
A Proofs for Section 2

The following result that sanwiches the Bregman divergence induced by an L-smooth convex function
is well-known:

Lemma 2. If f is convex, and L-smooth w.r.t. ‖ · ‖, then

1
2L ‖∇f(x′)−∇f(x)‖2∗ ≤ ∆f (x′, x) ≤ L

2 ‖x
′ − x‖2. (30)

Proof. The second inequality is obvious. To show the first inequality, define

g(x′) := ∆f (x′, x) = f(x′)− f(x)− 〈∇f(x), x′ − x〉 . (31)

Then g is minimized at x with g(x) = 0, and g is also L-smooth. Therefore for any x̄

g(x̄) ≤ g(x′) + 〈∇g(x′), x̄− x′〉+
L

2
‖x̄− x′‖2 ≤ g(x′) + ‖∇g(x′)‖∗ ‖x̄− x

′‖+
L

2
‖x̄− x′‖2 .

(32)

Now take minimization over x̄ on both sides:

0 = g(x) ≤ g(x′)− 1

2L
‖∇g(x′)‖2∗ . (33)

Plugging in the definition of g and noticing ∇g(x′) = ∇f(x′)−∇f(x), we get the first inequality.

The following result is crucial for our later analysis, and extends a result of [27].

Lemma 1. Let f and g be φ-saddle and ϕ-saddle respectively, with one of them being dif-
ferentiable. Then, for any z = (x, y) and any saddle point (if exists) z∗ := (x∗, y∗) ∈
arg minx maxy {f(z) + g(z)} , we have f(x, y∗)+g(x, y∗) ≥ f(x∗, y)+g(x∗, y)+∆φ+ϕ(z, z∗).

Proof. We first recall the following slight generalization of a result of [27]:

Claim. Let h and k be respectively ψ1- and ψ2-convex, with one of them being differentiable. Let
x∗ ∈ arg minx h(x)+k(x), then for all x, h(x)+k(x) ≥ h(x∗)+k(x∗)+∆ψ1+ψ2(x, x∗).

Indeed, using the optimality of x∗, we have 0 ∈ ∂(h+ k)(x∗) = ∂h(x∗) + ∂k(x∗), where the last
equality is due to the differentiable assumption (on one of h and k). Since h is ψ1-convex and k is
ψ2-convex, we have

h(x) ≥ h(x∗) + 〈x− x∗, ∂h(x∗)〉+ ∆ψ1
(x, x∗) (34)

k(x) ≥ k(x∗) + 〈x− x∗, ∂k(x∗)〉+ ∆ψ2
(x, x∗). (35)

Adding the above two inequalities and noting that ∆ψ1
+ ∆ψ2

= ∆ψ1+ψ2
completes the proof of our

claim.

Now to prove Lemma 1, we note that if (x∗, y∗) is a saddle point of f + g, then x∗ ∈
arg minx f(x, y∗) + g(x, y∗) and also y∗ ∈ arg miny −f(x∗, y) − g(x∗, y). Note also that if f
is φ-saddle, then fy(x) = f(x, y) is φy-convex. Similarly, if g is ϕ-saddle, then −gx(y) = −g(x, y)
is (−ϕx)-convex. Applying the above claim twice we have:

fy∗(x) + gy∗(x) ≥ fy∗(x∗) + gy∗(x
∗) + ∆φy∗+ϕy∗ (x, x∗) (36)

−fx∗(y)− gx∗(y) ≥ −fx∗(y∗)− gx∗(y∗) + ∆−φx∗−ϕx∗ (y, y∗). (37)

Adding the above two equations and noting that ∆φy∗+ϕy∗ (x, x∗) + ∆−φx∗−ϕx∗ (y, y∗) =
∆φ+ϕ(z, z∗) completes our proof.

12

Algorithm 2: SVRG with Bregman Divergence
1 Initialize x0 randomly. Set x̃ = x0.
2 for s = 1, 2, . . . do // epoch index
3 µ̃← µ̃s := ∇P (x̃), x0 ← xs0 := xs−1

m
4 for t = 1, . . . ,m do // iter index
5 Randomly pick ξ ∈ {1, . . . , n}.
6 Compute vt using (38).
7 Update xt+1 using (38).
8 Denote xsm = xm.

9 x̃← x̃s :=
∑m
t=1(1+ηλ)txt∑m
t=1(1+ηλ)t .

B Bregman Divergence for Convex SVRG

Prior to saddle-point optimization, it is illustrative to see how variance reduction methods can be
extended to Bregman divergence in convex optimization. Let us consider a proximal objective

J(x) = P (x) + Ω(x) = 1
n

∑n
k=1 ψk(x) + Ω(x).

Here each ψk is convex and L-smooth (w.r.t. some norm), and Ω is ∆-convex for some Bregman
divergence ∆. Breg-SVRG extends the vanilla SVRG by employing the following proximal operator
[30] which we assume is efficiently computable:

xt+1 = arg min
x
{η 〈vt, x〉+ ηΩ(x) + ∆(x, xt)} , where vt = ∇ψξ(xt)−∇ψξ(x̃) + µ̃. (38)

Here ξ is sampled uniformly at random from {1, . . . , n}, x̃ is the pivot found after completing the last
epoch, and µ̃ = ∇P (x̃). The whole procedure, which we call Breg-SVRG, is detailed in Algorithm 2.
To ease notation, the xt here always refers to the t-th step of the current epoch s, and we will include
the epoch index s only when necessary.

