
A Proof of Main Theoretical Results
In this section, we prove our main theories. The proof of Theorem 4.5 requires the following two
lemmas.

Lemma A.1. Suppose that Assumptions 4.1 and 4.2 hold. Choose the thresholding parameter as
s > s⇤. Then with probability at least 1�C 0/d, the initial points bS(0), bZ(0) obtained by initialization
stage in Algorithm 1 satisfy
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where C 0 > 0 is an absolute constant.

Lemma A.1 indicates that under certain conditions the initial points obtained by initialization stage
of Algorithm 1 are sufficiently close to S

⇤ and Z

⇤ respectively.
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Then for any t � 1, with probability at least 1� C
1

/d, the output of Algorithm 1 satisfies
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where C
1

> 0 is an absolute constant.

Lemma A.2 suggests that the estimation error consists of two terms: the first term is the statistical
error, and the second term is the optimization error of our algorithm.

Proof of Theorem 4.5. The proof of Theorem 4.5 follows from combining Lemma A.1 and Lemma
A.2. We only need to derive the conditions on the sample size n and sparsity of S⇤. Specifically, for
R defined as in Lemma A.2, we need
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to ensure the initial points obtained by the initialization stage of Algorithm 1 lie in balls of unknown
matrices with radius R. Simple calculation yields the condition on the sample size n and sparsity s⇤

as follows:
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This completes the proof.

B Proof of Technical Lemmas in Appendix A
In this section, we provide the proofs for the technical lemma used in the proof of our main theory.
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B.1 Proof of Lemma A.1

Now we prove that our initial points bS(0) and b

L

(0) in Algorithm 1 lie in small neighborhoods of S⇤

and Z

⇤. Note that our analysis of the initialization is inspired by the proof of Theorem 1 in [40], and
extends that to the noisy case. We first lay out the following lemma, which is useful in our proof.
Lemma B.1. For any symmetric matrix A 2 Rd⇥d with kAk
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holds with probability at least 1� C/d, where the last inequality is due to Lemma E.2. Combining
(B.1), (B.2) and (B.3), it finally yields that
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Thus submitting (B.2), (B.4) and Lemma E.3 into the above inequality, we obtain
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with probability at least 1 � C 0/d, where C 0 > 0 is an absolute constant. And by Lemma E.4 we
further get
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with probability at least 1� C 0/d, which completes the proof.

B.2 Proof of Lemma A.2

For simplicity of the proof, we introduce the following notations that give the gradient descent
updating based on the population objective function
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where the population objective function q(S,Z) = E[qn(S,Z)] and qn(S,Z) is defined in (3.4).
Here S

(t+0.5) and Z

(t+1) are the population version of bS(t+0.5) and b

Z

(t+1) in Algorithm 1. In order
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Lemma B.2. Let S(t+0.5)

=

b

S

(t) � ⌘r
S

q
�

b

S

(t), bZ(t)
�

be the population version of bS(t+0.5). For the
gradient descent updating of S, if step size satisfies ⌘  1/(L+ µ), then we have

�

�

S

(t+0.5) � S

⇤�
�

2

F


✓

1� 2⌘µL

L+ µ

◆

�

�b

S

(t) � S

⇤�
�

2

F
+

25⌘2�2

2

�
max

8

d2(bZ(t),Z⇤
),

where L = 4⌫2, µ = 1/(4⌫2) and �
2

= 8⌫2.

And the corresponding result for Z:
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The following lemma serves similarly as a non-expansive property for hard thresholding operators,
which is proved in Lemma 4.1 by [21].
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The following lemma gives the statistical error of our model.
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The above lemma states that the differences between the gradients of the population and sample loss
functions with respect to S and Z are bounded in terms of different matrix norms. It is pivotal to
characterize the statistical error of the estimator from our algorithm.

Now we are going to prove the main theorem.
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where the second inequality is due to Lemma B.2. Here L = 4⌫2, µ = 1/(4⌫2) and �
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By Lemma B.3 we have
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where L = 4⌫2, µ = 1/(4⌫2), and �
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holds with probability at least 1� C 0/d. Combining (B.11) and (B.15), we then have
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holds with probability at least 1 � max{C,C 0}/d. Recall that by Lemma B.2 and Lemma B.3
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When we choose the thresholding parameter as s � �
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where in the second inequality we use the fact that when the sample size n is sufficient large, we are
able to ensure ⌧  (1�p

⇢)R2. Therefore, we have b
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⇤, R) and b
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(t+1) 2 Bd(Z
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By mathematical induction, we have b
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(t) 2 BF (S
⇤, R) and b
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⇤, R), for any t = 0, 1, . . .

