Supplementary: Temporal Coherency based Criteria
for Predicting Video Frames using Deep Multi-stage
Generative Adversarial Networks

A  Smoothed Normalized Cross-Correlation Loss (SNCCL)

In this section, we provide a modification of the Normalized Cross-Correlation Loss (NCCL) pre-
sented in section 3] of the paper. This modification assumes that, while comparing two local patches
between the previous frame at timestamp ¢ — 1 and the current frame at timestamp ¢, majority of the
motion similar to both the frames occur around the central pixel of the patches. This assumption
makes the system more robust to sudden small variation in motion occurring at the boundaries of the
local patches.

To accomplish this heuristic in practical terms, a weight function can be learned whose parameters
are learned adaptively. This requires learning these parameters along with those of the multi-stage
GAN discussed in sec. 2] which is a non-trivial problem. For the sake of simplicity, we approximate
this weight function using a two-dimensional mean-centered Gaussian low-pass filter (2D-GLPF)
and experiment with varying amount of standard deviation of the filter. The algorithm for calculating
the smoothed normalized cross-correlation score is outlined in algo. A.1.

This version of the algorithm automatically filters out areas containing zero or insignificant motion
by calculating the L2 distance between two image patches (step 8 of algo. A.1). This simple trick
stops the value of the normalized cross-correlation score from shooting up due to high similarity in
static areas, thereby letting the algorithm focus on predicting the actual motion patterns, rather than
learning to produce static background (which is done by copying the pixel values). From line 8 of
algo A.1:

U = maz(0,d(P,—1, P,) — €) )
where, U is the indicator variable for finding a highly similar image patch, ¢ is the margm of similarity
(emp1r1cally set to a very small value), d is the L2 distance function and P_; and P are the two
image patches at time ¢t — 1 and ¢ respectively. This equation, in simpler terms, assigns a value of 0
to ¥, when the two image patches are very similar, making the term (d(P,_1, P,) — £) negative and
assigns a positive value when they are not quite similar (thereby indicating presence of motion). The
estimated value of U is then mapped to a 0 or 1 output, as described in the following equation:

U V/jd(Prr P))—¢| (I
where, |.| denotes the absolute value function.

Finally, ¥ is multiplied with the calculated normalized cross-correlation between two image patches
to reduce the possibility of getting a high score in spite of absence of significant motion, thereby
making the algorithm more robust. We show results obtained using using this version of the NCCL in

figures[D.3]and [D.4]

B Experiments with 3D Convolutions

Volumetric (or 3D) convolutions work on spatio-temporal data and can be seen as an extension to the
original spatial (or 2D) convolutional networks. As performing convolutions on volumes introduce
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Algorithm A.1: Smoothed normalized cross-correlation score for finding similarity between a set of
predicted frame(s) and a set of ground-truth frame(s).

Input: Ground-truth frames (GT), Predicted frames (PRED), Gaussian filter (GLPF)
[Dimension = (h +4) x (h +4)]

Qutput: Smoothed Cross-correlation score (Scoregycc)

// h = height and width of an image patch

// H = height and width of the predicted frames

// t= current time

// T = Number of frames predicted

Initialize: Scoresnycc = 0;

fort =117T do

fori=0to H,i <+ i+ hdo
for j=0toH, j+ j+ hdo

P, « extract_patch(PREDy, 1, j, h);

/* Extracts a patch from the predicted frame at time ¢ of dimension
h x h starting from the top-left pixel index (3,}) */

Py« extract_patch(GTi_1,i — 2,5 — 2, h + 4);

/* Extracts a patch from the padded ground-truth frame at time
(t—1) of dimension (h+4) x (h+4) starting from the top-left
pixel index (i —2,j —2) */

P, « extract_patch(PRED;_1,i —2,j — 2, h + 4);

/* Extracts a patch from the padded predicted frame at time ¢ of
dimension (h+4) x (h+4) starting from the top-left pixel index

U max(O,d(Pt_l,Pt/) fé); // Checks similarity between two patches

U V/ja(Pioy, )¢ ; // ¥ =0/1

P,y < (GLPF % P,_1) ; // Convolve with the Gaussian filter

wp, < avg(Py);

pp, < avg(Pi-1);

op, < standard_deviation(FP;);

Op_, standard_deviation(P;_1);

(Pi(@,y)—pp ) (Peor(y)—pp, )

Scoresycc < Scoregnce + ¥ X ma;c(()vzxy ()= ey ) (P : T Y)~kp,_, ):

) (Tpto-Pt71
end
end
Scoregnoo — Scoresnce/|H/p)? // Average over all the patches
end
Scoregnoo + Scoresnce/(T-1); // Average over all the frames

significant computational complexity, and the multi-stage generative adversarial architecture (refer
to sec. [2]in the paper) comprises of two stages, each consisting of two networks, we modified the
architecture for incorporating 3D modules. We evaluated these smaller networks with (and without)
the proposed objective functions. The network architecture used for this task is shown in table[l]
Max-pooling is used to scale down the dimensions in the discriminator network to make the training
time feasible.

As can be seen from tables IV and V, adding volumetric modules to capture temporal relationship
in the data does not produce expected results when coupled with the L1 loss alone. Inclusion of
the proposed objective functions viz., NCCL, SNCCL, PCDL and 3-PCDL improves the result by a
significant margin. It should be noted that, although the values increase, they remain quite similar to
the results obtained from the model discussed in the paper.

