
Q-LDA: Uncovering Latent Patterns in Text-based
Sequential Decision Processes

Jianshu Chen⇤, Chong Wang†, Lin Xiao⇤, Ji He‡, Lihong Li† and Li Deng‡

⇤Microsoft Research, Redmond, WA, USA
{jianshuc,lin.xiao}@microsoft.com

†Google Inc., Kirkland, WA, USA⇤

{chongw,lihong}@google.com
‡Citadel LLC, Seattle/Chicago, USA

{Ji.He,Li.Deng}@citadel.com

Abstract

In sequential decision making, it is often important and useful for end users to
understand the underlying patterns or causes that lead to the corresponding deci-
sions. However, typical deep reinforcement learning algorithms seldom provide
such information due to their black-box nature. In this paper, we present a proba-
bilistic model, Q-LDA, to uncover latent patterns in text-based sequential decision
processes. The model can be understood as a variant of latent topic models that
are tailored to maximize total rewards; we further draw an interesting connection
between an approximate maximum-likelihood estimation of Q-LDA and the cel-
ebrated Q-learning algorithm. We demonstrate in the text-game domain that our
proposed method not only provides a viable mechanism to uncover latent patterns
in decision processes, but also obtains state-of-the-art rewards in these games.

1 Introduction

Reinforcement learning [21] plays an important role in solving sequential decision making problems,
and has seen considerable successes in many applications [16, 18, 20]. With these methods, however,
it is often difficult to understand or examine the underlying patterns or causes that lead to the sequence
of decisions. Being more interpretable to end users can provide more insights to the problem itself
and be potentially useful for downstream applications based on these results [5].

To investigate new approaches to uncovering underlying patterns of a text-based sequential decision
process, we use text games (also known as interactive fictions) [11, 19] as the experimental domain.
Specifically, we focus on choice-based and hypertext-based games studied in the literature [11],
where both the action space and the state space are characterized in natural languages. At each time
step, the decision maker (i.e., agent) observes one text document (i.e., observation text) that describes
the current observation of the game environment, and several text documents (i.e., action texts) that
characterize different possible actions that can be taken. Based on the history of these observations,
the agent selects one of the provided actions and the game transits to a new state with an immediate
reward. This game continues until the agent reaches a final state and receives a terminal reward.

In this paper, we present a probabilistic model called Q-LDA that is tailored to maximize total
rewards in a decision process. Specially, observation texts and action texts are characterized by two
separate topic models, which are variants of latent Dirichlet allocation (LDA) [4]. In each topic
model, topic proportions are chained over time to model the dependencies for actions or states. And

⇤The work was done while Chong Wang, Ji He, Lihong Li and Li Deng were at Microsoft Research.

31st Conference on Neural Information Processing Systems (NIPS 2017), Long Beach, CA, USA.

these proportions are partially responsible for generating the immediate/terminal rewards. We also
show an interesting connection between the maximum-likelihood parameter estimation of the model
and the Q-learning algorithm [22, 18]. We empirically demonstrate that our proposed method not
only provides a viable mechanism to uncover latent patterns in decision processes, but also obtains
state-of-the-art performance in these text games.

Contribution. The main contribution of this paper is to seamlessly integrate topic modeling with
Q-learning to uncover the latent patterns and interpretable causes in text-based sequential decision-
making processes. Contemporary deep reinforcement learning models and algorithms can seldom
provide such information due to their black-box nature. To the best of our knowledge, there is no
prior work that can achieve this and learn the topic model in an end-to-end fashion to maximize the
long-term reward.

Related work. Q-LDA uses variants of LDA to capture observation and action texts in text-based
decision processes. In this model, the dependence of immediate reward on the topic proportions
is similar to supervised topic models [3], and the chaining of topic proportions over time to model
long-term dependencies on previous actions and observations is similar to dynamic topic models [6].
The novelty in our approach is that the model is estimated in a way that aims to maximize long-term
reward, thus producing near-optimal policies; hence it can also be viewed as a topic-model-based
reinforcement-learning algorithm. Furthermore, we show an interesting connection to the DQN
variant of Q-learning [18]. The text-game setup used in our experiment is most similar to previous
work [11] in that both observations and actions are described by natural languages, leading to
challenges in both representation and learning. The main difference from that previous work is that
those authors treat observation-texts as Markovian states. In contrast, our model is more general,
capturing both partial observability and long-term dependence on observations that are common
in many text-based decision processes such as dialogues. Finally, the choice of reward function in
Q-LDA share similarity with that in Gaussian process temporal difference methods [9].

Organization. Section 2 describes the details of our probabilistic model, and draws a connection
to the Q-learning algorithm. Section 3 presents an end-to-end learning algorithm that is based on
mirror descent back-propagation. Section 4 demonstrates the empirical performance of our model,
and we conclude with discussions and future work in Section 5.

2 A Probabilistic Model for Text-based Sequential Decision Processes

In this section, we first describe text games as an example of sequential decision processes. Then, we
describe our probabilistic model, and relate it to a variant of Q-learning.

