
Runtime Neural Pruning

Ji Lin∗
Department of Automation

Tsinghua University
lin-j14@mails.tsinghua.edu.cn

Yongming Rao∗
Department of Automation

Tsinghua University
raoyongming95@gmail.com

Jiwen Lu
Department of Automation

Tsinghua University
lujiwen@tsinghua.edu.cn

Jie Zhou
Department of Automation

Tsinghua University
jzhou@tsinghua.edu.cn

Abstract

In this paper, we propose a Runtime Neural Pruning (RNP) framework which
prunes the deep neural network dynamically at the runtime. Unlike existing neural
pruning methods which produce a fixed pruned model for deployment, our method
preserves the full ability of the original network and conducts pruning according to
the input image and current feature maps adaptively. The pruning is performed in a
bottom-up, layer-by-layer manner, which we model as a Markov decision process
and use reinforcement learning for training. The agent judges the importance
of each convolutional kernel and conducts channel-wise pruning conditioned on
different samples, where the network is pruned more when the image is easier
for the task. Since the ability of network is fully preserved, the balance point is
easily adjustable according to the available resources. Our method can be applied
to off-the-shelf network structures and reach a better tradeoff between speed and
accuracy, especially with a large pruning rate.

1 Introduction

Deep neural networks have been proven to be effective in various areas. Despite the great success,
the capability of deep neural networks comes at the cost of huge computational burdens and large
power consumption, which is a big challenge for real-time deployments, especially for embedded
systems. To address this, several neural pruning methods have been proposed [11, 12, 13, 25, 38] to
reduce the parameters of convolutional networks, which achieve competitive or even slightly better
performance. However, these works mainly focus on reducing the number of network weights, which
have limited effects on speeding up the computation. More specifically, fully connected layers are
proven to be more redundant and contribute more to the overall pruning rate, while convolutional
layers are the most computationally dense part of the network. Moreover, such pruning strategy
usually leads to an irregular network structure, i.e. with part of sparsity in convolution kernels, which
needs a special algorithm for speeding up and is hard to harvest actual computational savings. A
surprisingly effective approach to trade accuracy for the size and the speed is to simply reduce the
number of channels in each convolutional layer. For example, Changpinyo et al. [27] proposed a
method to speed up the network by deactivating connections between filters in convolutional layers,
achieving a better tradeoff between the accuracy and the speed.

All these methods above prune the network in a fixed way, obtaining a static model for all the input
images. However, it is obvious that some of the input sample are easier for recognition, which can be

∗indicates equal contribution

31st Conference on Neural Information Processing Systems (NIPS 2017), Long Beach, CA, USA.



recognized by simple and fast models. Some other samples are more difficult, which require more
computational resources. This property is not exploited in previous neural pruning methods, where
input samples are treated equally. Since some of the weights are lost during the pruning process, the
network will lose the ability for some hard tasks forever. We argue that preserving the whole ability
of the network and pruning the neural network dynamically according to the input image is desirable
to achieve better speed and accuracy tradeoff compared to static pruning methods, which will also
not harm the upper bound ability of the network.

In this paper, we propose a Runtime Neural Pruning (RNP) framework by pruning the neural network
dynamically at the runtime. Different from existing methods that produce a fixed pruned model
for deployment, our method preserves the full ability of the original network and prunes the neural
network according to the input image and current feature maps. More specifically, we model the
pruning of each convolutional layer as a Markov decision process (MDP), and train an agent with
reinforcement learning to learn the best policy for pruning. Since the whole ability of the original
network is preserved, the balance point can be easily adjusted according to the available resources,
thus one single trained model can be adjusted for various devices from embedded systems to large
data centers. Experimental results on the CIFAR [22] and ImageNet [36] datasets show that our
framework successfully learns to allocate different amount of computational resources for different
input images, and achieves much better performance at the same cost.

