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1 Properties of III

In this section we prove the properties of III(S;R;C) as discussed in Section 2 in the main text. We
first prove the properties 1-3 at the same time:

III(S;R;C) ≤ I(S : R), I(R : C), I(S : C). (1)

Proof. From the definition in Eq.3 in the main text, III(S;R;C) = min{SI(C : {S;R}), SI(S :
{R;C})}, but SI(C : {S;R}) ≤ I(S : C), I(R : C) [1, 2] and similarly SI(S : {R;C}) ≤ I(S :
R), I(S : C). Thus, III(S;R;C) ≤ SI(C : {S;R}), SI(S : {R;C}) ≤ I(S : R), I(R : C), I(S :
C).

Note that, as a corollary of III(S;R;C) ≤ I(S : R) (Eq.1), we find that S ⊥⊥ R =⇒ III(S;R;C) =
0, as reported in Section 2 in the main text.
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Then we prove property 4:

III(S; {R1, R2};C) ≥ III(S;R1;C), III(S;R2;C). (2)

Proof. Both SI(C : {S; (R1, R2)}) ≥ SI(C : {S;R1}), SI(C : {S;R2}) [3] and, similarly,
SI(S : {C; (R1, R2)}) ≥ SI(S : {C;R1}), SI(S : {C;R2}). Thus, III(S;R1;C) = min[SI(C :
{S;R1}), SI(S : {R1;C})] ≤ min[SI(C : {S; (R1, R2)}), SI(S : {C; (R1, R2)})] =
III(S; {R1, R2};C). The same argument can be repeated exactly if we swap R1 ↔ R2.

2 Further examples where III = 0

In this section, we develop in detail two examples where the intersection information III(S;R;C) is
zero, but this property can’t be immediately determined from the independence relationships between
the stimulus S, the neural response R, and the choice C. In other words, the intersection information
is zero even though this can’t be read off a representation of p(s, r, c) as a probabilistic graphical
model.

2.1 The choice C can be independent of the stimulus S even in presence of a neural code R
which is informative about both S and C

Consider a behavioural task where the animal needs to recognise one out of a set of 4 (equiprobable)
distinct sensory stimuli. As a concrete example, take a visual stimulus where one quadrant of a screen
is filled black:

s00 = , s01 =

s10 = , s11 =

and the animal can make 1 out of 4 distinct choices to report the stimulus identity:

c00 =↖ , c01 =↗
c10 =↙ , c11 =↘

The behavioural performance would be perfect if each choice were exactly associated with the
corresponding stimulus, such as ↔↖, ↔↗, and so on. Finally, suppose that during the
experiment we record the activity of one neuron, and that this activity assumes one of 4 possible
states:

r00 =

r01 =

r10 =

r11 =

This is a temporal code where each state can be described with the duration of two inter-spike
intervals.

We will now model a case in which the neural code is informative about both the stimulus and the
behaviour, but the stimulus is not informative about the behaviour. In other words, a case in which
the behaviour depends on the code and the code depends on the stimulus, but the behaviour doesn’t
depend on the stimulus. Assume that the first inter-spike interval of the neural code depends on the
vertical component of the stimulus, while the duration of the second inter-spike interval is set at
random (Figure 1b). Suppose also that one component of the behaviour – say the horizontal one – is
determined by the duration of the second inter-spike interval, but the other is again set at random
(Figure 1c). This can be represented by a diagram like that in Figure 1a.

The end result is that in this model we have

H(S) = H(R) = H(C) = 2 bits

I(S : R) = I(R : C) = 1 bit

I(S : C) = 0

III(S;R;C) = 0.
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S R C

(a)

s =

p(r = |s) 0.5 0 0 0.5
p(r = |s) 0.5 0 0 0.5
p(r = |s) 0 0.5 0.5 0
p(r = |s) 0 0.5 0.5 0

(b)
r =

p(c =↖ |r) 0.5 0 0.5 0
p(c =↙ |r) 0.5 0 0.5 0
p(c =↘ |r) 0 0.5 0 0.5
p(c =↗ |r) 0 0.5 0 0.5

(c)