2.1 Sequential decision making in text games

Text games are an episodic task that proceeds in discrete time steps t 2 {1, . . . , T}, where the length
T may vary across different episodes. At time step t, the agent receives a text document of N words
describing the current observation of the environment: w

S

t

, {w

S

t,n

}N

n=1.2 We call these words
observation text. The agent also receives A

t

text documents, each of which describes a possible
action that the agent can take. We denote them by w

a

t

, {w

a

t,n

}N

n=1 with a 2 {1, . . . , A

t

}, where A

t

is the number of feasible actions and it could vary over time. We call these texts action texts. After the
agent takes one of the provided actions, the environment transits to time t + 1 with a new state and an
immediate reward r

t

; both dynamics and reward generation may be stochastic and unknown. The new
state then reveals a new observation text w

S

t+1 and several action texts w

a

t+1 for a 2 {1, . . . , A

t+1}.
The transition continues until the end of the game at step T when the agent receives a terminal reward
r

T

. The reward r

T

depends on the ending of the story in the text game: a good ending leads to a large
positive reward, while bad endings negative rewards.

The goal of the agent is to maximize its cumulative reward by acting optimally in the environment.
At step t, given all observation texts w

S

1:t, all action texts w

A

1:t , {w

a

1:t : 8a}, previous actions
a1:t�1 and rewards r1:t�1, the agent is to find a policy, ⇡(a

t

|wS

1:t, w
A

1:t, a1:t�1, r1:t�1), a conditional

2For notation simplicity, we assume all texts have the same length N .

2

…

N

✓

S

t

N

z

S

t,n

w

S

t,n

�

S

�

S

w

a

t,n

z

a

t,n

✓

a

t

a

t

r

t

�

A

�

A

N

N

�

S

�

S

�

A

�

A

…

w

a

t+1,n

w

S

t+1,n

z

S

t+1,n

z

a

t+1,n

✓

a

t+1

✓

S

t+1

r

t+1 a

t+1

|A
t+1||A

t

|

↵

A

t

↵

A

t+1

↵

S

t+1↵

S

t

Figure 1: Graphical model representation for the studied sequential decision process. The bottom
section shows the observation topic models, which share the same topics in �

S

, but the topic
distributions ✓

S

t

changes with time t. The top section shows the action topic models, sharing the
same action topics in �

A

, but with time varying topic distribution ✓

a

t

for each a 2 A

t

. The middle
section shows the dependence of variables between consecutive time steps. There are no plates for
the observation text (bottom part of the figure) because there is only one observation text document
at each time step. We follow the standard notation for graphical models by using shaded circles as
observables. Since the topic distributions ✓

S

t

and ✓

a

t

and the Dirichlet parameters ↵

S

t

and ↵

A

t

(except
↵

S

1 and ↵

A

1) are not observable, we need to use their MAP estimate to make end-to-end learning
feasible; see Section 3 for details. The figure characterizes the general case where rewards appear at
each time step, while in our experiments the (non-zero) rewards only appear at the end of the games.

probability of selecting action a

t

, that maximizes the expected long-term reward E{
P

T

⌧=t

�

⌧�t

r

⌧

},
where � 2 (0, 1) is a discount factor. In this paper, for simplicity of exposition, we focus on problems
where the reward is nonzero only in the final step T . While our algorithm can be generalized to the
general case (with greater complexity), this special case is an important case of RL (e.g., [20]). As a
result, the policy is independent of r1:t�1 and its form is simplified to ⇡(a

t

|wS

1:t, w
A

1:t, a1:t�1).

The problem setup is similar to previous work [11] in that both observations and actions are described
by natural languages. For actions described by natural languages, the action space is inherently
discrete and large due to the exponential complexity with respect to sentence length. This is
different from most reinforcement learning problems where the action spaces are either small
or continuous. Here, we take a probabilistic modeling approach to this challenge: the observed
variables—observation texts, action texts, selected actions, and rewards—are assumed to be generated
from a probabilistic latent variable model. By examining these latent variables, we aim to uncover
the underlying patterns that lead to the sequence of the decisions. We then show how the model is
related to Q-learning, so that estimation of the model leads to reward maximization.

2.2 The Q-LDA model

The graphical representation of our model, Q-LDA, is depicted in Figure 1. It has two instances of
topic models, one for observation texts and the other for action texts. The basic idea is to chain the
topic proportions (✓s in the figure) in a way such that they can influence the topic proportions in the
future, thus capturing long-term effects of actions. Details of the generative models are as follows.

For the observation topic model, we use the columns of �

S

⇠ Dir(�

S

)

3 to denote the topics for
the observation texts. For the action topic model, we use the columns of �

A

⇠ Dir(�

A

) to denote
the topics for the action texts. We assume these topics do not change over time. Given the initial
topic proportion Dirichlet parameters—↵

S

1 and ↵

A

1 for observation and action texts respectively—the
Q-LDA proceeds sequentially from t = 1 to T as follows (see Figure 1 for all latent variables).

3�S is a word-by-topic matrix. Each column is drawn from a Dirichlet distribution with hyper-parameter �S ,
representing the word-emission probabilities of the corresponding topic. �A is similarly defined.