Let us define the gap ε(x) := J(x) − J(x∗) for some x∗ that minimizes J . Our first convergence
result for Algorithm 2 is as follows:

Theorem 2. Assume each ψk is convex and L-smooth wrt ‖·‖, and P and Ω are (γ∆)- and (λ∆)-
convex wrt some Bregman divergence ∆, respectively. Let η be sufficiently small such that m :=⌈
log(1

8ηL −
1
8 − ρ)

/
log ρ

⌉
≥ 1. Then Breg-SVRG enjoys linear convergence in expectation:

Eε(x̃s) ≤ ρ−ms[∆(x∗, x0) + c(Z+1)ε(x0)],

where ρ = 1+ηλ
1−ηγ , c = 8η2L

(1−ηL)(1−ηγ) and Z =
∑m−1
t=0 ρt.

For example, we may set η = 1
18L , which leads to c = 4

153L , m =
log(9

8−
λ

18L)
log(1+ λ

18L)
= Θ

(
L
λ

)
, (1 +

ηλ)m = 9
8 −

λ
18L ≥

9
8 −

1
18 = 77

72 , and Z = 9L
4λ − 1. Therefore, between epochs, the gap decays by

a factor of 72
77 , and each epoch needs to call (38) for Θ(L/λ) times. In total, to reduce the gap below

some tolerance ε, the proximal operator (38) needs to be called for O
(
L
λ log 1

ε

)
times. If the norm

‖ · ‖ is chosen to be Euclidean, then the above guarantee reduces to that of SVRG [9]. The condition
number L/λ, however, can change significantly w.r.t. the chosen norm (which reflects the underlying
problem geometry).

We need the following variance reduction lemma that extends a result in [9] to any norm.

Lemma 3. The variance of vt can be bounded by: Eξ‖vt −∇P (xt)‖2∗ ≤ 16L · [ε(xt) + ε(x̃)].

Proof. Clearly, for any norm, ‖a+ b‖2 ≤ 2(‖a‖2 + ‖b‖2). Besides, for any random variable X and
norm ‖·‖, E ‖X−E[X]‖2≤2E[‖X‖2+‖EX‖2]≤4E ‖X‖2. It bounds the “variance” of a random
variable, under any norm, by four times its “second moment.”

13

Using these two inequalities and conditional on xt, we have

Eξ ‖vt −∇P (xt)‖2∗ =Eξ‖(∇ψξ(xt)−∇ψξ(x̃))−(∇P (xt)−∇P (x̃))‖2∗
≤ 4 · Eξ ‖∇ψξ(xt)−∇ψξ(x̃)‖2∗ =4Eξ‖∇ψξ(xt)−∇ψξ(x∗)−(∇ψξ(x̃)−∇ψξ(x∗))‖2∗
≤ 8 · Eξ ‖∇ψξ(xt)−∇ψξ(x∗)‖2∗ + 8 · Eξ ‖∇ψξ(x̃)−∇ψξ(x∗)‖2∗ . (39)

We can next invoke Lemma 2 to upper bound the first part of (39):
1

2LEξ ‖∇ψξ(xt)−∇ψξ(x∗)‖
2
∗ ≤ E∆ψξ(xt, x∗) = ∆P (xt, x∗) ≤ ε(xt),

where the last inequality is due to (a special case of) Lemma 1. The second part of (39) can be
bounded similarly.

Proof of Theorem 2. We apply Lemma 1 to the update (38), with g = ηΩ(x) + ∆(x, xt), φ = 0, and
ϕ = λ∆:

η 〈vt, xt+1〉+ ηΩ(xt+1) + ∆(xt+1, xt) (40)
≤ η 〈vt, x∗〉+ ηΩ(x∗) + ∆(x∗, xt)− η∆Ω(x∗, xt+1)−∆(x∗, xt+1) (41)
≤ η 〈vt, x∗〉+ ηΩ(x∗) + ∆(x∗, xt)− ηλ∆(x∗, xt+1)−∆(x∗, xt+1). (42)

Therefore

ηΩ(xt+1) + (1 + ηλ)∆(x∗, xt+1) (43)
≤ ∆(x∗, xt) + η 〈vt, x∗ − xt+1〉+ ηΩ(x∗)−∆(xt+1, xt) (44)

≤ ∆(x∗, xt) + η 〈vt, x∗ − xt+1〉+ ηΩ(x∗)− 1

2
‖xt+1 − xt‖2, (45)

where the last inequality is because ∆ is distance enforcing w.r.t. the norm ‖ · ‖. Since J is L-smooth,
we obtain

0 ≤ P (xt)− P (xt+1) + 〈∇P (xt), xt+1 − xt〉+
L

2
‖xt+1 − xt‖2 . (46)

Multiplying the above by η > 0 and adding to (45) we get

ηΩ(xt+1) + (1 + ηλ)∆(x∗, xt+1) (47)

≤∆(x∗, xt) + η 〈vt, x∗ − xt+1〉+ ηΩ(x∗)− 1− ηL
2

‖xt+1 − xt‖2 (48)

+ ηP (xt)− ηP (xt+1) + η 〈∇P (xt), xt+1 − xt〉 (49)

=∆(x∗, xt) + η 〈vt −∇P (xt), xt − xt+1〉 −
1− ηL

2
‖xt+1 − xt‖2 (50)

+ ηP (xt)− ηP (xt+1) + ηΩ(x∗) + η 〈vt, x∗ − xt〉 (51)

≤∆(x∗, xt) +
η2

2(1− ηL)
‖vt −∇P (xt)‖2∗ (52)

