
Tomography of the London Underground:
a Scalable Model for Origin-Destination Data

Nicolò Colombo
Department of Statistical Science

University College London
nicolo.colombo@ucl.ac.uk

Ricardo Silva
The Alan Turing Institute and

Department of Statistical Science
University College London

ricardo.silva@ucl.ac.uk

Soong Kang
School of Management

University College London
smkang@ucl.ac.uk

Abstract

The paper addresses the classical network tomography problem of inferring local
traffic given origin-destination observations. Focusing on large complex public
transportation systems, we build a scalable model that exploits input-output infor-
mation to estimate the unobserved link/station loads and the users’ path preferences.
Based on the reconstruction of the users’ travel time distribution, the model is
flexible enough to capture possible different path-choice strategies and correlations
between users travelling on similar paths at similar times. The corresponding
likelihood function is intractable for medium or large-scale networks and we pro-
pose two distinct strategies, namely the exact maximum-likelihood inference of
an approximate but tractable model and the variational inference of the original
intractable model. As an application of our approach, we consider the emblematic
case of the London underground network, where a tap-in/tap-out system tracks
the starting/exit time and location of all journeys in a day. A set of synthetic
simulations and real data provided by Transport For London are used to validate
and test the model on the predictions of observable and unobservable quantities.

1 Introduction

In the last decades, networks have been playing an increasingly important role in our all-day lives
[1, 2, 3, 4, 5, 6]. Most of the time, networks cannot be inspected directly and their properties should be
reconstructed form end-point or partial and local observations [7, 8]. The problem has been referred
to as network ‘tomography’, a medical word to denote clinical techniques that produce detailed
images of the interior of the body from external signals [9, 10]. Nowadays the concept of tomography
has gained wider meanings and the idea applies, in different forms, to many kinds of communication
and transportation networks [11, 12, 13]. In particular, as the availability of huge amounts of data has
grown exponentially, network tomography has become an important branch of statistical modelling
[14, 15, 16, 17, 8]. However, due to the complexity of the task, existing methods are usually only
designed for small-size networks and become intractable for most real-world applications (see [7, 18]
for a discussion on this point). The case of large public transportation networks has attracted special
attention since massive datasets of input-output single-user data have been produced by tap-in and
tap-out systems installed in big city as London, Singapore and Beijing [19, 20, 18, 21].
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Depending on the available measurements, two complementary formulations of network tomography
have been considered: (i) the reconstruction of origin-destination distributions from local and partial
traffic observations [11, 14, 9, 15, 16] and (ii) the estimation of the link and node loads from input-
output information [22, 23, 24]. In practice, the knowledge of the unobserved quantities may help
design structural improvements of the network or be used to predict the system’s behaviour in case of
disruptions [25, 26, 13, 27, 28]. Focusing on the second (also referred to as ‘dual’) formulation of
the tomography problem, this paper addresses the challenging case where both the amount of data
and the size of the network are large. When only aggregated data are observable, traffic flows over
a given network can also be analysed by methods such as collective graphical models for diffusion
dynamics [29, 30].

An important real-world application of dual network tomography is reconstructing the traffic of bits
sent from a source node to a destination node in a network of servers, terminals and routers. The usual
assumption, in those cases, is the tree structure of the network and models infer the bits trajectories
from a series of local delays, i.e. loss functions defined at each location in the network [22, 23, 24].
The posterior of the travel time distribution at each intermediate position along the path is then used
to reconstruct the unobserved local loads, i.e. the number of packets at a given node and time. We
extend and apply this general idea to urban public transportation systems. The traffic to be estimated
is the flow of people travelling across the system during a day, i.e. the number of people at a given
location and time (station/link load). The nodes of the network are (> 100) underground stations,
connected via (∼ 10) partially overlapping underground ‘lines’, which can be look at as interacting
‘layers’ of connectivity [31]. The observations are single-user records with information about the
origin, destination, starting time and exit time of each journey. Two key unobserved quantities to be
estimated are (i) the users’ path preferences for a given origin-destination pair [32, 28] and (ii) the
station/link loads [33, 34, 35]. Put together, a model for the users’ path preferences and a precise
estimation of the local train loads can help detect network anomalies or predict the behaviour of the
system in case of previously unobserved disruptions [18, 27, 21].