2 Related Work

Network pruning: There has been several works focusing on network pruning, which is a valid way
to reduce the network complexity. For example, Hanson and Pratt [13] introduced hyperbolic and
exponential biases to the pruning objective. Damage [25] and Surgeon [14] pruned the networks with
second-order derivatives of the objective. Han et al. [11, 12] iteratively pruned near-zero weights to
obtain a pruned network with no loss of accuracy. Some other works exploited more complicated
regularizers. For example, [27, 44] introduced structured sparsity regularizers on the network weights,
[32] put them to the hidden units. [17] pruned neurons based on the network output. Anwar et
al. [2] considered channel-wise and kernel-wise sparsity, and proposed to use particle filters to decide
the importance of connections and paths. Another aspect focuses on deactivating some subsets of
connections inside a fixed network architecture. LeCun et al. [24] removed connections between the
first two convolutional feature maps in a uniform manner. Depth multiplier method was proposed
in [16] to reduce the number of filters in each convolutional layer by a factor in a uniform manner.
These methods produced a static model for all the samples, failing to exploit the different property of
input images. Moreover, most of them produced irregular network structures after pruning, which
makes it hard to harvest actual computational savings directly.

Deep reinforcement learning: Reinforcement learning [29] aims to enable the agent to decide
the behavior from its experiences. Unlike conventional machine learning methods, reinforcement
learning is supervised through the reward signals of actions. Deep reinforcement learning [31] is a
combination of deep learning and reinforcement learning, which has been widely used in recent years.
For examples, Mnih et al. [31] combined reinforcement learning with CNN and achieved the human-
level performance in the Atari game. Caicedo et al. [8] introduced reinforcement learning for active
object localization. Zhang et al. [45] employed reinforcement learning for vision control in robotics.
Reinforcement learning is also adopted for feature selection to build a fast classifier. [4, 15, 21].

Dynamic network: Dynamic network structures and executions have been studied in previous
works [7, 28, 33, 39, 40]. Some input-dependent execution methods rely on a pre-defined strategy.
Cascade methods [26, 28, 39, 40] relied on manually-selected thresholds to control execution.
Dynamic Capacity Network [1] used a specially designed method to calculate a saliency map for
control execution. Other conditional computation methods activate part of a network under a learned
policy. Begio et al. [6] introduced Stochastic Times Smooth neurons as gaters for conditional
computation within a deep neural network, producing a sparse binary gater to be computed as a
function of the input. [5] selectively activated output of a fully-connected neural network, according
to a control policy parametrized as the sigmoid of an affine transformation from last activation. Liu et
al. [30] proposed Dynamic Deep Neural Networks (D2NN), a feed-forward deep neural network that
allows selective execution with self-defined topology, where the control policy is learned using single
step reinforcement learning.

2



encoder

RNN

conv
kernels
Ki-1

feature maps
Fi-1

decoder

global pooling
prune

encoder decoder

global pooling
prune

...

calculated pruned

feature maps
Fi

feature maps
Fi+1

conv
kernels
Ki

Figure 1: Overall framework of our RNP. RNP consists of two sub-networks: the backbone CNN net-
work and the decision network. The convolution kernels of backbone CNN network are dynamically
pruned according to the output Q-value of decision network, conditioned on the state forming from
the last calculated feature maps.

3 Runtime Neural Pruning

The overall framework of our RNP is shown in Figure 1. RNP consists of two sub-networks, the
backbone CNN network and the decision network which decides how to prune the convolution kernels
conditioned on the input image and current feature maps. The backbone CNN network can be any
kinds of CNN structure. Since convolutional layers are the most computationally dense layers in a
CNN, we focus on the pruning of convolutional layers in this work, leaving fully connected layers as
a classifier.

3.1 Bottom-up Runtime Pruning

We denote the backbone CNN with m convolutional layers as C, with convolutional layers denoted
as C1, C2, ..., Cm, whose kernels are K1,K2, ...,Km, respectively, with number of channels as
ni, i = 1, 2, ...,m. These convolutional layers produce feature maps F1,F2, ...,Fm as shown in
Figure 1, with the size of ni ×H ×W, i = 1, 2, ...,m. The goal is to find and prune the redundant
convolutional kernels in Ki+1, given feature maps Fi, i = 1, 2, ...,m − 1, to reduce computation
and achieve maximum performance simultaneously.

Taking the i-th layer as an example, we denote our goal as the following objective:

min
Ki+1,h

EFi
[Lcls(conv(Fi,K[h(Fi)])) + Lpnt(h(Fi))], (1)

where Lcls is the loss of the classification task, Lpnt is the penalty term representing the tradeoff
between the speed and the accuracy, h(Fi) is the conditional pruning unit that produces a list of
indexes of selected kernels according to input feature map, K[·] is the indexing operation for kernel
pruning and conv(x1, x2) is the convolutional operation for input feature map x1 and kernel x2. Note
that our framework infers through standard convolutional layer after pruning, which can be easily
boosted by utilizing GPU-accelerated neural network library such as cuDNN [9].