Figure 1: a: graphical representation of the joint probability distribution p(s, r, c) for an example
where the neural response is informative about the stimulus and the choice, but the choice may
be unrelated to the stimulus. The probabilistic graphical model representation is augmented by
a color code illustrating the nature of the information carried by statistical relationships between
variables. Red: information about the stimulus; blue: information about anything else (internal
noise, distractors, etc). b: Conditional probability table of the recoded spiking activity given
the sensory stimulus. The duration of the first inter-spike interval is determined by the vertical
component of the stimulus, while the duration of the second inter-spike interval is independent of
the stimulus and assumes one of the two possible values (“long” and “short”) with equal probability.
c: Conditional probability table for the choice given the neural activity. The horizontal component
of the behaviour variable depends on the duration of the second inter-spike interval in the neural
activity, and the vertical component of the behaviour variable assumes one of the two possible
values with equal probability.

In conclusion, this is an example of a case where a neural code can have significant stimulus and
choice information, but it does not contribute at all to the performing of the sensory discrimination
task: indeed, the stimulus and the behaviour are statistically independent (the animal performs the
task at chance level). In other words, the features of the neural code that tell us something about
the stimulus are completely independent from the features of the code that affect the behaviour. As
expected, it is found that III(S;R;C) = 0 in this scenario.

2.1.1 Stimulus, neural code and choice all being informative about each other does not
mean that the information carried by the neural code about S and C is relevant for
the behavioural task

Consider the same type of experimental setup as in the previous example. We will now model a case
in which:

• the animal can differentiate perfectly the stimuli on the horizontal axis but not on the vertical
axis (i.e. the horizontal component of the choice depends on the horizontal component of
the stimulus);

• the neural code depends on the vertical component of the stimulus;

• the vertical component of the choice depends on the neural code, but in a way which is
unrelated to the stimulus.

To do this, we assume first of all that R depends on S through the conditional probabilities given in
Figure 2c; this means that the duration of the first inter-spike interval of R is controlled by whether
the stimulus is in the upper or lower half of the screen, but the duration of the second inter-spike
interval is not informative about the stimulus. We also assume that C is completely determined by S
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S R C

(a)

s =

p(c =↖ |s) 0.5 0.5 0 0
p(c =↙ |s) 0.5 0.5 0 0
p(c =↘ |s) 0 0 0.5 0.5
p(c =↗ |s) 0 0 0.5 0.5

(b)
s =

p(r = |s) 0.5 0 0 0.5
p(r = |s) 0.5 0 0 0.5
p(r = |s) 0 0.5 0.5 0
p(r = |s) 0 0.5 0.5 0

(c)
r =

p(c =↖ |r) 0.5 0 0 0.5
p(c =↙ |r) 0.5 0 0 0.5
p(c =↘ |r) 0 0.5 0.5 0
p(c =↗ |r) 0 0.5 0.5 0

(d)

Figure 2: a: graphical representation of the joint probability distribution p(s, r, c) for an example
where stimulus, neural activity and choice are all informative about each other, but the neural activ-
ity has no intersection information. The probabilistic graphical model representation is augmented
by a color code illustrating the nature of the information carried by statistical relationships between
variables. Red: information about the stimulus; blue: information about anything else (internal
noise, distractors, etc). b: Conditional probability table for the behaviour given the stimulus. This
corresponds to the animal being able to differentiate stimuli on the horizontal axis, but not on the
vertical axis. c: Conditional probability table of the recoded spiking activity given the sensory
stimulus. Note that the neural activity only allows to distinguish between different stimuli on the
vertical axis. d: Conditional probability table for the behaviour given the neural activity. This
corresponds to the behaviour depending on whether the second inter-spike interval has the same
duration of the first one, but not on the duration of the first spike interval itself.

and R taken together in the following way:

c(s00, r00) = c(s00, r11) = c(s10, r00) = c(s10, r11) = c00

c(s00, r01) = c(s00, r10) = c(s10, r01) = c(s10, r10) = c01

c(s01, r01) = c(s01, r10) = c(s11, r01) = c(s11, r10) = c10

c(s01, r00) = c(s01, r11) = c(s11, r00) = c(s11, r11) = c11

We can then derive the conditional probabilities of C given S and C given R, reported respectively
in Figure 2b and Figure 2d. From these, we can see that, as required, the horizontal component of
C depends directly on the horizontal component of S, and the vertical component of C depends on
whether the duration of the second inter-spike interval in R matches that of the first interval – but this
dimension of the neural code is independent of the sensory stimulus R. As expected, it is found that
III(S;R;C) = 0 in this scenario.