+ η[〈vt, x∗ − xt〉+ P (xt)− P (xt+1) + Ω(x∗)]. (53)

Conditional on xt we take expectation over ξ on both sides:

(1 + ηλ)E∆(x∗, xt+1) ≤ (1− ηγ)∆(x∗, xt) +
η2

2(1− ηL)
E ‖vt −∇P (xt)‖2∗ (54)

+ η[J(x∗)− EJ(xt+1)], (55)

where we have also used the assumption that P is (γ∆)-convex. Using Lemma 3 we take expectation
over xt again on both sides, leading to

ρ∆t+1 ≤ ∆t + c
(
δt + δ̃s−1

)
− κδt+1. (56)

where ρ := 1+ηλ
1−ηγ , c := 8η2L

(1−ηL)(1−ηγ) , κ := η
1−ηγ , δt := Eε(xt), ∆t := E∆(x∗, xt), δ̃s−1 :=

Eε(x̃s−1). Multiplying both sides by ρt and telescoping from t = 0 to m− 1, we obtain

ρm∆m ≤ ∆0 + c

m∑
t=1

ρt−1δt−1 + cδ̃s−1
m∑
t=1

ρt−1 − κ
m∑
t=1

ρt−1δt. (57)

14

Rearranging, we get

ρm∆m + cρmδm + (κ− cρ)

m∑
t=1

ρt−1δt ≤ ∆0 + cδ0 + cδ̃s−1
m∑
t=1

ρt−1. (58)

Now define the representer of epoch s as

x̃s =
1

Z

m∑
t=1

ρt−1xt, where Z =

m∑
t=1

ρt−1. (59)

Note that ρ > 1 hence the most recent iterate gets a bigger weight. Also, we can equivalently use
x̃s = 1

Z′

∑m
t=1 ρ

txt where Z ′ =
∑m
t=1 ρ

t, see Algorithm 2. Then, noting that J is convex and
δ̃s = E[J(x̃s)− J(x∗)], we obtain

ρm(∆m + cδm) + (κ− cρ)Zδ̃s ≤ ρm(∆m + cδm) + (κ− cρ)

m∑
t=1

ρt−1δt (60)

≤ (∆0 + cδ0) + cZδ̃s−1. (61)

Now pick m such that

ρm =
(κ− cρ)Z

cZ
=
κ− cρ
c

=
1− ηL

8ηL
− 1 + ηλ

1− ηγ
=

1

8ηL
− 1

8
− 1 + ηλ

1− ηγ
. (62)

Therefore,

E∆(x∗, xsm) + c(EJ(xsm)− J(x∗)) + cZ(J(x̃s)− J(x∗)) (63)

≤ ρ−m[E∆(x∗, xs−1
m) + c(EJ(xs−1

m)− J(x∗)) + cZ(J(x̃s−1)− J(x∗))]. (64)

So there is a decay of factor ρ−m between epochs. Set η = α
L and we obtain

ρm =
1

8α
− 1

8
− L+ αλ

L− αγ
> 1 (65)

for α sufficiently small. Moreover, ρ = L+αλ
L−αγ hence

m =
log
(

1
8α −

1
8 −

L+αλ
L−αγ

)
log L+αλ

L−αγ
= Θ

(
1

α
log

1

α
· L

λ+ γ

)
. (66)

So between epochs, we decrease the gap by a constant factor that is strictly smaller than 1, and the
number of iterations per epoch is Θ

(
L
λ+γ

)
. In total, to find an ε accurate solution, the computational

cost is Θ
(

L
λ+γ log 1

ε

)
.

C Rates for Proximal Saddle-Point Optimization in Section 4

The proof of [17] relies on resolvent operators, which is inherently restricted to the Euclidean norm.
Besides, their bound is on ‖zt − z∗‖2, and it was claimed that “the convex minimization analysis
does not apply and we use the notion of monotone operators to prove convergence”. We show here
that by introducing an auxiliary variable, our analysis in Appendix B can be largely reused for SVRG
with Bregman divergence in saddle-point problems, and the bound is directly on function values.
Theorem 1. Let Assumption 1 hold, and choose a sufficiently small η > 0 such that m :=⌈

log
(

1−ηL
18ηL2−η−1

)
/log(1 + η)

⌉
≥1. Then Breg-SVRG enjoys linear convergence in expectation:

Eε(z̃s) ≤ (1 + η)−ms[∆(z∗, z0) + c(Z + 1)ε(z0)], where Z =
∑m−1
t=0 (1+η)t, c = 18η2L2

1−ηL . (22)

Proof. Our key innovation in analysis is the introduction of an auxiliary variable: ut =(
∂xK(xt, y

∗)
−∂yK(x∗, yt)

)
. Note that Eξvt 6= ut.

15

Recall that

εMt := εM (zt) := M(xt, y
∗)−M(x∗, yt), εKt := εK(zt) := K(xt, y

∗)−K(x∗, yt) (67)

εKt := εK(zt) := K(xt, y
∗)−K(x∗, yt) ∈ R (68)

εt = ε(zt) = J(xt, y
∗)− J(x∗, yt) = [J(xt, y

∗)− J(x∗, y∗)] + [J(x∗, y∗)− J(x∗, yt)] (69)

≥ ∆(zt, z
∗) ≥ 1

2 ‖zt − z
∗‖2 ≥ 0. (70)

The first step of our proof is to invoke Lemma 1 on the update (21):

(1 + η)∆(z∗, zt+1) ≤ ∆(z∗, zt)− ηεMt+1 −∆(zt+1, zt) + η 〈vt, z∗ − zt〉+ η 〈vt, zt − zt+1〉
= ∆(z∗, zt)− ηεMt+1 −∆(zt+1, zt) + η 〈vt, z∗ − zt〉+ η 〈vt − ut, zt − zt+1〉+ η 〈ut, zt − zt+1〉 .