To solve the optimization problem in (1), we divide the whole problem into two sub-problems of
{K} and h, and adopt an alternate training strategy to solve each sub-problem independently with
the neural network optimizer such as RMSprop [42].

For an input sample, there are totally m decisions of pruning to be made. A straightforward idea
is using the optimized decisions under certain penalty to supervise the decision network. However,
for a backbone CNN with m layers, the time complexity of collecting the supervised signal is
O(
∏m
i=1 nm), which is NP-hard and unacceptable for prevalent very deep architecture such as

3



VGG [37] and ResNet [3]. To simplify the training problem, we employ the following two strategies:
1) model the network pruning as a Markov decision process (MDP) [34] and train the decision network
by reinforcement learning; 2) redefine the action of pruning to reduce the number of decisions.

3.2 Layer-by-layer Markov Decision Process

The decision network consists of an encoder-RNN-decoder structure, where the encoder E embeds
feature map Fi into fixed-length code, RNN R aggregates codes from previous stages, and the
decoder D outputs the Q-value of each action. We formulate key elements in Markov decision
process (MDP) based on the decision network to adopt deep Q-learning in our RNP framework as
follows.

State: Given feature map Fi, we first extract a dense feature embedding pFi
with global pooling,

as commonly conducted in [10, 35], whose length is ni. Since the number of channels for different
convolutional layers are different, the length of pFi

varies. To address this, we use the encoder E (a
fully connected layer) to project the pooled feature into a fixed-length embedding E(pFi

). E(pFi
)

from different layers are associated in a bottom-up way with a RNN structure, which produces a
latent code R(E(pFi

)), regarded as embedded state information for reinforcement learning. The
decoder (also a fully connected layer) produces the Q-value for decision.

Action: The actions for each pruning are defined in an incremental way. For convolution kernel Ki

with ni output channels, we determine which output channels are calculated and which to prune. To
simplify the process, we group the output feature maps into k sets, denoted as F′1,F

′
2, ...,F

′
k. One

extreme case is k = ni, where one single output channel forms a set. The actions a1, a2, ..., ak are
defined as follows: taking actions ai yields calculating the feature map groups F′1,F

′
2, ...,F

′
i, i =

1, 2, ..., k. Hence the feature map groups with lower index are calculated more, and the higher indexed
feature map groups are calculated only when the sample is difficult enough. Specially, the first feature
map group is always calculated, which we mention as base feature map group. Since we do not have
state information for the first convolutional layer, it is not pruned, with totally m− 1 actions to take.

Though the definitions of actions are rather simple, one can easily extend the definition for more
complicated network structures. Like Inception [41] and ResNet [3], we define the action based on
unit of a single block by sharing pruning rate inside the block, which is more scalable and can avoid
considering about the sophisticated structures.

Reward: The reward of each action taken at the t-th step with action ai is defined as:

rt(ai) =

{
−αLcls + (i− 1)× p, if inference terminates (t = m− 1),
(i− 1)× p, otherwise (t < m− 1)

(2)

where p is a negative penalty that can be manually set. The reward was set according to the loss for
the original task. We took the negative loss −αLcls as the final reward so that if a task is completed
better, the final reward of the chain will be higher, i.e., closer to 0. α is a hyper-parameter to rescale
Lcls into a proper range, since Lcls varies a lot for different network structures and different tasks.
Taking actions that calculate more feature maps, i.e., with higher i, will bring higher penalty due to
more computations. For t = 1, ...,m− 2, the reward is only about the computation penalty, while
at the last step, the chain will get a final reward of −αLcls to assess how well the pruned network
completes the task.

The key step of the Markov decision model is to decide the best action at certain state. In other
words, it is to find the optimal decision policy. By introducing the Q-learning method [31, 43], we
define Q(ai, st) as the expectation value of taking action ai at state st. So the policy is defined as
π = argmaxaiQ(ai, st).