Respect to the classical communication network case, modelling a complex transportation system
requires three challenging extensions: (i) the network structure is a multi-layer (loopy) network,
where users are allowed to ‘change line’ on those nodes that are shared by different layers; (ii) the
user’s choice between many feasible paths follows rules that can go far beyond simple length-related
schemes; (iii) harder physical constraints (the train time schedule for example) may create high
correlations between users travelling on the same path at similar times. Taking into a account such
peculiar features of transportation networks, while keeping the model scalable respect to both the
size of the network and the dataset, is the main contribution of this work.

Model outline We represent the transportation system by a sparse graph, where each node is
associated with an underground station and each edge with a physical connection between two
stations. The full network is the sum of simple sub-graphs (lines) connected by sets of shared nodes
(where the users are allowed to change line) [31]. For a given origin-destination pair, there may exist
a finite number of possible simple (non redundant) trajectories, corresponding to distinct line-change
strategies. The unobserved user’s choice is treated as a latent variable taking values over the set of all
feasible paths between the origin and destination. The corresponding probability distribution may
depend on the length of the path, i.e. the number of nodes crossed by the path, or any other arbitrary
feature of the path. In our multi-layers setup, for example, it is natural to include a ‘depth’ parameter
taking into account the number of layers visited, i.e. the number of lines changes.

For any feasible path γ = [γ1, . . . , γ`], the travel time at the intermediate stations is defined by the
recursive relation

t(γi) ∼ t(γi−1) + Poisson(a(γi−1, so + t(γi−1), γ)) i = 1, . . . , ` (1)

where t(x) the is travel time at location x ∈ {γ1, . . . , γ`}, so is the starting time, a = a(x, so+t(x), γ)
are local delays that depend on the location, x, the absolute time so + t(x) and the path γ. The choice
of the Poisson distribution is convenient 1 in this framework due to its simple single-parameter form
and the fact that t(x) is an integer in the dataset that motivates this work (travel time is recorded in
minutes). The dependence on γ allows including global path-related features, such as, for example,
an extra delay associated to each line change along the path or the time spent by the user while
walking through the origin and destination stations. The dependence on so and t(x) is what ensures

1Other options include negative binomial and shifted geometric distributions

2



the scalability of the model because all users can be treated independently given their starting time.
The likelihood associated with all journeys in a day has a factorised form

p(t
(1)
d , . . . , t

(N)
d |s(1)

o , . . . , s(N)
o ) =

N∏
n=1

p(t
(n)
d |s

(n)
o ) (2)

where t(n)
d is the total travel time of the nth user and N the total number of users in a day and each

p(t
(n)
d |s

(n)
o ) depends only locally on the model parameters, i.e. on the delay functions associated

with the nodes crossed by the corresponding path. The drawback is that an exact computation of (2)
is intractable and one needs approximate inference methods to identify the model parameters from
the data.

We address the inference problem in two complementary ways. The first one is a model-approximation
method, where we perform the exact inference of the approximate (tractable) model

t(γi) ∼ t(γi−1) + Poisson(a(γi−1, so + t̄i−1, γ)) i = 1, . . . , ` (3)

where t̄i−1 is a deterministic function of the model parameters that is defined by the difference
equation

t̄i = t̄i−1 + a(γi−1, so + t̄i−1, γ) i = 1, . . . , ` (4)

The second one is a variational inference approach where we maximise a lower bound of the
intractable likelihood associated with (1). In both cases, we use stochastic gradient updates to solve
iteratively the corresponding non-convex optimization. Since the closed form solution of (4) is in
general not available, the gradients of the objective functions cannot be computed explicitly. At each
iteration, they are obtained recursively from a set of difference equations derived from (4), following
a scheme that can be seen as a simple version of the back-propagation method used to train neural
networks. Finally, we initialize the iterative algorithms by means of a method of moments estimation
of the time-independent part of the delay functions. Choosing a random distribution over the feasible
paths, this is obtained from the empirical moments of the travel time distribution (of the approximate
model (10)) by solving a convex optimization problem.