3

1. Draw observation text w

S

t

as follows,
(a) Draw observation topic proportions ✓

S

t

⇠ Dir(↵

S

t

).
(b) Draw all words for the observation text w

S

t

⇠ LDA(w

S

t

|✓S

t

, �

S

), where LDA(·)
denotes the standard LDA generative process given its topic proportion ✓

S

t

and topics
�

S

[4]. The latent variable z

S

t,n

indicates the topic for the word w

S

t,n

.
2. For a = 1, ..., A

t

, draw action text w

a

t

as follows,
(a) Draw action topic proportions ✓

a

t

⇠ Dir(↵

A

t

).
(b) Draw all words for the a-th action text using w

a

t

⇠ LDA(w

a

t

|✓a

t

, �

A

), where the latent
variable z

a

t,n

indicates the topic for the word w

a

t,n

.
3. Draw the action: a

t

⇠ ⇡

b

(a

t

|wS

1:t, w
A

1:t, a1:t�1), where ⇡

b

is an exploration policy for data
collection. It could be chosen in different ways, as discussed in the experiment Section 4.
After model learning is finished, a greedy policy may be used instead (c.f., Section 3).

4. The immediate reward r

t

is generated according to a Gaussian distribution with mean
function µ

r

(✓

S

t

, ✓

at
t

, U) and variance �

2
r

:

r

t

⇠ N
�

µ

r

(✓

S

t

, ✓

at
t

, U), �

2
r

�

. (1)

Here, we defer the definitions of µ

r

(✓

S

t

, ✓

at
t

, U) and its parameter U to the next section,
where we draw a connection between likelihood-based learning and Q-learning.

5. Compute the topic proportions Dirichlet parameters for the next time step t + 1 as

↵

S

t+1 = �

�

W

SS

✓

S

t

+ W

SA

✓

at
t

+ ↵

S

1

�

, ↵

A

t+1 = �

�

W

AS

✓

S

t

+W

AA

✓

at
t

+↵

A

1

�

, (2)

where �(x) , max{x, ✏} with ✏ being a small positive number (e.g., 10

�6), a

t

is the action
selected by the agent at time t, and {W

SS

, W

SA

, W

AS

, W

AA

} are the model parameters to
be learned. Note that, besides ✓

S

t

, the only topic proportions from {✓

a

t

}At
a=1 that will influence

↵

S

t+1 and ↵

A

t+1 is ✓

at
t

, i.e., the one corresponding to the chosen action a

t

. Furthermore, since
✓

S

t

and ✓

at
t

are generated according to Dir(↵

S

t

) and Dir(↵

A

t

), respectively, ↵

S

t+1 and ↵

A

t+1

are (implicitly) chained over time via ✓

S

t

and ✓

at
t

(c.f. Figure 1).

This generative process defines a joint distribution p(·) among all random variables depicted in
Figure 1. Running this generative process—step 1 to 5 above for T steps until the game ends—
produces one episode of the game. Now suppose we already have M episodes. In this paper, we
choose to directly learn the conditional distribution of the rewards given other observations. By
learning the model in a discriminative manner [2, 7, 12, 15, 23], we hope to make better predictions
of the rewards for different actions, from which the agent could obtain the best policy for taking
actions. This can be obtained by applying Bayes rule to the joint distribution defined by the generative
process. Let ⇥ denote all model parameters: ⇥ = {�

S

, �

A

, U, W

SS

, W

SA

, W

AS

, W

AA

}. We have
the following loss function

min

⇥

(

� ln p(⇥)�
M

X

i=1

ln p

�

r1:Ti |wS

1:Ti
, w

A

1:Ti
, a1:Ti , ⇥

�

)

, (3)

where p(⇥) denotes a prior distribution of the model parameters (e.g., Dirichlet parameters over
�

S

and �

A

), and T

i

denotes the length of the i-th episode. Let K

S

and K

A

denote the number of
topics for the observation texts and action texts, and let V

S

and V

A

denote the vocabulary sizes for
the observation texts and action texts, respectively. Then, the total number of learnable parameters
for Q-LDA is: V

S

⇥K

S

+ V

A

⇥K

A

+ K

A

⇥K

S

+ (K

S

+ K

A

)

2.

We note that a good model learned through Eq. (3) may predict the values of rewards well, but might
not imply the best policy for the game. Next, we show by defining the appropriate mean function
for the rewards, µ

r

(✓

S

t

, ✓

at
t

, U), we can achieve both. This closely resembles Q-learning [21, 22],
allowing us to effectively learn the policy in an iterative fashion.

2.3 From Q-LDA to Q-learning

Before relating Q-LDA to Q-learning, we first give a brief introduction to the latter. Q-learning [22,
18] is a reinforcement learning algorithm for finding an optimal policy in a Markov decision process
(MDP) described by (S, A, P, r, �), where S is a state space, A is an action space, and � 2 (0, 1)

is a discount factor. Furthermore, P defines a transition probability p(s

0|s, a) for going to the next

4

state s

0 2 S from the current state s 2 S after taking action a 2 A, and r(s, a) is the immediate
reward corresponding to this transition. A policy ⇡(a|s) in an MDP is defined to be the probability
of taking action a at state s. Let s

t

and a

t

be the state and action at time t, and let r

t

= r(s

t

, a

t

) be
the immediate reward at time t. An optimal policy is the one that maximizes the expected long-term
reward E{

P+1
t=1 �

t�1
r

t

}. Q-learning seeks to find the optimal policy by estimating the Q-function,
Q(s, a), defined as the expected long-term discounted reward for taking action a at state s and then
following an optimal policy thereafter. It satisfies the Bellman equation [21]

Q(s, a) = E{r(s, a) + � · max

b

Q(s

0
, b)|s, a} , (4)

and directly gives the optimal action for any state s: arg max

a

Q(s, a).