Therefore, the optimal action-value function can be written as:

Q(st, ai) = max
π

E[rt + γrt+1 + γ2rt+2 + ...|π], (3)

where γ is the discount factor in Q-learning, providing a tradeoff between the immediate reward
and the prediction of future rewards. We use the decision network to approximate the expected
Q-value Q∗(st, ai), with all the decoders sharing parameters and outputting a k-length vector, each
representing the Q∗ of corresponding action. If the estimation is optimal, we will have Q∗(st, ai) =
Q(st, ai) exactly.

4



According to the Bellman equation [3], we adopt the squared mean error (MSE) as a criterion for
training to keep decision network self-consistent. So we rewrite the objective for sub-problem of h in
optimization problem 1 as:

min
θ
Lre = E[r(st, ai) + γmax

ai
Q(st+1, ai)−Q(st, ai)]

2, (4)

where θ is the weights of decision network. In our proposed framework, a series of states are created
for an given input image. And the training is conducted using ε-greedy strategy that selects actions
following π with probability ε and select random actions with probability 1 − ε, while inference
is conducted greedily. The backbone CNN network and decision network is trained alternately.
Algorithm 1 details the training procedure of the proposed method.

Algorithm 1 Runtime neural pruning for solving optimization problem (1):
Input: training set with labels {X}
Output: backbone CNN C, decision network D

1: initialize: train C in normal way or initialize C with pre-trained model
2: for i← 1, 2, ...,M do
3: // train decision network
4: for j ← 1, 2, ..., N1 do
5: Sample random minibatch from {X}
6: Forward and sample ε-greedy actions {st, at}
7: Compute corresponding rewards {rt}
8: Backward Q values for each stage and generate∇θLre
9: Update θ using∇θLre

10: end for
11: // fine-tune backbone CNN
12: for k ← 1, 2, ..., N2 do
13: Sample random minibatch from {X}
14: Forward and calculate Lcls after runtime pruning by D
15: Backward and generate ∇CLcls
16: Update C using ∇CLcls
17: end for
18: end for
19: return C and D

It is worth noticing that during the training of agent, we manually set a fixed penalty for different
actions and reach a balance status. While during deployment, we can adjust the penalty by compen-
sating the output Q∗ of each action with relative penalties accordingly to switch between different
balance point of accuracy and computation costs, since penalty is input-independent. Thus one single
model can be deployed to different systems according to the available resources.

4 Experiments

We conducted experiments on three different datasets including CIFAR-10, CIFAR-100 [22] and
ILSVRC2012 [36] to show the effectiveness of our method. For CIFAR-10, we used a four convolu-
tional layer network with 3× 3 kernels. For CIFAR-100 and ILSVRC2012, we used the VGG-16
network for evaluation. For results on the CIFAR dataset, we compared the results obtained by our
RNP and naive channel reduction methods. For results on the ILSVRC2012 dataset, we compared
the results achieved by our RNP with recent state-of-the-art network pruning methods.

4.1 Implementation Details

We trained RNP in an alternative manner, where the backbone CNN network and the decision network
were trained iteratively. To help the training converge faster, we first initialized the CNN with random
pruning, where decisions were randomly made. Then we fixed the CNN parameters and trained the
decision network, regarding the backbone CNN as a environment, where the agent can take actions
and get corresponding rewards. We fixed the decision network and fine-tuned the backbone CNN
following the policy of the decision network, which helps CNN specialize in a specific task. The

5



initialization was trained using SGD, with an initial learning rate 0.01, decay by a factor of 10 after
120, 160 epochs, with totally 200 epochs in total. The other training progress was conducted using
RMSprop [42] with the learning rate of 1e-6. For the ε-greedy strategy, the hyper-parameter ε was
annealed linearly from 1.0 to 0.1 in the beginning and fixed at 0.1 thereafter.

For most experiments, we set the number of convolutional group to k = 4, which is a tradeoff between
the performance and the complicity. Increasing k will enable more possible pruning combinations,
while at the same time making it harder for reinforcement learning with an enlarged action space.
Since the action is taken conditioned on the current feature map, the first convolutional layer is not
pruned, where we have totally m− 1 decisions to make, forming a decision sequence. During the
training, we set the penalty for extra feature map calculation as p = −0.1, which is adjusted during
the deployment. The scale α factor was set such that the average αLcls is approximately 1 to make
the relative difference more significant. For experiments on VGG-16 model, we define the actions
based on unit of a single block by sharing pruning rate inside the block as mentioned in Section 3.2
to simplify implementation and accelerate convergence.