It is easy to bound 〈ut, zt − zt+1〉 as K is L-smooth:

〈ut, zt − zt+1〉 = 〈∂xK(xt, y
∗), xt − xt+1〉 − 〈∂yK(x∗, yt), yt − yt+1〉

≤K(xt, y
∗)−K(xt+1, y

∗) + L
2 ‖xt − xt+1‖2 +K(x∗, yt+1)−K(x∗, yt) + L

2 ‖yt − yt+1‖2

= εKt − εKt+1 + L
2 ‖zt − zt+1‖2 . (71)

So we can proceed by

(1 + η)∆(z∗, zt+1)

≤∆(z∗, zt)− ηεt+1 + ηεKt + η 〈vt, z∗ − zt〉+ η 〈vt − ut, zt − zt+1〉 − 1−ηL
2 ‖zt − zt+1‖2

≤∆(z∗, zt)−ηεt+1+ηεKt +η 〈vt, z∗−zt〉+
η2 ‖vt−ut‖2∗
2(1− ηL)

.

Take expectation over ξ on both sides (conditional on zt). Since Eξ[vt] = G(zt), we may apply the
inequality K(x, y′)−K(x′, y) ≤ 〈G(z), z − z′〉:

(1 + η)E∆(z∗, zt+1) ≤ ∆(z∗, zt)− ηEεt+1 +
η2

2(1− ηL)
E ‖vt − ut‖2∗ . (72)

Finally we bound E ‖vt − ut‖2∗:

E ‖vt−ut‖2∗ = E ‖vt − G(zt) + G(zt)− ut‖2∗ ≤ 2E ‖vt−G(zt)‖2∗ + 2 ‖G(zt)−ut‖2∗ . (73)

Notice that by the L-smoothness of K,

‖G(zt)− ut‖2∗ = ‖∂xK(xt, yt)− ∂xK(xt, y
∗)‖2∗ + ‖∂yK(xt, yt)− ∂yK(x∗, yt)‖2∗

≤ L2 ‖yt − y∗‖2 + L2 ‖xt − x∗‖2 . (74)

Again using E ‖X−E[X]‖2≤4E ‖X‖2 and L-smoothness of ψk,

E ‖vt−G(zt)‖2∗ = E‖∇ψξ(zt)−∇ψξ(z̃)− E[∇ψξ(zt)−∇ψξ(z̃)]‖2∗
≤ 4E ‖∇ψξ(zt)−∇ψξ(z̃)‖2∗ ≤ 4L2 ‖zt − z̃‖2

≤ 8L2 ‖zt −z∗‖2+ 8L2 ‖z̃ −z∗‖2. (75)

Plug (74) and (75) into (73), and then into (72). Using (67), we finally arrive at (expectation on ξ)

(1 + η)E∆(z∗, zt+1) ≤ ∆(z∗, zt)− ηEεt+1 +
18η2L2

1− ηL
(εt + ε(z̃s−1)). (76)

Taking expectation of the whole history on both sides, we obtain

ρ∆t+1 ≤ ∆t + c′
(
δt + δ̃s−1

)
− ηδt+1. (77)

where ρ := 1 + η, c′ := 18η2L2

1−ηL , δt := Eε(zt), ∆t := E∆(z∗, zt), δ̃s−1 := Eε(z̃s−1). This has
exactly the same shape as (56), and therefore the rest derivation is almost identical, except that in c′,

16

we have η2L2 rather that η2L as under (56). So almost all the derivation can be shared. Let us set
η = 1

45L2 , and we obtain

ρm =
η − cρ
c

=
45− 1/L

18
− 1

45L2
− 1 ≥ 45− 1

18
− 1

45
− 1 =

64

45
. (78)

Since ρ = 1 + 1
45L2 , we derive

m =
log
(

45−1/L
18 − 1

45L2 − 1
)

log
(
1 + 1

45L2

) = Θ
(
L2
)
. (79)

So between epochs, the decay is by a factor of 45
64 , and the number of iterations per epoch is Θ(L2).

The total computational cost is therefore O
(
L2 log 1

ε

)
.

D Efficient Proximal Operator for Solving (27)

Given a set of variables {αi} which are not necessarily in S, we need to project it to S based on
Bregman divergence. Here we show how this can be done in O(n2) time for both Euclidean and
entropic projections.

D.1 Euclidean projection to S

Given a set {αk}, the projection to S requires solving

min{xk}
1
2

∑
k‖xk−αk‖

2
2 s.t. xk ∈ Ck,

∑
k1
′xk ≤ 1 (80)

where Ck := {x ∈ [0, rkk]n : rk ≥ 0, 1′x = rk} (81)

Introducing a Lagrange variable ρ that corresponds to the last constraint, we obtain the partial
Lagrangian:

max
ρ≥0
−ρ+

∑
k

min
xk∈Ck

{
1

2
‖xk −αk‖22 + ρ1′xk

}
. (82)

Since the optimal xk is unique by strong convexity, we can solve ρ by any smooth solver such as
BFGS, proximal bundle method (PBM, http://napsu.karmitsa.fi/proxbundle/), or even bi-section.
Given a ρ and its optimal xk(ρ), the gradient in ρ can be easily computed as −1 +

∑
k 1
′xk(ρ).

