant effect of
this parameter for sufficiently large values (an example is shown in Fig. 1f), in accordance with
Theorem 1. Consequently, we set γ = 10 for all our D2-CTW runs. We also set L =∞ and H = 2.

The corpus results, shown in Figs. 1a–1c, show that D2-CTW achieves comparable performance to
CTW: on average D2-CTW’s loss is 2% higher, which is expected since D2-CTW grows dynami-
cally from a single node, while CTW starts with a fully grown model of optimal height. By contrast,
D2-CTW uses many fewer nodes than CTW, by at least one order of magnitude (average factor
∼ 28). D2-CTW automatically discovers optimal depths that are similar to the optimal values for
CTW. We then ran a similar test but with a bound on the number of nodes L = 1000. For CTW, we
enforced this bound by simply stopping the suffix tree from growing beyond this point2. The results

2For simplicity, we did not use CTW with Budget SAD as a baseline. Budget SAD could also be used
to extend D2-CTW, so a fair comparison would necessitate the optional integration of Budget SAD into both
CTW and D2-CTW. This is an interesting possibility for future work.
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are shown in Fig. 1d. In this case, the log-loss of CTW is on average 11.4% and up to 32.3% higher
than that of D2-CTW, showing that D2-CTW makes a significantly better use of memory.

Finally, we repeated this test but randomly replaced 5% of symbols with uniform noise. This makes
the advantage of D2-CTW is even more evident, with CTW scoring on average 20.0% worse (Fig.
1e). While the presence of noise still impacts performance, the results show that D2-CTW, unlike
CTW, is resilient to noise: spurious contexts are not deemed significant, avoiding memory waste.

Model-Based RL For our empirical study on online partially observable RL tasks, we take as a
baseline MC-AIXI, a combination of fixed-depth CTW modelling with ρUCT planning [19], and
investigate the effect of replacing CTW with D2-CTW and limiting the available memory. We also
compare against PPM-C, a frequentist VMM that is competitive with CTW [2]. Our experimental
domains are further described in the supplementary material.

Our first domain is the T-maze [1], in which an agent must remember its initial observation in order
to act optimally at the end of the maze. We consider a maze of length 4. We set K = 3 for CTW
and PPM-C, which is the guaranteed minimum depth to produce the optimal policy. For D2-CTW
we set γ = 1, H = 2, and do not enforce a memory bound. As in [19], we use an ε-greedy
exploration strategy. Fig. 2a shows that D2-CTW discovers the length of the T-Maze automatically.
Furthermore, CTW and PPM-C fail to learn to retain the required observations, as during the initial
stages of learning the agent may need more than 3 steps to reach the goal (D2-CTW learns a model
of depth 4).

Our second scenario is the cheese maze [13], a navigation task with aliased observations. Under
optimal parameters, D2-CTW and CTW both achieve near-optimal performance for this task. We
investigated the effect of setting a bound on the number of nodes L = 1000, roughly 1/5 of the
amount used by CTW with optimal hyperparameters. In Fig. 2b we show that the quality of D2-
CTW degrades less than both CTW and PPM-C, still achieving a near optimal policy. As this is
a small-sized problem with D = 2, CTW and PPM-C still produce reasonable results in this case
albeit with lower quality models than D2-CTW.

Finally, we tested a partially observable version of mountain car [16], in which the position of the
car is observed but not its velocity. We coarsely discretised the position of the car into 10 states. In
this task, we have no strong prior knowledge about the required context length, but found K = 4 to
be sufficient for optimal PPM-C and CTW performance. For D2-CTW, we used γ = 10,H = 2. We
set also L = 1000 for all methods. Fig. 2c shows the markedly superior performance of D2-CTW
when subject to this memory constraint.

5 Conclusions and Future Work

We introduced D2-CTW, a variable-order modelling algorithm that extends CTW by using a fringe
expansion mechanism that tests contexts for statistical significance, and by allowing the dynamic
adaptation of its suffix tree while subject to a memory bound. We showed both theoretically and
empirically that D2-CTW requires little configuration across domains and provides better perfor-
mance with respect to CTW under memory constraints and/or the presence of noise. In future work,
we will investigage the use the Budget SAD estimator with a dynamic budget as an alternative mech-
anism for informed pruning. We also aim to apply a similar approach to context tree switching (CTS)
[18], an algorithm that is closely related to CTW but enables mixtures in a larger model class.
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Figure 2: Performance measured as (running) average rewards in (a) T-maze; (b) cheese maze; (c)
partially observable mountain car. Results show mean over 10 runs, and shaded first to third quartile.
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