For vanilla baseline methods comparison on CIFAR, we evaluated the performance of normal neural
network with the same computations. More specifically, we calculated the average number of
multiplications of every convolution layer and rounded it up to the nearest number of channels sharing
same computations, which resulted in an identical network topology with reduced convolutional
channels. We trained the vanilla baseline network with the SGD until convergence for comparison.
All our experiments were implemented using the modified Caffe toolbox [20].

4.2 Intuitive Experiments

To have an intuitive understanding of our framework, we first conducted a simple experiment to
show the effectiveness and undergoing logic of our RNP. We considered a 3-category classification
problem, consisting of male faces, female faces and background samples. It is intuitive to think that
separating male faces from female faces is a much more difficult task than separating faces from
background, needing more detailed attention, so more resources should be allocated to face images
than background images. In other words, a good tradeoff for RNP is to prune the neural network
more when dealing with background images and keep more convolutional channels when inputting a
face image.

To validate this idea, we constructed a 3-category dataset using Labeled Faces in the Wild [18] dataset,
which we referred to as LFW-T. More specifically, we randomly cropped 3000 images for both male
and female faces, and also 3000 background images randomly cropped from LFW. We used the
attributes from [23] as labels for male and female faces. All these images were resized to 32× 32
pixels. We held out 2000 images for testing and the remaining for training. For this experiment, we
designed a 3-layer convolutional network with two fully connected layers. All convolutional kernels
are 3× 3 and with 32, 32, 64 output channels respectively. We followed the same training protocol as
mentioned above with p = 0.1, and focused on the difference between different classes.

The original network achieved 91.1% accuracy. By adjusting the penalty, we managed to get a certain
point of accuracy-computation tradeoff, where computations (multiplications) were reduced by a
factor of 2, while obtaining even slightly higher accuracy of 91.75%. We looked into the average
computations of different classes by counting multiplications of convolutional layers. The results
were shown in Figure 2. For the whole network, RNP allocated more computations on faces images
than background images, at approximately a ratio of 2, which clearly demonstrates the effectiveness
of RNP. However, since the first convolutional layers and fully connected layers were not pruned, to
get the absolute ratio of pruning rate, we also studied the pruning of a certain convolutional layer. In
this case, we selected the last convolutional layer conv3. The results are shown on the right figure.
We see that for this certain layer, computations for face images are almost 5 times of background
images. The differences in computations show that RNP is able to find the relative difficulty of
different tasks and exploit such property to prune the neural network accordingly.

4.3 Results

CIFAR-10 & CIFAR-100: For CIFAR-10 and CIFAR-100, we used a four-layer convolutional
network and the VGG-16 network for experiments, respectively. The goal of these two experiments
is to compare our RNP with vanilla baseline network, where the number of convolutional layers was

6



0

0.1

0.2

0.3

0.4

0.5

0.6

Average Male Female Background

#M
ul
tip

ly
(m

il.
)

Average Mults. of Conv3
(original: 1.180M mults.)

0

0.5

1

1.5

2

2.5

3

Average Male Female Background

#M
ul
tip

ly
(m

il.
)

Average Mults. of Whole Network
(original: 4.950M mults.)

(a) (b)

Figure 2: The average multiplication numbers of different classes in our intuitive experiment. We
show the computation numbers for both the whole network (on the left) and the fully pruned
convolutional layer conv3 (on the right). The results show that RNP succeeds to focus more on faces
images by preserving more convolutional channels while prunes the network more when dealing with
background images, reaching a good tradeoff between accuracy and speed.

0 5 10 15 20 25

#Multiply (mil.)

0.72

0.74

0.76

0.78

0.8

0.82

0.84

0.86

A
cc

ur
ac

y 
(%

)

RNP
vanilla

0 100 200 300 400

#Multiply (mil.)