London underground experiments The predictive power of our model is tested via a series of
synthetic and real-world experiments based on the London underground network. All details of the
multi-layer structure of the network can be found in [36]. In the training step we use input-output data
that contain the origin, the destination, the starting time and the exit time of each (pseudonymised) user
of the system. This kind of data are produced nowadays by tap-in/tap-out smart card systems such as
the Oyster Card systems in London [19]. The trained models can then used to predict the unobserved
number of people travelling through a given station at a given time in the day, as well as the user’s
path preferences for given origin-destination pair. In the synthetic experiments, we compared the
model estimations with the values produced by the ‘ground-truth’ (a set of random parameters used
to generate the synthetic data) and test the performance of the two proposed inference methods. In
the real-world experiment, we used original pseudonymised data provided by Transport for London.
The dataset consisted of more than 500000 origin destination records, from journeys realised in a
single day on the busiest part of the London underground network (Zone 1 and 2, see [36]), and a
subset of NetMIS records [37] from the same day. NetMIS data contain realtime information about
the trains transiting through a given station and, for an handful of major underground stations (all of
them on the Victoria line), include quantitative estimation of the realtime train weights. The latter
can be interpreted as a proxy of the realtime (unobserved) number of people travelling through the
corresponding nodes of the network and used to evaluate the model’s predictions in a quantitative
way. The model has also been tested on a out-of-sample Oyster-card dataset by comparing expected
and observed travel time between a selection of station pairs. Unfortunately, we are not aware of any
existing algorithm that could be applicable for a fair comparison on similar settings.

2 Travel time model

Let o, d and so be the origin, the destination and the starting time of a user travelling through the
system. Let Γod be the set of all feasible paths between o and d. Then the probability of observing a
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travel time td is a mixture of probability distributions

p(td) =
∑
γ∈Γod

ppath(γ)p(td|γ) ppath(γ) =
e−L(γ)∑

γ∈Γod
e−L(γ)

(5)

where the conditional p(td|γ) can be interpreted as the travel time probability over a particular path,
ppath(γ) is the probability of choosing that particular path andL(γ) is some arbitrary ‘effective length’
of the path γ. According to (1), the conditional probabilities p(td|γ) are complicated convolutions of
Poisson distributions. An equivalent but more intuitive formulation is

td =

`(γ)∑
i=2

ri ri ∼ Poisson(a(γi−1, so +
∑̀
k=2

rk, γ)) γ ∼ Ppath(L(γ)) (6)

where the travel time td is explicitly expressed as the sum of the local delays, ri = t(γi)− t(γi−1),
along a feasible path γ ∈ Γod. Since the time at the intermediate positions, i.e. t(γi) for i 6= 1, `, is not
observed, the local delays r2, . . . , r`(γ) are treated as hidden variables. Letting ¯̀= maxγ∈Γod `(γ),
the complete likelihood is

p(r1, . . . , r¯̀, γ) = p(r1, . . . , r¯̀|γ)ppath(γ) p(r1, . . . , r¯̀|γ) =

¯̀∏
i=1

e−λiλrii
ri!

(7)

where λi = a(γi−1, so +
∑i−1
k=2 rk, γ) if i ≤ `(γ) and λi = 0 if i > `(γ). Marginalizing over

all hidden variables one obtains the explicit form of the conditional probability distributions in the
mixture (5), i.e.

p(td|γ) =

∞∑
r2=0

· · ·
∞∑
r¯̀=0

δ(td −
¯̀∑

i=2

ri)

¯̀∏
i=2

e−λiλrii
ri!

(8)

Since λi = λi(ri−1, . . . , r2) for each i = 2, . . . , `, the evaluation of each conditional probabilities
requires performing a (`− 1)-dimensional infinite sum, which is numerically intractable and makes
an exact maximum likelihood approach infeasible. 2

3 Inference

An exact maximum likelihood estimation of the model parameters in a(x, s, γ) and L(γ) is infeasible
due to the intractability of the evidence (8). One possibility is to use a Monte Carlo approximation
of the exact evidence (8) by sampling from the nested Poisson distributions. In this section we
propose two alternative methods that do not require sampling from the target distribution. The first
method is based on the exact inference of an approximate but tractable model. The latter depends
on the same parameters as the original one (the ‘reference’ model (6)) but is such that the local
delays become independent given the path and the starting time. The second approach consists of an
approximate variational inference of (6) with the variational posterior distribution defined in terms of
the deterministic model (4).