Since (B.16) holds uniformly for all t, we further obtain with probability at least 1� C
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where ⇢ and ⌧ are defined in (B.17) and C
1

= max{C,C 0} is a positive constant, which completes
the proof.

C Proof of Supporting Lemmas in Appendix B
In this section, we prove the lemmas used in the proof of main theorem. We first lay out some useful
lemmas. The first lemma is about the strong convexity and smoothness.
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Lemma C.1. The population loss function p(S,L⇤
) is µ-strongly convex and L-smooth with respect

to S, namely,
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for all S 2 BF (S

⇤, R), where µ = 1/(4⌫2) and L = 4⌫2. Similarly, p(S⇤,L) is µ-strongly convex
and L-smooth with respect to L:
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for L = ZZ

>,L⇤
= Z

⇤
Z

⇤> and Z 2 Bd(Z
⇤, R). Here we use r

L

p(S,L) to denote the gradient of
the loss function with respect to L.

In the following lemma, we show that the first-order stability, i.e., Condition 4.4 on the population
loss function holds for S and L.
Lemma C.2. For all S 2 BF (S

⇤, R) and Z 2 Bd(Z
⇤, R), by definition we have L = ZZ

> and
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⇤
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⇤>. We have the following properties for gradient with respect to S and L
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C.1 Proof of Lemma B.2
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Since by Lemma C.1 p(S,Z⇤
Z

⇤>
) is µ-strongly convex and L-smooth regarding with S around
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⇤, and note that p(S,Z⇤
Z
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), we also have that q(S,Z⇤
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For term I
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Applying mean value theorem we further obtain
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for some t 2 (0, 1). Easy calculation and the properties of Kronecker product yield
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Finally, we are going to bound term I
3

in (C.1). Specifically, we have
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where the first inequality is due to (a+ b)2  2a2+2b2, the equality is due q(S,Z) = p(S,ZZ>
) =

p(S,L), and the last inequality is by the first-order stability property, i.e., Lemma C.2, where
�
2

= 8⌫2. Submitting (C.2), (C.3), (C.4) and (C.5) into (C.1) yields
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C.2 Proof of Lemma B.3

Proof. Based on the definition in (4.3) we denote
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For term I
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We first bound term I
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where we used the fact that r
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) = 0. Applying mean value theorem yields
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for some t 2 (0, 1). Simple calculation yields
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Thus, combining (C.10) and (C.11) we obtain
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Next, since by Lemma C.1 p(bS(t),L) is µ-strongly convex and L-smooth with respect to L with
µ = 1/(4⌫2) and L = 4⌫2, by Lemma E.1 we further obtain
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For term I
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where in the second inequality we used the inequality 2ab  a2/c+ cb2 for any c > 0.

Now we turn to term I
2

in (C.8). Recall that r
Z

q(S,Z) = [r
L

p(S,L)]Z. We have

kr
Z

q(bS(t), bZ(t)
)k2F  2k[r

L

p(bS(t), bL(t)
)�r

L

p(bS(t),L⇤
)]

b

Z

(t)k2F + 2k[r
L

p(bS(t),L⇤
)�r

L

p(S⇤,L⇤
)]

b

Z

(t)k2F
 2kr

L

p(bS(t), bL(t)
)�r

L

p(bS(t),L⇤
)k2F · kbZ(t)k2

2

+ 2�2

1

kbS(t) � S

⇤k2F · kbZ(t)k2
2

 25�
max

8

kr
L

p(bS(t), bL(t)
)�r

L

p(bS(t),L⇤
)k2F +

25�2

1

�
max

8

kbS(t) � S

⇤k2F ,
(C.15)

where the second inequality is due to Lemma C.2 with �
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= 8⌫2, and the last ineuqlity is due to
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Thus submitting (C.12), (C.13), (C.14) and (C.15) into (C.8) yields
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where in the first inequality we used the conclusion in Lemma E.4 and that �
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which completes the proof.
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C.3 Proof of Lemma B.5

Now we are going to prove the lemma of statistical errors.

Proof. This lemma has two parts: one is the statistical error for the derivatives of loss functions with
respect to S, and the other one with respect to Z. We first deal with S.