Q-learning solves for Q(s, a) iteratively based on observed state transitions. The basic Q-learning [22]
requires storing and updating the values of Q(s, a) for all state–action pairs in S ⇥ A, which is
not practical when S and A are large. This is especially true in our text games, where they can be
exponentially large. Hence, Q(s, a) is usually approximated by a parametric function Q

✓

(s, a) (e.g.,
neural networks [18]), in which case the model parameter ✓ is updated by:

✓ ✓ + ⌘ ·r
✓

Q

✓

· (d

t

�Q

✓

(s

t

, a

t

)) , (5)

where d

t

, r

t

+ � · max

a

0
Q

✓

0
(s

t+1, a
0
) if s

t

nonterminal and d

t

, r

t

otherwise, and ✓

0 denotes
a delayed version of the model parameter updated periodically [18]. The update rule (5) may be
understood as applying stochastic gradient descent (SGD) to a regression loss function J(✓) ,
E[d

t

�Q

✓

(s, a)]

2. Thus, d

t

is the target, computed from r

t

and Q

✓

0 , for the prediction Q

✓

(s

t

, a

t

).

We are now ready to define the mean reward function µ

r

in Q-LDA. First, we model the Q-function
by Q(✓

S

t

, ✓

a

t

) = (✓

a

t

)

T

U✓

S

t

, where U is the same parameter as the one in (1).4 This is different from
typical deep RL approaches, where black-box models like neural networks are used. In order to
connect our probabilistic model to Q-learning, we define the mean reward function as follows,

µ

r

(✓

S

t

, ✓

at
t

, U) = Q(✓

S

t

, ✓

at
t

)� � · E
⇥

max

b

Q(✓

S

t+1, ✓
b

t+1)|✓S

t

, ✓

at
t

⇤

(6)

Note that µ

r

remains as a function of ✓

S

t

and ✓

at
t

since the second term in the above expression is
a conditional expectation given ✓

S

t

and ✓

at
t

. The definition of the mean reward function in Eq. (6)
has a strong relationship with the Bellman equation (4) in Q-learning; it relates the long-term reward
Q(✓

S

t

, ✓

at
t

) to the mean immediate reward µ

r

in the same manner as the Bellman equation (4). To
see this, we move the second term on the right-hand side of (6) to the left, and make the identification
that µ

r

corresponds to E{r(s, a)} since both of them represent the mean immediate reward. The
resulting equation share a same form as the Bellman equation (4). With the mean function µ

r

defined
above, we show in Appendix B that the loss function (3) can be approximated by the one below using
the maximum a posteriori (MAP) estimate of ✓

S

t

and ✓

at
t

(denoted as ˆ

✓

S

t

and ˆ

✓

at
t

, respectively):

min

⇥

n

� ln p(�

S

|�
S

)� ln p(�

A

|�
A

) +

M

X

i=1

Ti
X

t=1

1

2�

2
r

h

d

t

�Q(

ˆ

✓

S

t

,

ˆ

✓

at
t

)

i2 o

(7)

where d

t

= r

t

+ � max

b

Q(

ˆ

✓

S

t+1,
ˆ

✓

b

t+1) for t < T

i

and d

t

= r

t

for t = T

i

. Observe that the first two
terms in (7) are regularization terms coming from the Dirichlet prior over �

S

and �

A

, and the third
term shares a similar form as the cost J(✓) in Q-learning; it can also be interpreted as a regression
problem for estimating the Q-function, where the target d

t

is constructed in a similar manner as
Q-learning. Therefore, optimizing the discriminative objective (3) leads to a variant of Q-learning.
After learning is finished, we can obtain the greedy policy by taking the action that maximizes the
Q-function estimate in any given state.

We also note that we have used the MAP estimates of ✓

S

t

and ✓

at
t

due to the intractable marginalization
of the latent variables [14]. Other more advanced approximation techniques, such as Markov Chain
Monte Carlo (MCMC) [1] and variational inference [13] can also be used, and we leave these
explorations as future work.

3 End-to-end Learning by Mirror Descent Back Propagation
4The intuition of choosing Q(·, ·) to be this form is that we want ✓St to be aligned with ✓at of the correct

action (large Q-value), and to be misaligned with the ✓at of the wrong actions (small Q-value). The introduction
of U allows the number and the meaning of topics for the observations and actions to be different.