3.1 Exact inference of an approximate model

We consider the approximation of the reference model (6) defined by

td =

`(γ)∑
i=2

ri ri ∼ Poisson(a(γi−1, so + t̄i−1, γ)) γ ∼ Ppath(L(γ)) (10)

2An exact evaluation of the moments

〈tnd 〉 =
∞∑
t=0

tn p(t) =
∑
γ∈Γod

ppath(γ)

∞∑
r2=0

· · ·
∞∑
r¯̀=0

(

¯̀∑
i=2

ri)
n

¯̀∏
i=2

e−λiλrii
ri!

(9)

is also intractable.
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where the t̄i are obtained recursively from (4). In this case, the `(γ)− 1 local delays ri are decoupled
and the complete likelihood is given by

p(r1, . . . , r¯̀, γ) = p(r1, . . . , r¯̀|γ)ppath(γ) p(r1, . . . , r¯̀|γ) =

¯̀∏
i=1

e−λiλrii
ri!

(11)

where λi = a(γi−1, so + t̄i−1(γ), γ) if i ≤ `(γ) and λi = 0 if i > `(γ). Noting that td is the sum of
independent Poisson random variables, we have

p(td) =
∑
γ∈Γod

ppath(γ)

td∑
r2=0

. . . ,

td∑
r¯̀=0

δ(td −
¯̀∑

i=2

ri)

¯̀∏
i=2

e−λiλrii
ri!

=
∑
γ∈Γod

ppath(γ)
e−t̄¯̀ t̄td¯̀

td!
(12)

where we have used
∑¯̀

i=2 λi = t̄¯̀. The parameters in the model function a and L can then be
identified with the solution of the following non-convex maximization problem

maxa,L

D∑
o=1

D∑
d=1

T−1∑
so=0

T∑
sd=so

N(o, d, so, sd) log p(sd − so) (13)

where N(o, d, so, sd) is the number of users travelling from o to d with enter and exit time so and sd
respectively.

3.2 Variational inference of model the original model

We define the approximate posterior distribution

q(r, γ) = q(r|γ)qpath(γ) q(r|γ) = pmulti(r; td, η) q(γ) =
e−L̃(γ,td)∑
γ∈Γode

−L̃(γ,td)

(14)

where we have defined r = [r2, . . . , r¯̀], ηi = t̄i−t̄i−1

t̄¯̀
, with t̄i = t̄i−1 for all `(γ) < i ≤ ¯̀,

pmulti(r; td, η) = δ(td −
∑¯̀

i=2 ri)td!
∏¯̀

i=2
η
ri
i

ri!
and the function L̃(γ, td) depends on the path, γ,

and the observed travel time, td. Except for the corrected length L̃(γ, td), the variational distribution
(14) share the same parameters over all data points and can be used directly to evaluate the likelihood
lower bound (ELBO) L = Eq(log p(td))− Eq(log q) 3. One has

L(o, d, so, td) = − log td! +
∑
γ∈Γod

qpath(γ) log
ppath(γ)

qpath(γ)
+
∑
γ∈Γod

qpath(γ)

¯̀∑
i=2

Li(γ)

Li(γ) =

td∑
r2=1

. . . ,

td∑
r¯̀=1

pmulti(r; td, η)

¯̀∑
i=2

(−λi + ri log
λi
ηi

) (15)

with λi = a(γi−1, so +
∑i−1
k=2 rk) and ηi = a(γi−1,so+t̄i−1)

t̄¯̀
if i ≤ `(γ) and λi = 0 = ηi if i > `(γ).