The end result is that, in this model, we have:

H(S) = H(R) = H(C) = 2 bit

I(S : R) = I(S : C) = I(R : C) = 1 bit

III(S;R;C) = 0,

i.e. the information that the neural code carries about the stimulus is not relevant for the behaviour,
and conversely the features of the code that affect the behaviour are unrelated to the sensory stimulus.
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3 Details of the numerical calculation of III

Our novel measure of intersection information III(S;R;C) relies on the definitions of the Partial
Information Decomposition (PID) atoms as proposed in [2] (see Eq.3 in the main text). Suppose
that the stimulus s can take values in a discrete set s ∈ S, the response in a discrete set r ∈ R, and
the choice in a discrete set c ∈ C. Once the trivariate probability distribution p(s, r, c) has been
estimated from experimental data, the PID that decomposes the information that S and R carry about
C requires the definition of the space ∆p of all trivariate distributions q(s, r, c) in the following set:

∆p = {q(s, r, c) : q(s, c) = p(s, c) and q(r, c) = p(r, c), ∀s ∈ S, r ∈ R, c ∈ C}. (3)

In words, to decompose the information that two variables (sources) carry about a third variable
(target), Bertschinger et al. proposed to consider the space ∆p of all probability distributions
q(Source 1,Source 2,Target) with the same pairwise marginal distributions on the pairs (Source 1,
Target), (Source 2, Target) as the original p(Source 1,Source 2,Target).

In particular, the redundant information that S and R share about C, SI(C : {S;R}), is defined as
the solution of the following convex optimization problem on the space ∆p [2]:

SI(C : {S;R}) ≡ max
q∈∆p

CoIq(S;R;C), (4)

where CoIq(S;R;C) ≡ Iq(S : R) − Iq(S : R|C) is the co-information corresponding to the
probability distribution q(s, r, c). Ref.[2] discussed how the space ∆p is a polytope whose elements
can be parametrized in terms of real linear combinations of |C|(|S − 1|)(|R| − 1) vectors [4],
where |X | is the number of elements in the set X . The problem in Eq.4 can thus be treated as
a convex optimization problem on a linear vector space with finite dimensions. The objective
function of this problem, CoIq(S;R;C), is a highly non-linear (convex) function of the elements
of the parametrization space, which is compact and convex. To solve this problem, we adopted the
Frank-Wolfe optimization algorithm, also known as the conditional gradient method [5].

Open-source software to calculate our measure of intersection information III(S;R;C) from any
finite-dimensional probability distribution p(s, r, c) estimated from experimental or simulated data is
available at this link: https://doi.org/10.5281/zenodo.850362.

4 Details about the simulations of the sensory discrimination task

The simulations described in Section 3 of the main text (see also Fig.2a therein) were implemented as
follows. In every simulated trial, the simulated neural activity in sensory cortex was a continuous
variable SC defined as

SC = s+ SN, (5)
where s was a randomly drawn binary stimulus (s ∈ {s1, s2}) and the sensory noise SN ∼ N (0, σS)
was normally distributed with tunable variance σS . Four independent values of SC, corresponding to
four independent values of SN but to the same value of s, {SC(i)}i=1:4, were drawn for each trial.
The simulated activity in parietal cortex (R) and the simulated activity in the bypass pathway (R′)
were determined, in each trial, as follows:

R =
{
SC(1) + SC(2) if s = s1

SC(1)− SC(2) if s = s2
(6)

R′ =
{
SC(3) + SC(4) if s = s1

SC(3)− SC(4) if s = s2
(7)

We then combined R and R′ into a unique continuous variable Rhigher, as follows:

Rhigher = R+
1

α
R′, (8)

i.e. the ratio between the R-weight and the R′-weight is indicated with the coefficient α. The variable
Rhigher + CN , where the choice noise CN ∼ N (0, σC) was normally distributed with standard
deviation σC , was finally fed to a linear discriminant, whose outcome ŝ determined the binary choice
c. The linear discriminant was based on a multivariate regularized linear discriminant analysis [6, 7],
that was applied to the input of the decoder to derive an optimal linear separation between two groups
of trials: one corresponding to a decoded stimulus ŝ = s1, the other to ŝ = s2 (the regularization
parameter was fixed to 0.1).
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X
Encoder 1

III(R1) = I(X1: Y1)

X1 Y1R1

X2 Y2R2
Encoder 2

Y
Decoder 1

Decoder 2

Measurement

Figure 3: In the main text, III(S;R;C) is defined and characterized as a measure of intersection
information in neuroscience. However, the definition in Eq.3 in the main text does not rely on
any specific assumption about the nature of the statistical dependencies that underlie a trivariate
system. In other words, III can still be defined for three generic variables (X,R, Y ). To give further
intuition about what III quantifies, we considered a system where a stochastic input variable
X = (X1, X2) is fed to two distinct encoding channels with outputs R1, R2; importantly, the
inputs to the channels are independent, X1 ⊥⊥ X2. The variables R1, R2 are then independently
decoded to produce collectively a joint output Y = (Y1, Y2). We further assumed that only the
black variables in the scheme could be measured, while the red variables could not. Thus, we
assumed that only the joint distribution p(x, r1, y) was known. Following the definition in Eq.3 in the
main text, III(X;R1;Y ) equals the Reversible Shared Information RSI(X

R1↔ Y ) that we defined
in Ref.[8]. As we showed in that work, III(X;R1;Y ) then quantifies the information between X
and Y that passes through R1, i.e. III(X;R1;Y ) = I(X1 : Y1). Note that, without computing the
intersection information III(X;R1;Y ), we could not estimate I(X1 : Y1) from the experimental
measurements, since p(x1, y1) is not known directly.

5 Experimental methods

5.1 Texture discrimination task

Experimental data was collected as described in [9]. Briefly, in that work, five Wistar rats were
handled and habituated to the task for one week. Twenty-four hours prior to the onset of training,
and throughout the training, rats were water-restricted but had free access to food in the home cage.
On each trial, one out of four plates textured with varying degrees of smoothness was presented
before the rat. The rat perched on the front edge of a rectangular platform and extended itself forward
to contact the discriminandum with its whiskers. After palpating the texture, the rat withdrew and
turned to either left or right to lick a drinking spout (Figure 4a, main text). Only if it approached
the correct drinking spout was it given a water reward; for an incorrect choice, it received no water.
Associations between texture and reward location were fixed for each animal but varied in the five rats.
Neuronal responses were recorded from a 12-tetrode array. Spikes were sorted offline on the basis of
the amplitude and waveform energy on each of the four channels of the tetrode. All experiments were
conducted in accordance with the National Institute of Health and international standards for the care
and use of animals. Protocols were approved by the SISSA Ethics Committee and were supervised
by a consulting veterinarian.

5.2 Auditory discrimination task

Experimental data was collected as described in [10]. Briefly, a sound localization task was developed
in which mice reported perceptual decisions by navigating through a visual virtual reality T-maze
[11]. As mice ran down the T-stem, a sound cue was played from one of eight possible locations
in head-centered, real-world coordinates. Mice reported whether the sound originated from their
left or right by turning in that direction at the T-intersection. Populations of ~40–70 cells were
simultaneously imaged (GCaMP6f) during each individual recording session. Temporal resolution of
image acquisition was 60 ms. Calcium traces were deconvolved to estimate the relative firing rate
within each imaging frame [12]. For each cell, the total firing rate in a given trial was obtained by
averaging the deconvolved calcium signal over the trial. All experimental procedures were approved
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by the Harvard Medical School Institutional Animal Care and Use Committee and were performed
in compliance with the Guide for Animal Care and Use of Laboratory Animals. Imaging data were
collected from four male C57BL/6J mice (Jackson Labs) that were seven weeks old at the initiation
of behavior task training.
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