5

Algorithm 1 The training algorithm by mirror descent back propagation
1: Input: D (number of experience replays), J (number of SGD updates), and learning rate.
2: Randomly initialize the model parameters.
3: for m = 1, . . . , D do
4: Interact with the environment using a behavior policy ⇡

m

b

(a

t

|xS

1:t, x
A

1:t, a1:t�1) to collect M

episodes of data {w

S

1:Ti
, w

A

1:Ti
, a1:Ti , r1:Ti}M

i=1 and add them to D.
5: for j = 1, . . . , J do
6: Randomly sample an episode from D.
7: For the sampled episode, compute ˆ

✓

S

t

, ˆ

✓

a

t

and Q(

ˆ

✓

S

t

,

ˆ

✓

a

t

) with a = 1, . . . , A

t

and t =

1, . . . , T

i

according to Algorithm 2.
8: For the sampled episode, compute the stochastic gradients of (7) with respect to ⇥ using

back propagation through the computational graph defined in Algorithm 2.
9: Update {U, W

SS

, W

SA

, W

AS

, W

AA

} by stochastic gradient descent and update {�

S

, �

A

}
using stochastic mirror descent.

10: end for
11: end for

Algorithm 2 The recursive MAP inference for one episode
1: Input: ↵

S

1 , ↵

A

1 , L, �, x

S

t

, {x

a

t

: a = 1, . . . , A

t

} and a

t

, for all t = 1, . . . , T

i

.
2: Initialization: ↵̂

S

1 = ↵

S

1 and ↵̂

A

1 = ↵

A

1
3: for t = 1, . . . , T

i

do
4: Compute ˆ

✓

S

t

by repeating ˆ

✓

S

t

 1
C

ˆ

✓

S

t

� exp

⇣

�

h

�

T

S

x

S
t

�S ✓̂

S
t

+

↵̂

S
t �1
✓̂

S
t

i⌘

for L times with initial-

ization ˆ

✓

S

t

/ 1, where C is a normalization factor.
5: Compute ˆ

✓

a

t

for each a = 1, . . . , A

t

by repeating ˆ

✓

a

t

 1
C

ˆ

✓

a

t

� exp

⇣

�

h

�

T

A

x

a
t

�A✓̂

a
t

+

↵̂

A
t �1
✓̂

a
t

i⌘

for L times with initialization ˆ

✓

a

t

/ 1, where C is a normalization factor.
6: Compute ↵̂

S

t+1 and ↵̂

A

t+1 from ˆ

✓

S

t

and ˆ

✓

at
t

according to (11).
7: Compute the Q-values: Q(

ˆ

✓

S

t

,

ˆ

✓

a

t

) = (

ˆ

✓

a

t

)

T

U

ˆ

✓

S

t

for a = 1, . . . , A

t

.
8: end for

In this section, we develop an end-to-end learning algorithm for Q-LDA, by minimizing the loss
function given in (7). As shown in the previous section, solving (7) leads to a variant of Q-learning,
thus our algorithm could be viewed as a reinforcement-learning algorithm for the proposed model.

We consider learning our model with experience replay [17], a widely used technique in recent state-
of-the-art systems [18]. Specifically, the learning process consists of multiple stages, and at each stage,
the agent interacts with the environment using a fixed exploration policy ⇡

b

(a

t

|xS

1:t, x
A

1:t, a1:t�1) to
collect M episodes of data {w

S

1:Ti
, w

A

1:Ti
, a1:Ti , r1:Ti}M

i=1 and saves them into a replay memory D.
(We will discuss the choice of ⇡

b

in section 4.) Under the assumption of the generative model Q-LDA,
our objective is to update our estimates of the model parameters in ⇥ using D; the updating process
may take several randomized passes over the data in D. A stage of such learning process is called one
replay. Once a replay is done, we let the agent use a new behavior policy ⇡

0
b

to collect more episodes,
add them to D, and continue to update ⇥ from the augmented D. This process repeats for multiple
stages, and the model parameters learned from the previous stage will be used as the initialization
for the next stage. Therefore, we can focus on learning at a single stage, which was formulated in
Section 2 as one of solving the optimization problem (7). Note that the objective (7) is a function of
the MAP estimates of ✓

S

t

and ✓

at
t

. Therefore, we start with a recursion for computing ˆ

✓

S

t

and ˆ

✓

at
t

and
then introduce our learning algorithm for ⇥.

3.1 Recursive MAP inference by mirror descent

The MAP estimates, ˆ

✓

S

t

and ˆ

✓

a

t

, for the topic proportions ✓

S

t

and ✓

a

t

are defined as

(

ˆ

✓

S

t

,

ˆ

✓

a

t

) = arg max

✓

S
t ,✓

a
t

p(✓

S

t

, ✓

a

t

|wS

1:t, w
A

1:t, a1:t�1) (8)

6

Solving for the exact solution is, however, intractable. We instead develop an approximate algorithm
that recursively estimate ˆ

✓

S

t

and ˆ

✓

a

t

. To develop the algorithm, we rely on the following result, whose
proof is deferred to Appendix A.
Proposition 1. The MAP estimates in (8) could be approximated by recursively solving the problems:

ˆ

✓

S

t

= arg max

✓

S
t

⇥

ln p(x

S

t

|✓S

t

, �

S

) + ln p

�

✓

S

t

|↵̂S

t

�⇤

(9)