Therefore it suffices to optimize xk separately. In the sequel, we will first present the optimization
procedure without worrying about the computational cost. After that, we will show how to reduce the
complexity to Õ(n).

Fixing ρ, the optimal xk can be found by solving the following problem. Here we dropped all
subscripts k to lighten the notation.

min
r≥0

min
x∈[0, rk]n, 1′x=r

1

2
‖x−α‖22 + ρ1′x. (83)

Introducing a Lagrange multiplier µ for the 1′x = r constraint, we dualize the inner problem as

min
r≥0

min
x∈[0,

r
k]n

max
µ

1

2
‖x−α‖22 + ρ1′x− µ(1′x− r)

= min
r≥0

max
µ

{
µr + min

x∈[0,
r
k]n

1

2
‖x−α‖22 + ρ1′x− µ1′x

}
(84)

= min
r≥0

max
µ

{
µr + min

y∈[0,1]n

1

2

∥∥ r
ky −α

∥∥2

2
+ (ρ− µ) rk1

′y

}
. (85)

Now r does not appear in the constraint and so the once we have the optimal µ and y (or optimal x
based on which we get the optimal y = k

rx), the gradient in r can be written as

µ+ y′(rky −α)/k + (ρ− µ)1′y/k. (86)

which can be calculated in constant time via our efficient update rule.

17

Algorithm 3: Euclidean projection of {αk}
on S

1 ρ∗ = minimize(obj_rho, [0,+∞))
2 [∼, ∼, {xk}] = obj_rho(ρ∗).
3 Return {xk}

Function [f , g, {xk}] = obj_rho(ρ)
4 for k = 1, . . . , n do
5 rk = minimize(@(r)obj r(r, k, ρ),

[0,+∞))
6 [fk, ∼, xk] = obj r(rk, k, ρ)

. xk = xk(rk) = xk(ρ)
7 f = ρ−

∑n
k=1 fk

8 g = 1−
∑n
k=1 1

′xk
end function

Function [f , g, x] = obj_r(r, k, ρ)
9 µmin = ρ−maxs αks,

µmax = ρ−mins αks + r
k

10 while true do . bi-section search
11 µ = (µmin + µmax)/2
12 x = MED(αk + µ1− ρ1,0, rk1)

13 if 1′x > r + 10−5 then
14 µmax = µ
15 else if 1′x < r − 10−5 then
16 µmin = µ
17 else
18 break
19 f = 1

2 ‖x−αk‖22 + ρ1′x . Now x = xk(r)
20 g = µ+ y′(rky −α)/k + (ρ− µ)1′y/k .

Now µ = µk(r)
end function

Algorithm 4: Entropic projection of
{αk} on S

1 ρ∗ = minimize(obj_rho, [0,+∞))
2 [∼, ∼, {xk}] = obj_rho(ρ∗).
3 Return {xk}

Function [f , g, {xk}] = obj_rho(ρ)
4 for k = 1, . . . , n do
5 rk = minimize(@(r)obj r(r, k, ρ),

[0,+∞))
6 [fk, ∼, xk] = obj r(rk, k, ρ)

. xk = xk(rk) = xk(ρ)
7 f = ρ−

∑n
k=1 fk

8 g = 1−
∑n
k=1 1

′xk
end function

Function [f , g, x] = obj_r(r, k, ρ)
9 µmin = −50,

µmax = ρ+ log(r
k∗mins αks

)

10 while true do . bi-section search
11 µ = (µmin + µmax)/2
12 x = MIN(α exp(µ− ρ), rk1)

13 if 1′x > r + 10−5 then
14 µmax = µ
15 else if 1′x < r − 10−5 then
16 µmin = µ
17 else
18 break
19 f = ρ1′x +

∑
sQ . Now x = xk(r)

20 g = µ+
∑
s
ys
k log ysr

αsk
+ (ρ− µ)ysk .

Now µ = µk(r)
end function

Given r and µ, the optimal x admits a closed form

x = MED(α + µ1− ρ1,0, rk1), (87)

where MED stands for the elementwise median. Given r, the optimal µ is the one that ensures
1′x = r (not necessarily unique). Since each x in (87) is non-decreasing in µ, a simple bi-section
search can find such a µ(r) by probing O(log n) values of µ. With µ(r) in hand, the optimal x(r)
for the inner problem in (83) can be recovered by (87).

In hindsight, we observe that although the optimal x in (83) is unique, the objective function in r
is not necessarily smooth because r also appears in the constraints of x. Therefore we resort to a
nonsmooth solver (e.g. PBM) for optimizing over r.

The overall procedure for Euclidean projection is summarized in Algorithm 3. We assumed without
loss of generality that for each αk all its elements are already sorted increasingly. The binary search
over µ can be refined, with µ only probing kink points corresponding to the entries in αk. This will
ensure the bi-section terminates in O(log min{n, 1/ε}) iterations.

D.2 Entropic projection to S

Given a set {αk}, the entropic projection to S requires solving

min
{xk}

∑
ks

xks log
xks
αks

+ αks − xks (88)

s.t. xk ∈ Ck,
∑
ks

xks ≤ 1 where Ck := {x ∈ [0,
rk
k

]n : rk ≥ 0, 1′x = rk}

18

Introducing a Lagrange variable ρ that corresponds to the last constraint, we obtain the partial
Lagrangian:

max
ρ≥0
−ρ+

∑
ks

min
xk∈Ck

{
xks log

xks
αks

+ αks − xks + ρxks

}
. (89)

Since the optimal xk is unique by strong convexity, we can solve ρ by any smooth solver such as
BFGS, PBM, or even bi-section. Given a ρ and its optimal xk(ρ), the gradient in ρ can be easily
computed as −1 +

∑
k 1
′xk(ρ). Therefore it suffices to optimize xk separately.