Comparing these results to that in table[2]of the paper, it can be inferred that, the performance gain
obtained in the quality of predictions, do not generally depend on the type of convolutions used



Table I: Network architecture details. G and D represents the generator and discriminator networks
respectively. U denotes a volumetric unpooling operation which upsamples an input by a factor of 2.
M represents a max-pooling layer which downsamples an input of by a factor of 2.

Network Stage-1 (G) Stage-2 (G) Stage-1 (D) Stage-2 (D)
Number of fea- 64, 128U, 64 64, 128U, 256U, 64,128M,256 128, 256M,
ture maps 128, 64 128

Kernel sizes 5,3,5 5,5,5,5,5 3,5,5 5,5,5

Fully connected  N/A N/A 1024, 512 1024, 512

Table II: Experimental results of applying 3D convolutions in the proposed GAN framework on the
UCF dataset. Best results in bold.

Frame-1 Frame-2 Frame-4
Methods PSNR SSIM PSNR SSIM PSNR SSIM
Adv +L1 29.7 0.87 259 0.82 21.2 0.58
Adv +NCCL + L1 35.8 0.94 34.1 0.92 28.8 0.75
Adv + NCCL + PCDL 37.4 0.95 35.2 0.92 29.5 0.75
Adv+NCCL +PCDL +L1 37.6 0.95 35.9 0.92 30.2 0.76
Adv + SNCCL + PCDL + 3- 38.3 0.95 36.7 0.93 31.2 0.77

PCDL

and the proposed objective functions directly bridges this gap by introducing the notion of temporal
coherence between motion features of the frames.

Table III: Experimental results of applying 3D convolutions in the proposed GAN framework on the
KITTTI dataset. Best results in bold.

Frame-1 Frame-2 Frame-4
Methods PSNR SSIM PSNR SSIM PSNR SSIM
Adv + L1 30.2 0.88 26.4 0.82 22.1 0.59
Adv + NCCL 37.4 0.91 35.5 0.90 27.7 0.75
Adv + NCCL + PCDL 39.2 0.92 36.7 0.90 29.9 0.76
Adv+ NCCL + PCDL +L1 40.1 0.93 37.4 0.91 30.5 0.76
Adv + SNCCL + PCDL + 3- 404 0.94 37.9 0.91 31.2 0.77

PCDL

C Long Distance Prediction

We experimented with the proposed mult-stage GAN model to predict frames far away in the future
from the current input frame. For this, we fed the model a sequence of 8 input frames to generate
an output sequence of 8 predicted frames. Unlike [Al], which uses smaller networks to tackle this
situation, we keep our model identical to the one described in section C as the number of parameters
to learn in the training stage remains inside feasibility limit. Evaluation results are shown in tables
IV-V.
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Figure C.1: Prediction results shown on a clip from the UCF-101 dataset. The model predicts 8
frames given 8 input frames. Best viewed in color.
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Figure C.2: Zoomed in prediction results shown on the clip shown in fig. from the UCF-101
dataset. The model predicts 8 frames given 8 input frames. Best viewed in color.



Table IV: Experimental results of predicting 8 frames given 8 input frames by the proposed GAN
framework on the UCF-101 dataset. First four rows are from [Al]. Best results in bold.

Frame-1 Frame-2 Frame-4
Methods PSNR SSIM PSNR SSIM PSNR SSIM
L2 18.3 0.59 - - 15.4 0.51
Adv 21.1 0.61 - - 17.1 0.52
L1 21.3 0.66 - - 17.0 0.55
GDL + L1 214 0.69 - - 17.7 0.58
Last input 30.6 0.90 - - 21.0 0.74
Adv + NCCL + L1 354 0.94 33.9 0.92 22.4 0.69

Adv+NCCL+PCDL+L1 373 0.95 35.7 0.92 23.6 0.69
Adv + SNCCL + PCDL + 38.2 0.95 36.8 0.93 24.2 0.70
3-PCDL + L1

Table V: Experimental results of predicting 8 frames given 8 input frames by the proposed GAN
framework on the KITTI dataset. Best results in bold.

Frame-1 Frame-2 Frame-4
Methods PSNR SSIM PSNR SSIM PSNR SSIM
Adv + L1 29.8 0.87 26.0 0.82 20.2 0.58
Adv + NCCL 37.6 0.91 354 0.90 21.3 0.71
Adv + NCCL + PCDL 39.2 0.92 36.8 0.90 21.9 0.71
Adv+NCCL + PCDL +L1 40.2 0.93 37.6 0.91 22.3 0.71
Adv + SNCCL + PCDL + 3- 40.5 0.94 38.2 0.91 22.8 0.72

PCDL




D Prediction Outputs
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Figure D.3: Prediction results shown on a clip from the Basketball_Dunk class of the UCF-101
dataset. The model predicts 4 frames given 4 input frames. Figures xxi - xxxvi shows the zoomed in
version of an area containing significant motion. GI" denotes the ground truth frames at a particular
time. C'ombined represents the loss function described in eqn. @ of the paper. Best viewed in color.
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Figure D.4: Prediction results shown on a clip from the Javelin_Throw class of the UCF-101
dataset. The model predicts 4 frames given 4 input frames. Figures xxi - xxxvi shows the zoomed in
version of an area containing significant motion. G7" denotes the ground truth frames at a particular
time. Combined represents the loss function described in eqn. [10|of the paper. Best viewed in color.
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Figure D.5: Prediction results shown on a clip from the KITTI dataset. The model predicts 4
frames given 4 input frames. Figures xxi - xxxvi shows the zoomed in version of an area containing
significant motion. GT" denotes the ground truth frames at a particular time. C'ombined represents
the loss function described in eqn. of the paper. Best viewed in color.
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