The exact evaluation of each Li(γ) is still intractable due to the multidimensional sum. However,
since for any γ and i = 2, . . . , `, λi depends only on the ‘previous’ delays and we can define

ηpast =
t̄i−1

t̄¯̀
ηfuture =

t̄¯̀− t̄i
t̄¯̀

λi = a(γi−1, so + rpast) (16)

where rpast = r2 + · · ·+ ri−1 and rfuture = ri+1 + · · ·+ r¯̀, and by the grouping property of the
multinomial distribution we obtain

Li(γ) =

td∑
rfuture=1

td∑
ri=1

pmulti(r
(i), td, η

(i))(−λi + ri log
λi
ηi

) (17)

where r(i) = [rpast, ri, rfuture] and η(i) = [ηfuture, ηi, ηpast]. Every Li(γ) can now be computed in
O(t3d) operations and the model parameter identified with the solution of the following non-convex
optimization problem

maxa,L,L̃

D∑
o=1

D∑
d=1

T−1∑
so=0

T∑
sd=so

N(o, d, so, sd)L(o, d, so, sd − so) (18)

3Similar ‘amortised’ approaches have been used elsewhere to make the approximate inference scalable
[38, 39]
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Figure 1: On the left, stochastic iterative solution of (18) (VI) and (13) (ML) for the synthetic dataset. At
each iteration, the prediction error is obtained on a small out-of-sample dataset. On the right, distance from
the ground-truth of the uniform distribution (x-axis) and the models’ path probability (y-axis) for various
origin-destination pairs. In the legend box, total distance from the ground-truth.

Stochastic gradient descent Both (13) and (18) consist of O(D2T 2) terms and the estimation
of the exact gradient at each iteration can be expansive for large networks D >> 1 or fine time
resolutions T >> 1. A common practice in this case is to use a stochastic approximation of the
gradient where only a random selection of origin-destination pairs and starting times are used. Note
that each L(o, d, so, td) depends on a(x, s, γ) only if the location x is crossed by at least one of the
feasible paths between o and d.

Initialization The analytic form of the first moments of (12), 〈td〉so =
∑∞
td=1 tdp(td) =∑

γ∈Γod
ppath(γ)t̄`(γ), can be used to obtain a partial initialization of the iterative algorithms via a

simple moment-matching technique. We assume that, averaging over all possible starting time, the
system behaves like a simple communication network with constant delays at each nodes or, equiva-
lently, that a(x, s, γ) = α(x) + V (x, s, γ), with

∑T
s=0 V (x, s, γ) = 0. In this case an initialization

of α(x) is obtained by solving

minα

D∑
o=1

D∑
d=1

(tod −
∑
γ∈Γod

ppath(γ)

`(γ)−1∑
k=1

α(γk))2 (19)

where tod = 1
Z

∑T−1
so=0

∑T
sd=so

N(o, d, so, sd)(sd − so), with Z =
∑T−1
so=0

∑T
sd=so

N(o, d, so, sd),
is the ‘averaged’ empirical moments computed from the data. Note that (19) is convex for any fixed
choice of ppath(γ).

Total derivatives All terms in (13) and (18) are in the form g = g(ξ, t̄i), where ξ denotes the
model parameters and t̄i = t̄i(ξ) is defined by the difference equation (4). Since t̄i is not available as
an explicit function of ξ it is not possible to write g = g(ξ) or compute directly its gradient∇ξg. A
way out is to compute the total derivative of the function g with respect to ξ, i.e.

dg(ξ, t̄i)

dξ
=
∂g(ξ, t̄i)

∂ξ
+
∂g(ξ, t̄i)

∂t̄i

dt̄i
dξ

(20)

where dt̄i
dξ , for i = 1, . . . , `, can be obtained from the iterative integration of

dt̄i
dξ

=
dt̄i−1

dξ
+
∂a(x, s, γ))

∂ξ
+
∂a(x, s, γ))

∂s

∣∣∣∣
s=t̄i−1

dt̄i−1

dξ
i = 1, . . . , ` (21)

which is implied by (4).