Fixing ρ, the optimal xk can be found by solving the following problem. Here we dropped all
subscripts k to lighten the notation.

min
r≥0

min
x∈[0, rk]n, 1′x=r

∑
s

{Q+ ρxs} where Q = xs log
xs
αs

+ αs − xs (90)

Introducing a Lagrange multiplier µ for the 1′x = r constraint, we dualize the inner problem as

min
r≥0

max
µ

{
µr + min

xs∈[0, rk]

∑
s

{Q+ ρxs − µxs}
}

(91)

= min
r≥0

max
µ

{
µr + min

ys∈[0,1]

∑
s

{Qy + (ρ− µ)
r

k
ys}

}
(92)

where Qy =
r

k
ys log

ysr

αsk
+ αs −

r

k
ys

the gradient in r can be written as

µ+
∑
s

ys
k

log
ysr

αsk
+ (ρ− µ)

ys
k
. (93)

which can be calculated in constant time via our efficient update rule.

Given r and µ, the optimal x admits a closed form

x = MIN
(
α exp(µ− ρ),

r

k
1
)
, (94)

where MIN stands for the elementwise minimum. Given r, the optimal µ is the one that ensures
1′x = r (not necessarily unique). Since each x in (94) is non-decreasing in µ, a simple bi-section
search can find such a µ(r) by probing O(log n) values of µ. With µ(r) in hand, the optimal x(r)
for the inner problem in (90) can be recovered by (94).

The overall procedure for Entropic projection is summarized in Algorithm 4. We assumed without
loss of generality that for each αk all its elements are already sorted increasingly. The binary search
over µ can be refined, with µ only probing kink points corresponding to the entries in αk. This will
ensure the bi-section terminates in O(log n) < O(log 1/ε) iterations.

E Rates for Proximal Saddle-Point Optimization (Non-uniform)

Problem. We consider the following problem

(x∗, y∗) = arg min
x

max
y

K(x, y) +M(x, y), where K(x, y) =
1

n

n∑
i=1

ψi(x, y). (95)

Assumption 2. We assume each ψi is a saddle function that is Li-smooth as follows:

Li = sup
z 6=z′

‖Bi(z)−Bi(z′)‖∗
‖z − z′‖

, where Bi(z) = [∂xψi(x, y);−∂yψi(x, y)] (96)

and K is Lavg-smooth:

Lavg = sup
z 6=z′

‖B(z)−B(z′)‖∗
‖z − z′‖

, where B(z) = [∂xψ(x, y);−∂yψ(x, y)] (97)

19

Then we can define L̄ adapted to our sampling schemes:

L̄(π)2 = sup
z 6=z′

∑n
i=1

1
n2πi
‖Bi(z)−Bi(z′)‖2∗
‖z − z′‖2

, where Bi(z) = [∂xψi(x, y);−∂yψi(x, y)]

(98)

and π is a probability vector that sums to 1. We always have the bound:

L2
avg ≤ L̄(π)2 ≤ n

max
i=1

L2
i ×

n∑
i=1

1

n2πi
. (99)

Algorithm. Let us define a variant of variance-reduced stochastic gradient for saddle-point problems:
vt := [vx(zt);−vy(zt)], (100)

where vx(zt) :=
1

nπξ
(∂xψξ(zt)− ∂xψξ(z̃)) + ∂xK(z̃) (101)

vy(zt) :=
1

nπξ
(∂yψξ(zt)− ∂yψξ(z̃)) + ∂yK(z̃). (102)

Here z̃ is the pivot chosen after completing the last epoch, ξ is randomly choose from probability
vector π. Clearly, Eξ[vt] = G(zt) (unbiased). The stochastic algorithm then performs the proximal
update at each step:

(xt+1, yt+1) = arg min
x

max
y

η 〈vx(zt), x〉+ η 〈vy(zt), y〉+ ηM(x, y) + ∆(x, xt)−∆(y, yt).

(103)

Theorem 3. With the above modification, the same guarantee in Theorem 1 with L (in fact, this L is
maxni=1 Li) replaced by L̄ = L̄(π) holds.

Proof. Our key innovation in analysis is the introduction of an auxiliary variable:

ut =

(
∂xK(xt, y

∗)
−∂yK(x∗, yt)

)
. (104)

Note that Eξvt 6= ut. The first step of our proof is to invoke Lemma 1 on the update (103):

(1 + η)∆(z∗, zt+1) ≤ ∆(z∗, zt)− ηεMt+1 −∆(zt+1, zt) + η 〈vt, z − zt〉+ η 〈vt, zt − zt+1〉
(105)

= ∆(z∗, zt)− ηεMt+1 −∆(zt+1, zt) + η 〈vt, z − zt〉 (106)
+ η 〈vt − ut, zt − zt+1〉+ η 〈ut, zt − zt+1〉 .