ˆ

✓

a

t

= arg max

✓

a
t

⇥

ln p(x

a

t

|✓a

t

, �

A

) + ln p

�

✓

a

t

|↵̂A

t

�⇤

, a 2 {1, . . . , A

t

} , (10)

where x

S

t

and x

a

t

are the bag-of-words vectors for the observation text w

S

t

and the a-th action text
w

a

t

, respectively. To compute ↵̂

S

t

and ↵̂

A

t

, we begin with ↵̂

S

1 = ↵

S

1 and ↵̂

A

1 = ↵

A

1 and update their
values for the next t + 1 time step according to

↵̂

S

t+1 = �

⇣

W

SS

ˆ

✓

S

t

+W

SA

ˆ

✓

at
t

+↵

S

1

⌘

, ↵̂

A

t+1 = �

⇣

W

AS

ˆ

✓

S

t

+W

AA

ˆ

✓

at
t

+↵

A

1

⌘

(11)

Note from (9)–(10) that, for given ˆ

✓

S

t

and ˆ

✓

a

t

, the solution of ✓

S

t

and ✓

a

t

now becomes A

t

+1 decoupled
sub-problems, each of which has the same form as the MAP inference problem of Chen et al. [8].
Therefore, we solve each sub-problem in (9)–(10) using their mirror descent inference algorithm, and
then use (11) to compute the Dirichlet parameters at the next time step. The overall MAP inference
procedure is summarized in Algorithm 2. We further remark that, after obtaining ˆ

✓

S

t

and ˆ

✓

a

t

, the
Q-value for the t step is readily estimated by:

E
⇥

Q(✓

S

t

, ✓

a

t

)|wS

1:t, w
A

1:t, a1:t�1

⇤

⇡ Q(

ˆ

✓

S

t

,

ˆ

✓

a

t

), a 2 {1, . . . , A

t

} , (12)

where we approximate the conditional expectation using the MAP estimates. After learning is finished,
the agent may extract a greedy policy for any state s by taking the action arg max

a

Q(

ˆ

✓

S

,

ˆ

✓

a

). It
is known that if the learned Q-function is closed to the true Q-function, such a greedy policy is
near-optimal [21].

3.2 End-to-end learning by backpropagation

The training loss (7) for each learning stage has the form of a finite sum over M episodes. Each term
inside the summation depends on ˆ

✓

S

t

and ˆ

✓

at
t

, which in turn depend on all the model parameters in ⇥

via the computational graph defined by Algorithm 2 (see Appendix E for a diagram of the graph).
Therefore, we can learn the model parameters in ⇥ by sampling an episode in the data, computing
the corresponding stochastic gradient in (7) by back-propagation on the computational graph given
in Algorithm 2, and updating ⇥ by stochastic gradient/mirror descent. More details are found in
Algorithm 1, and Appendix E.4 gives the gradient formulas.

4 Experiments

In this section, we use two text games from [11] to evaluate our proposed model and demonstrate the
idea of interpreting the decision making processes: (i) “Saving John” and (ii) “Machine of Death”
(see Appendix C for a brief introduction of the two games).5 The action spaces of both games are
defined by natural languages and the feasible actions change over time, which is a setting that Q-LDA
is designed for. We choose to use the same experiment setup as [11] in order to have a fair comparison
with their results. For example, at each m-th experience-replay learning (see Algorithm 1), we use the
softmax action selection rule [21, pp.30–31] as the exploration policy to collect data (see Appendix
E.3 for more details). We collect M = 200 episodes of data (about 3K time steps in “Saving John”
and 16K in “Machine of Death”) at each of D = 20 experience replays, which amounts to a total
of 4, 000 episodes. At each experience replay, we update the model with 10 epochs before the next
replay. Appendix E provides additional experimental details.

We first evaluate the performance of the proposed Q-LDA model by the long-term rewards it receives
when applied to the two text games. Similar to [11], we repeat our experiments for five times with
different random initializations. Table 1 summarize the means and standard deviations of the rewards

5The simulators are obtained from https://github.com/jvking/text-games

7

Table 1: The average rewards (higher is better) and standard deviations of different models on the two
tasks. For DRRN and MA-DQN, the number of topics becomes the number of hidden units per layer.

Tasks # topics Q-LDA DRRN (1-layer) DRRN (2-layer) MA-DQN (2-layer)

Saving
John

20 18.8 (0.3) 17.1 (0.6) 18.4 (0.1) 4.9 (3.2)
50 18.6 (0.6) 18.3 (0.2) 18.5 (0.3) 9.0 (3.2)
100 19.1 (0.6) 18.2 (0.2) 18.7 (0.4) 7.1 (3.1)