4 Experiments

The method described in the previous sections is completely general and, except for the initialization
step, no special form of the model functions is assumed. In order to captures few key features of
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Figure 2: On the left, travel time predicted by the VI model (in blue) and the ML model (in red) of Figure
1 and the ground-truth model (in green) plotted against the starting time for a selection of origin-destination
pairs. In the legend box, normalised total distance (‖vexp− vtrue‖/‖vtrue‖) between model’s and ground-truth’s
predictions. On the right, station loads predicted by the ground-truth (in green) and the VI model (in blue) and
ML model (in red) of Figure 1. The three models and a reduced dataset of N = 10000 true origin, destination
and starting time records has been used to simulate the trajectories of N synthetic users. For each model, the N
simulated trajectories give the users expected positions at all times (the position is set to 0 if the users is not yet
into the system or has finished his journey) that have been used to compute the total number of people being
at a given station at a given time. The reported score is the total distance between model’s and ground-truth’s
normalised predictions. For station x, the normalised load vector is vx/1T vx where vx(s) is the number of
people being at station x at time s.

a large transportation system and apply the model to the tomography of the London underground,
we have chosen the specific parametrization of the function L(γ) and a(x, s, γ) given in Section
4.1. The parametrised model has then been trained and tested on a series of synthetic and real-world
datasets as described in Section 4.2.

4.1 Parametrization

For each origin o and the destination d, we have reduced the set of all feasible paths, Γod, to a small
set including the shortest path and few perturbations of the shortest path (by forcing different choices
at the line-change points). Let C(γ) ∈ {0, 1}` such that C(γi) = 1 if the user changes line at γi and
zero otherwise. To parametrize the path probability (5) we chose L(γ) = β1`(γ) + β2c(γ) where
`(γ) = |γ|, c(γ) =

∑
i C(γi) and β1, β2 ∈ R are free parameters. The posterior-corrected effective

length L̃(γ, td) in (14) was defined as

L̃(γ) = β̃``(γ) + β̃cc(γ) β̃i = θi1 + θi2u+ θi3u
−1 u = t̂−2

d (td − t̂d)2 i = `, c (22)

where td is the observed travel time, t̂d =
∑
o,d,so,sd

N(o, d, so, sd)(sd − so) and θij ∈ R, i = `, c

and j = 1, 2, 3, are extra free parameters. A regularization term λ(‖β‖2 +
∑
i=`,c ‖θi‖2), with

λ = 1/80, has been added to help the convergence of the stochastic algorithm. We let the local
time-dependent delay at location x and time s be a(x, s, γ) = softplus(α(x) + V (x, s) +W (x, γ))
with

V =

Nω∑
i=1

Nφ∑
j=1

σij(x) cos (ωis+ φj) W =
∑̀
i=1

ρ(x)δx,γiC(γi) + η(x) (δx,γ1 + δx,γ`) (23)

where α(x), ρ(x), η(x) ∈ R and σ(x) ∈ RNω×Nφ are free parameters and {ω1, . . . ωNω} and
{φ1, . . . φNφ} two sets of library frequencies and phases. In the synthetic simulation, we have
restricted the London underground network [36] to Zone 1 (63 stations), chosen Nω = 5 = Nψ and
set W = 0. For the real-data experiments we have considered Zone 1 and 2 (131 stations), Nω = 10,
Nψ = 5 and W 6= 0.
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Figure 3: Travel times predicted by a random model (top), the initialization model (middle) obtained from (19)
and the ML model (bottom) are scattered against the observed travel times of an out-of-sample test dataset (real
data). The plots in the first three columns show the prediction-error of each model on three subsets of the test
sample, Sshort (first column), Smedium (second column) and Slong (third column), consisting respectively of
short, medium-length and long journeys. The plots in the last column show the prediction error of each model
on the whole test dataset Sall = Sshort + Smedium + Slong The reported score is the relative prediction error for
the corresponding model and subset of journeys defined as ‖vexp − vtrue‖/‖vtrue‖, with vexp(n) and vtrue(n)
being the expected and observed travel times for the nth journey in Si, i ∈ {short,medium, long, all}.
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Figure 4: Station loads obtained from NetMIS data (in blue) and predicted by the model (in red). NetMIS
data contain information about the time period during which a train was at the station and an approximate
weight-score of the train. At time s, a proxy of the load at a given station is obtained by summing the score of
all trains present at that station at time s. To make the weight scores and the model predictions comparable we
have divided both quantities by the area under the corresponding plots (proportional to the number of people
travelling through the selected stations during the day). The reported score is the relative prediction error
‖vexp − vtrue‖/‖vtrue‖, with vexp(s) being the (normalised) expected number of people being at the station at
time s and vtrue(s) the (normalised) weight-score obtained from the NetMIS data.
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4.2 Methods and discussion