It is easy to bound 〈ut, zt − zt+1〉 as K is Lavg-smooth:

〈ut, zt − zt+1〉 = 〈∂xK(xt, y
∗), xt − xt+1〉 − 〈∂yK(x∗, yt), yt − yt+1〉 (107)

≤ K(xt, y
∗)−K(xt+1, y

∗) +
Lavg

2 ‖xt − xt+1‖2

+K(x∗, yt+1)−K(x∗, yt) +
Lavg

2 ‖yt − yt+1‖2 (108)

= εKt − εKt+1 +
Lavg

2 ‖zt − zt+1‖2 (109)

= εKt − εKt+1 + L̄
2 ‖zt − zt+1‖2 . (110)

The last inequality is due to L2
avg ≤ L̄2.

So we can proceed by

(1 + η)∆(z∗, zt+1) ≤ ∆(z∗, zt)− ηεt+1 + ηεKt + η 〈vt, z∗ − zt〉+ η 〈vt − ut, zt − zt+1〉 (111)

− 1−ηL̄
2 ‖zt − zt+1‖2

≤ ∆(z∗, zt)−ηεt+1+ηεKt +η 〈vt, z∗−zt〉+
η2 ‖vt−ut‖2∗
2(1− ηL̄)

. (112)

20

Take expectation over ξ on both sides (conditional on zt). Since Eξ[vt] = G(zt), we apply the
inequality K(x, y′)−K(x′, y) ≤ 〈G(z), z − z′〉 and get:

(1 + η)E∆(z∗, zt+1) ≤ ∆(z∗, zt)− ηEεt+1 +
η2

2(1− ηL̄)
E ‖vt − ut‖2∗ . (113)

Finally we bound E ‖vt − ut‖2∗:

E ‖vt−ut‖2∗ = E ‖vt − G(zt) + G(zt)− ut‖2∗
≤ 2E ‖vt−G(zt)‖2∗ + 2 ‖G(zt)−ut‖2∗ . (114)

Notice that by the L-smoothness of K,

‖G(zt)− ut‖2∗ = ‖∂xK(xt, yt)− ∂xK(xt, y
∗)‖2∗ + ‖∂yK(xt, yt)− ∂yK(x∗, yt)‖2∗ (115)

≤ L2
avg ‖yt − y∗‖

2
+ L2

avg ‖xt − x∗‖
2 (116)

≤ L̄2 ‖yt − y∗‖2 + L̄2 ‖xt − x∗‖2 . (117)

Again using the definition (98),

E ‖vt−G(zt)‖2∗ = E‖ 1

nπξ
(∇ψξ(zt)−∇ψξ(z̃))− E[

1

nπξ
(∇ψξ(zt)−∇ψξ(z̃))]‖2∗

≤ 4E

∥∥∥∥ 1

nπξ
(∇ψξ(zt)−∇ψξ(z̃))

∥∥∥∥2

∗

≤ 4L̄2 ‖zt − z̃‖2 (by L̄-smoothness)

≤ 8L̄2 ‖zt −z∗‖2+ 8L̄2 ‖z̃ −z∗‖2. (118)

Plug (116) and (118) into (114), and then into (113). Using (67), we finally arrive at (expectation is
only over ξ)

(1 + η)E∆(z∗, zt+1) ≤ ∆(z∗, zt)− ηEεt+1 +
18L̄2η2

1− ηL̄
(εt + ε(z̃s−1)). (119)

Taking expectation of the whole history on both sides, we obtain

ρ∆t+1 ≤ ∆t + c′
(
δt + δ̃s−1

)
− ηδt+1. (120)

where ρ := 1 + η, c′ := 18L̄2η2

1−ηL̄ , δt := Eε(zt), ∆t := E∆(z∗, zt), δ̃s−1 := Eε(z̃s−1). This has
exactly the same shape as (56), and therefore the rest derivation is almost identical, except that in c′,
we have L̄2η2 rather that η2LQ as under (56). So almost all the derivation can be shared. Let us set
η = 1

45L̄2 , and we obtain

ρm =
η − cρ
c

=
45− 1/L̄

18
− 1

45L̄2
− 1 ≥ 45− 1

18
− 1

45
− 1 =

64

45
. (121)

Since ρ = 1 + 1
45L̄2 , we derive

m =
log
(

45−1/L̄
18 − 1

45L̄2 − 1
)

log
(
1 + 1

45L̄2

) = Θ
(
L̄2
)
. (122)

So between epochs, the decay is by a factor of 45
64 , and the number of iterations per epoch is Θ(L̄2).

The total computational cost is therefore O
(
L̄2 log 1

ε

)
.

For uniform sampling, πi = 1/n for all i = 1, . . . , n, we can recover Theorem 1 as L̄ = maxi Li
in this case. The smallest possible value for L̄ is L̄ = Lavg = (1/n)

∑n
i=1 Li, achieved at πi =

Li/
∑n
j=1 Lj , i.e., the sampling probabilities for the component functions are proportional to their

Lipschitz constants.

21

F More about L

Let us consider both α and β as n2 dimensional vectors. Denote z =

(
α
β

)
. Then the bilinear part

of 1
n2

∑
ij fij(αi,βj) can be written as F (α,β) = 1

2α
′Aβ = 1

2z
′
(
0 A
A′ 0

)
z. Then ∇F (z) =(

0 A
A′ 0

)
z =

(
Aβ
A′α

)
Recall that ‖z‖2 = ‖α‖2 + ‖β‖2 and similarly for their dual norms. We could use subscripts for
these norms to highlight that α, β, and z employ different norms. But we omit these subscripts
because they are clear from the context.