Machine
of Death

20 19.9 (0.8) 7.2 (1.5) 9.2 (2.1) 2.8 (0.9)
50 18.7 (2.1) 8.4 (1.3) 10.7 (2.7) 4.3 (0.9)
100 17.5 (2.4) 8.7 (0.9) 11.2 (0.6) 5.2 (1.2)

on the two games. We include the results of Deep Reinforcement Relevance Network (DRRN)
proposed in [11] with different hidden layers. In [11], there are several variants of DQN (deep
Q-networks) baselines, among which MA-DQN (max-action DQN) is the best performing one. We
therefore only include the results of MA-DQN. Table 1 shows that Q-LDA outperforms all other
approaches on both tasks, especially “Machine of Death”, where Q-LDA even beats the DRRN
models by a large margin. The gain of Q-LDA on “Saving John” is smaller, as both Q-LDA and
DRRN are approaching the upper bound of the reward, which is 20. “Machine of Death” was believed
to be a more difficult task due to its stochastic nature and larger state and action spaces [11], where the
upper bound on the reward is 30. (See Tables 4–5 for the definition of the rewards for different story
endings.) Therefore, Q-LDA gets much closer to the upper bound than any other method, although
there may still be room for improvement. Finally, our experiments follow the standard online RL
setup: after a model is updated based on the data observed so far, it is tested on newly generated
episodes. Therefore, the numbers reported in Table 1 are not evaluated on the training dataset, so
they truthfully reflect the actual average reward of the learned models.

We now proceed to demonstrate the analysis of the latent pattern of the decision making process
using one example episode of “Machine of Death”. In this episode, the game starts with the player
wandering in a shopping mall, after the peak hour ended. The player approaches a machine that
prints a death card after inserting a coin. The death card hints on how the player will die in future. In
one of the story development, the player’s death is related to a man called Bon Jovi. The player is
so scared that he tries to combat with a cardboard standee of Bon Jovi. He reveals his concern to a
friend named Rachel, and with her help he finally overcomes his fear and maintains his friendship.
This episode reaches a good ending and receives the highest possible reward of 30 in this game.

In Figure 2, we show the evolution of the topic proportions for the four most active topics (shown in
Table 2)6 for both the observation texts and the selected actions’ texts. We note from Figure 2 that the
most dominant observation topic and action topic at beginning of the episode are “wander at mall”
and “action at mall”, respectively, which is not surprising since the episode starts at a mall scenario.
The topics related to “mall” quickly dies off after the player starts the death machine. Afterwards, the
most salient observation topic becomes “meet Bon Jovi” and then “combat” (t = 8). This is because
after the activation of death machine, the story enters a scenario where the player tries to combat with
a cardboard standee. Towards the end of the episode, the observation topic “converse w/rachel” and
the topic “kitchen & chat” corresponding to the selected action reach their peaks and then decay right
before the end of the story, where the action topic “relieve” climbs up to its peak. This is consistent
with the story ending, where the player chooses to overcome his fear after chatting with Rachel. In
Appendix D, we show the observation and the action texts in the above stages of the story.

Finally, another interesting observation is about the matrix U . Since the Q-function value is computed
from [

ˆ

✓

a

t

]

T

U

ˆ

✓

S

t

, the (i, j)-th element of the matrix U measures the positive/negative correlation
between the i-th action topic and the j-th observation topic. In Figure 2(c), we show the value of the
learned matrix U for the four observation topics and the four action topics in Table 2. Interestingly,
the largest value (39.5) of U is the (1, 2)-th element, meaning that the action topic “relieve” and the
state topic “converse w/rachel” has strong positive contribution to a high long-term reward, which is
what happens at the end of the story.

6In practice, we observe that some topics are never or rarely activated during the learning process. This is
especially true when the number of topics becomes large (e.g., 100). Therefore, we only show the most active
topics. This might also explain why the performance improvement is marginal when the number of topics grows.

8

Table 2: The four most active topics for the observation texts and the action texts, respectively.

Observation Topics
1: combat minutes, lights, firearm, shoulders, whiff, red, suddenly, huge, rendition
2: converse w/ rachel rachel, tonight, grabs, bar, towards, happy, believing, said, moonlight
3: meet Bon Jovi small, jovi, bon, door, next, dog, insists, room, wrapped, standees
4: wander at mall ended, catcher, shopping, peak, wrapped, hanging, attention, door
Action Topics
1: relieve leave, get, gotta, go, hands, away, maybe, stay, ability, turn, easy, rachel
2: kitchen & chat wait, tea, look, brisk, classics, oysters, kitchen, turn, chair, moment
3: operate the machine coin, insert, west, cloth, desk, apply, dollars, saying, hands, touch, tell
4: action at mall alarm, machine, east, ignore, take, shot, oysters, win, gaze, bestowed

5 10 15
0

0.2

0.4

0.6

0.8

1
Observation Topic 1
Observation Topic 2
Observation Topic 3
Observation Topic 4

(a) Observation topic ✓St

5 10 15
0

0.2

0.4

0.6

0.8

1
Action Topic 1
Action Topic 2
Action Topic 3
Action Topic 4

(b) Selected action topic ✓at
t

2

64

1.2 39.5 20.7 12.2
22.1 12.4 1.4 �0.2
2.5 4.8 4.1 1.9
5.3 8.4 13.3 4.1

3

75

(c) Learned values of matrix U

Figure 2: The evolution of the most active topics in “Machine of Death.”