Part 1: Taking derivative of q(S,Z) with respect to S while fixing Z, we have
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holds with probability at least 1� C/d.

Part 2: Taking derivative of q(S,Z) with respect to Z while fixing S, we have
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Taking derivative of qn(S,Z) with respect to Z while fixing S, we have
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Then by transformation of norm, we have
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with probability at least 1� C 0/d. It immediately follows that
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holds with probability at least 1� C 0/d.

C.4 Proof of Lemma B.1

Proof. By definition we have kAk
2

= supkxk2=1

x

>
Ax. Note that

x

>
Ax = hx,Axi = hxx>,Ai  kxx>kF · kAkF  p

s
0

kAk1,1,

where in the last inequality we use the fact that kxx>kF = 1.

D Proof of Additional Lemmas in Appendix C
D.1 Proof of Lemma C.1

Proof. We first show the strong convexity and smoothness with respect to S. Taking derivative of
p(S,L⇤

) with respect to S while fixing L

⇤ and denoting the gradient as r
S

p(S,L⇤
), we have

r
S

p(S,L⇤
) = ⌃

⇤ � (S+ L

⇤
)

�1.
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Further, taking the second order derivative with respect to S, we get
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For any S 2 BF (S
⇤, R), we define

E(S) = hr
S
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Applying mean value theorem to (D.2), we obtain
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(D.3)

for some ✓ 2 [0, 1], where in the last equality we use the property of Kronecker product. By triangle
inequality we have
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where the last inequality is because we have R  1/⌫  ⌫ by definition. Combining (D.3) and (D.4)
yields
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which immediately implies that q(S,L⇤
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Note that for E(S) defined in (D.2), we also have
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For any x 2 Rd such that kxk
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= 1, we have
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where the last inequality is due to 0  ✓  1. Taking minimization over x on both side of the
inequality above, we have
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where in the last inequality we use the fact S 2 BF (S
⇤, R) and R  1/(2⌫). Then it follows that

E(S)  4⌫2kS0 � Sk2F ,
which immediately implies that p(S,L⇤

) is L-smooth with respect to S, and L = 4⌫2.

Since p(S,L) is symmetric in S and L, by similar proof for L, we can show that p(S⇤,L) is µ
strongly-convex and L-smooth with respect to L too.

D.2 Proof of Lemma C.2

In this subsection, we prove the first-order stability lemmas.

Proof. Take derivative of p(S,L) with respect to S while fixing L, we have
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where we use the properties of matrix norm that kABkF  kAk
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where we use the fact that kS� S
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which ends the proof. The proof for first-order stability of r
L

p(S,L) is similar and omitted here.

E Auxiliary Lemmas
Lemma E.1. [28] Let f be µ-strongly convex and L-smooth. Then for any x,y 2 domf , we have
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holds with probability at least 1� C/d, where C > 0 is a constant.
Lemma E.3. [32] Suppose that X
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, . . . ,Xn 2 Rd are i.i.d. sub-Gaussian random vectors. Let
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holds with probability at least 1� C 0/d, where C 0 > 0 is a constant.
Lemma E.4. [31] For any Z,Z⇤ 2 Rd⇥r, we have
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F Additional Experiments on Cancer Genomic Data
To further show the performances of different methods on recovering the edges in the benchmark
network that are most related to luminal breast cancer, we chose the top 50 gene pairs with highest
regulatory potential scores based on the Cistrome Cancer Database, and plotted the edges identified by
each method in Figure 3. Note that the estimated networks of methods based on LVGGM (ADMM,
PPA and AltGD) have much more overlaps with the benchmark network on the top 50 edges than
GLasso, which ignores the latent structure of precision matrix.
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Figure 3: A comparison between the inferred regulatory network as compared to the regulatory
potential score from the Cistrome Cancer Database on luminal breast cancer. We chose the top 50

gene pairs in the Database with highest regulatory potential scores.

We also plotted the regulatory potential scores for basal subtype breast cancer based on Cistrome
Cancer Database in Figure 4. We can see that the estimated networks of ADMM, PPA and AltGD
again have much more overlaps with the benchmark network on the top 50 edges than GLasso, which
is consistent with the results for luminal breast cancer.
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Figure 4: A comparison between the inferred regulatory network as compared to the regulatory
potential score from Cistrome Cancer Database on basal breast cancer. We chose the top 50 gene
pairs in Cistrome Cancer Database with highest regulatory potential scores.
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