So the L2 of F can be computed as

L2 = max
‖z‖≤1

∥∥∥∥(AβA′α
)∥∥∥∥2

∗
= max
‖α‖2+‖β‖2≤1

‖Aβ‖2∗ + ‖A′α‖2∗ . (123)

The objective function here is obviously convex in (α,β) jointly. Since we are maximizing, the
optimal solution must be attained at some extreme points of the domain. There can be only two types
of extreme points: a) ‖α‖ = 1 and β = 0; and b) α = 0 and ‖β‖ = 1. So

L2 = max

{
max
‖α‖=1

‖A′α‖2∗ , max
‖β‖=1

‖Aβ‖2∗

}
, (124)

where the first term corresponds to case a), and the second term to case b). It is not hard to see from
definition that these two terms are equal, both being exactly max‖α‖=‖β‖=1 α

′Aβ.

Now let us add the quadratic term in α, so that G(α,β) = 1
2α
′Aβ + 1

2α
′Bα. Then

∇G(z) =

(
B A
A′ 0

)
z =

(
Bα +Aβ
A′α

)
(125)

So we can compute the L of G by:

L2 = max
‖z‖≤1

∥∥∥∥(Bα +Aβ
A′α

)∥∥∥∥2

∗
= max
‖α‖2+‖β‖2≤1

‖Bα +Aβ‖2∗ + ‖A′α‖2∗ (126)

≤ max

{
max
‖α‖=1

‖Bα‖2∗ + ‖A′α‖2∗ , max
‖β‖=1

‖Aβ‖2∗

}
(127)

≤ max
‖α‖=1

‖Bα‖2∗ + max
‖α‖=1

‖A′α‖2∗ . (128)

where the last equality again used the fact that max‖α‖=1 ‖A′α‖
2
∗ = max‖β‖=1 ‖Aβ‖

2
∗, and

maxα{f(α) + g(α)} ≤ maxα f(α) + maxα g(α).

So now bounding max‖α‖=1 ‖Bα‖2∗ can be done in the similar way as bounding max‖α‖=1 ‖A′α‖
2
∗.

G Stochastic Updates of SVRG on F-score game

The original problem for F-score is

min
{αi}∈S

max
{βj}∈S

{
1

n2

n∑
i=1

n∑
j=1

fij(αi,βj) + max
θ
−λ

2
‖θ‖22 +

θ′

n
Xỹ − θ′

n
X

n∑
i=1

iαi

}
. (129)

Then the optimal θ admits a closed form solution

θ(α) =
1

λn
X

(
ỹ −

n∑
i=1

iαi

)
. (130)

22

Plugging it back and denoting c = Xỹ, we arrive at the overall problem in α and β only:

min
{αi}∈S

max
{βj}∈S

1

n2

n∑
i=1

n∑
j=1

[
fij(αi,βj)−

i

λn
c′Xαi +

ij

2λ
α′iX

′Xαj +
1

2λn2
‖c‖22

]
. (131)

= min
{αi}∈S

max
{βj}∈S

1

n

n∑
j=1

ψj(α,βj). (132)

where

ψj(α,βj) =
1

n

n∑
i=1

[
fij(αi,βj)−

i

λn
c′Xαi +

ij

2λ
α′iX

′Xαj +
1

2λn2
‖c‖22

]

Denoting ej = (0, 0, . . . , 1, . . . , 0), i.e. the canonical row vector for jth dimension. Thus,

1. The stochastic gradient over αt at iteration t is

∇ψj(αt,βtj)

=∇ 1

n

n∑
i=1

[
fij(α

t
i,β

t
j)−

i

λn
c′Xαti +

ij

2λ
αt
′

i X
′Xαtj +

1

2λn2
‖c‖22

]

=∇
[

1

n

n∑
i=1

fij(α
t
i,β

t
j)

]
− X ′c · (1 : n)

λn2
+
jX ′X[αtj · (1 : n) + (

∑n
i=1 iα

t
i)ej]

2λn

2. The delayed stochastic gradient over anchor variable α̂ is

∇ψj(α̂, β̂j)

=∇
[

1

n

n∑
i=1

fij(α̂i, β̂j)

]
− X ′c · (1 : n)

λn2
+
jX ′X[α̂j · (1 : n) + (

∑n
i=1 iα̂i)ej]

2λn

3. Full gradient in each epoch is

µ̂ =
1

n

n∑
j=1

∇ψj(α̂, β̂j)

= ∇
[

1

n2

n∑
i=1

n∑
j=1

fij(α̂i, β̂j)

]
− X ′c · (1 : n)

λn2
+
X ′X(

∑n
j=1 jα̂j) · (1 : n)

λn2

= ∇
[

1

n2

n∑
i=1

n∑
j=1

fij(α̂i, β̂j)

]
−X ′θ(α̂) ∗ (1 : n)

n

So the euclidean SVRG update in each iteration is

αt+1 = αt − η
[
µ̂+∇ψj(αt,βtj)−∇ψj(α̂, β̂j)

]
(133)

23

	Introduction
	Bregman Divergence and Saddle Functions
	Adversarial Prediction under Multivariate Loss
	Breg-SVRG for Saddle-Point
	Application of Breg-SVRG to Adversarial Prediction
	Experimental Results
	Entropy regularized LPBoost
	Adversarial prediction with F-score

	Conclusions and Future Work
	Proofs for sec:preliminary
	Bregman Divergence for Convex SVRG
	Rates for Proximal Saddle-Point Optimization in sec:saddle
	Efficient Proximal Operator for Solving (27)
	Euclidean projection to S
	Entropic projection to S

	Rates for Proximal Saddle-Point Optimization (Non-uniform)
	More about L
	Stochastic Updates of SVRG on F-score game