5 Conclusion

We proposed a probabilistic model, Q-LDA, to uncover latent patterns in text-based sequential
decision processes. The model can be viewed as a latent topic model, which chains the topic
proportions over time. Interestingly, by modeling the mean function of the immediate reward in a
special way, we showed that discriminative learning of Q-LDA using its likelihood is closely related
to Q-learning. Thus, our approach could also be viewed as a Q-learning variant for sequential topic
models. We evaluate Q-LDA on two text-game tasks, demonstrating state-of-the-art rewards in these
games. Furthermore, we showed our method provides a viable approach to finding interesting latent
patterns in such decision processes.

Acknowledgments

The authors would like to thank all the anonymous reviewers for their constructive feedback.

References
[1] Christophe Andrieu, Nando De Freitas, Arnaud Doucet, and Michael I Jordan. An introduction

to MCMC for machine learning. Machine learning, 50(1):5–43, 2003.

[2] C. M. Bishop and J. Lasserre. Generative or discriminative? getting the best of both worlds.
Bayesian Statistics, 8:3–24, 2007.

[3] D. M. Blei and J. D. Mcauliffe. Supervised topic models. In Proc. NIPS, pages 121–128, 2007.

[4] D. M. Blei, A. Y. Ng, and M. I. Jordan. Latent Dirichlet allocation. JMLR, 3:993–1022, 2003.

[5] David M Blei. Probabilistic topic models. Communications of the ACM, 55(4):77–84, 2012.

[6] David M Blei and John D Lafferty. Dynamic topic models. In Proceedings of the 23rd
international conference on Machine learning, pages 113–120. ACM, 2006.

9

[7] G. Bouchard and B. Triggs. The tradeoff between generative and discriminative classifiers. In
Proc. COMPSTAT, pages 721–728, 2004.

[8] Jianshu Chen, Ji He, Yelong Shen, Lin Xiao, Xiaodong He, Jianfeng Gao, Xinying Song, and
Li Deng. End-to-end learning of lda by mirror-descent back propagation over a deep architecture.
In Proc. NIPS, pages 1765–1773, 2015.

[9] Yaakov Engel, Shie Mannor, and Ron Meir. Reinforcement learning with Gaussian processes. In
Proceedings of the Twenty-Second International Conference on Machine Learning (ICML-05),
pages 201–208, 2005.

[10] Matthew Hausknecht and Peter Stone. Deep recurrent Q-learning for partially observable MDPs.
In Proc. AAAI-SDMIA, November 2015.

[11] Ji He, Jianshu Chen, Xiaodong He, Jianfeng Gao, Lihong Li, Li Deng, and Mari Ostendorf.
Deep reinforcement learning with a natural language action space. In Proc. ACL, 2016.

[12] A. Holub and P. Perona. A discriminative framework for modelling object classes. In Proc.
IEEE CVPR, volume 1, pages 664–671, 2005.

[13] Michael I Jordan, Zoubin Ghahramani, Tommi S Jaakkola, and Lawrence K Saul. An intro-
duction to variational methods for graphical models. In Learning in graphical models, pages
105–161. Springer, 1998.

[14] Michael Irwin Jordan. Learning in graphical models, volume 89. Springer Science & Business
Media, 1998.

[15] S. Kapadia. Discriminative Training of Hidden Markov Models. PhD thesis, University of
Cambridge, 1998.

[16] Sergey Levine, Chelsea Finn, Trevor Darrell, and Pieter Abbeel. End-to-end training of deep
visuomotor policies. Journal of Machine Learning Research, 17(1):1334–1373, 2016.

[17] Long-Ji Lin. Reinforcement learning for robots using neural networks. Technical report,
Technical report, DTIC Document, 1993.

[18] Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Andrei A. Rusu, Joel Veness, Marc G.
Bellemare, Alex Graves, Martin Riedmiller, Andreas K. Fidjeland, Georg Ostrovski, Stig Pe-
tersen, Charles Beattie, Amir Sadik, Ioannis Antonoglou, Helen King, Dharshan Kumaran, Daan
Wierstra, Shane Legg, and Demis Hassabis. Human-level control through deep reinforcement
learning. Nature, 518:529–533, 2015.

[19] Karthik Narasimhan, Tejas Kulkarni, and Regina Barzilay. Language understanding for text-
based games using deep reinforcement learning. In Proc. EMNLP, 2015.

[20] David Silver, Aja Huang, Chris J. Maddison, Arthur Guez, Laurent Sifre, George van den Driess-
che, Julian Schrittwieser, Ioannis Antonoglou, Veda Panneershelvam, Marc Lanctot, Sander
Dieleman, Dominik Grewe, John Nham, Nal Kalchbrenner, Ilya Sutskever, Timothy Lillicrap,
Madeleine Leach, Koray Kavukcuoglu, Thore Graepel, and Demis Hassabis. Mastering the
game of Go with deep neural networks and tree search. Nature, 529:484–489, 2016.

[21] Richard S Sutton and Andrew G Barto. Reinforcement learning: An introduction. MIT press
Cambridge, 1998.

[22] Christopher Watkins and Peter Dayan. Q-learning. Machine learning, 8(3-4):279–292, 1992.

[23] Oksana Yakhnenko, Adrian Silvescu, and Vasant Honavar. Discriminatively trained Markov
model for sequence classification. In Proc. IEEE ICDM, 2005.

10