Synthetic and real-world numerical experiments have been performed to: (i) understand how reliable
is the proposed approximation method compared to more standard approach (variational inference),
(ii) provide quantitative tests of our inference algorithm on the prediction of key unobservable
quantities from a ground-truth model and (iii) assess the scalability and applicability of our method
by modelling the traffic of a large-scale real-world system. Both synthetic and real-world experiments
were are based on the London underground network [36]. Synthetic data were generated from the true
origins, destinations and starting times by simulating the trajectories with the ground-truth (random)
model described in Section 4.1. On such dataset, we have compared the training performance of the
variational inference and the maximum likelihood approaches by measuring the prediction error on
an out-of-sample dataset at each stochastic iteration (Figure 1, right). The two trained models have
then been tested against the ground-truth on predicting (i) the total travel time (Figure 2, left), (ii) the
shape of the users’ path preferences (Figure 1, right) and (iii) the local loads (Figure 2, right). In the
real-world experiments, we have trained the model on a dataset of smart-card origin-destination data
(pseudonymised Oyster Card records from 21st October 2013 provided by Transport for London4 )
and then tested the prediction of the total travel time on a small out-of-sample set of journeys (Figure
3) . In this case we have compared the model prediction with its indirect estimation obtained from
NetMIS records of the same day (Figure 4). NetMIS data contain a partial reconstruction of the actual
position and weights of the trains and it is possible to combine them to estimate the load of a given
station an any given time in the day. Since full train information was recorded only on one of the 11
underground lines of the network (the Victoria Line), we have restricted the comparison to a small set
of stations.

The two inference methods (VI for (18) and ML for (13)) have obtained good and statistically similar
scores on recovering the ground-truth model predictions (Figure 2). ML has been trained orders
of magnitude faster and was almost as accurate as VI on reproducing the users’ path preferences
(see Figure 1). Since the performance of ML and VI have shown to be statistically equivalent.
Only ML has been used in the real-data experiments. On the prediction of out-of-sample travel
times, ML outperformed both a random model and the constant model used for the initialization
(a(x, s, γ) = α(x) with α(x) obtained from (19) with uniform ppath). In particular, when all journeys
in the test dataset are considered, ML outperforms the baseline method with a 24% improvement.
The only sub-case where ML does worse ( 8% less accurate) is on the small subset of long journeys
(see Figure 3). These are journeys where i) something unusual happens to the user or ii) the user visits
lot of stations. In the latter case, a constant-delay model (as our initialization model) may perform
well because we can expect some averaging process between the time variability of all visited stations.
Figure 4 shows that ML was able to reproduce the shape and relative magnitude of the ‘true’ time
distributions obtained from the NetMIS data. For a more quantitative comparison, we have computed
the normalised distance (reported on the top of the red plots in Figure 4) between observed and
predicted loads over the day.

5 Conclusions

We have proposed a new scalable method for the tomography of large-scale networks from input
output data. Based on the prediction of the users’ travel time, the model allows an estimation of
the unobserved path preferences and station loads. Since the original model is intractable, we have
proposed and compared two different approximate inference schemes. The model hes been tested on
both synthetic and real data from the London underground. On synthetic data, we have trained two
distinct models with the proposed approximate inference techniques and compare their performance
against the ground-truth. Both of them could successfully reproduce the outputs of the ground-truth
on observable and unobservable quantities. Trained on real data via stochastic gradient descent,
the model outperforms a simple constant-delay model on predicting out-of-sample travel times and
produces reasonable estimation of the unobserved station loads. In general, the training step could be
made more efficient by a careful design of the mini-batches used in the stochastic optimization. More
precisely, since each term in (13) or (18) involves only a very restricted set of parameters (depending
on the set feasible paths between the corresponding origin and destination), the inference could be
radically improved by stratified sampling techniques as described for example in [40, 41, 42].

4 The data shown in Figure 3 and 4 are not publicly available, but a reduced database containing similar
records can be downloaded from [19]
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