0.52

0.54

0.56

0.58

0.6

0.62

0.64

0.66

A
cc

ur
ac

y 
(%

)

RNP
vanilla

Figure 3: The results on CIFAR-10 (on the left) and CIFAR-100 (on the right). For vanilla curve, the
rightmost point is the full model and the leftmost is the 1

4 model. RNP outperforms naive channel
reduction models consistently by a very large margin.

reduced directly from the beginning. The fully connected layers of standard VGG-16 are too redundant
for CIFAR-100, so we eliminated one of the fully connected layer and set the inner dimension as 512.
The modified VGG-16 model was easier to converge and actually slightly outperformed the original
model on CIFAR-100. The results are shown in Figure 3. We see that for vanilla baseline method, the
accuracy suffered from a stiff drop when computations savings were than 2.5 times. While our RNP
consistently outperformed the baseline model, and achieved competitive performance even with a
very large computation saving rate.

ILSVRC2012: We compared our RNP with recent state-of-the-art neural pruning methods [19, 27,
46] on the ImageNet dataset using the VGG-16 model, which won the 2-nd place in ILSVRC2014
challenge. We evaluated the top-5 error using single-view testing on ILSVRC2012-val set and trained
RNP model using ILSVRC2012-train set. The view was the center 224×224 region cropped from the

Table 1: Comparisons of increase of top-5 error on ILSVRC2012-val (%) with recent state-of-the-art
methods, where we used 10.1% top-5 error baseline as the reference.

Speed-up 3× 4× 5× 10×
Jaderberg et al. [19] ([46]’s implementation) 2.3 9.7 29.7
Asymmetric [46] - 3.84 -
Filter pruning [27] (our implementation) 3.2 8.6 14.6
Ours 2.32 3.23 3.58 4.89

7



Figure 4: Visualization of the original images and the feature maps of four convolutional groups,
respectively. The presented feature maps are the average of corresponding convolutional groups.

Table 2: GPU inference time under different theoretical speed-up ratios on ILSVRC2012-val set.

Speed-up solution Increase of top-5 error (%) Mean inference time (ms)
VGG-16 (1×) 0 3.26 (1.0×)

Ours (3×) 2.32 1.38 (2.3×)
Ours (4×) 3.23 1.07 (3.0×)
Ours (5×) 3.58 0.880 (3.7×)

Ours (10×) 4.89 0.554 (5.9×)

resized images whose shorter side is 256 by following [46]. RNP was fine-tuned based on the public
available model 2 which achieves 10.1% top-5 error on ILSVRC2012-val set. Results are shown in
Table 1, where speed-up is the theoretical speed-up ratio computed by the complexity. We see that
RNP achieves similar performance with a relatively small speed-up ratio with other methods and
outperforms other methods by a significant margin with a large speed-up ratio. We further conducted
our experiments on larger ratio (10×) and found RNP only suffered slight drops (1.31% compared to
5×), far beyond others’ results on 5× setting.

4.4 Analysis

Analysis of Feature Maps: Since we define the actions in an incremental way, the convolutional
channels of lower index are calculated more (a special case is the base network that is always
calculated). The convolutional groups with higher index are increments to the lower-indexed ones,
so the functions of different convolution groups might be similar to "low-frequency" and "high-
frequency" filters. We visualized different functions of convolutional groups by calculating average
feature maps produced by each convolutional group. Specially, we took CIFAR-10 as example and
visualized the feature maps of conv2 with k = 4. The results are shown in Figure 4.

From the figure, we see that the base convolutional groups have highest activations to the input
images, which can well describe the overall appearance of the object. While convolutional groups
with higher index have sparse activations, which can be considered as a compensation to the base
convolutional groups. So the undergoing logic of RNP is to judge when it is necessary to compensate
the base convolutional groups with higher ones: if tasks are easy, RNP will prune the high-order
feature maps for speed, otherwise bring in more computations to pursue accuracy.

Runtime Analysis: One advantage of our RNP is its convenience for deployment, which makes it
easy to harvest actual computational time savings. Therefore, we measured the actual runtime under
GPU acceleration, where we measured the actual inference time for VGG-16 on ILSVRC2012-val
set. Inference time were measured on a Titan X (Pascal) GPU with batch size 64. Table 2 shows the
GPU inference time of different settings. We see that our RNP generalizes well on GPU.

2http://www.robots.ox.ac.uk/~vgg/research/very_deep/

8

http://www.robots.ox.ac.uk/~vgg/research/very_deep/


5 Conclusion

In this paper, we have proposed a Runtime Neural Pruning (RNP) framework to prune the neural
network dynamically. Since the ability of network is fully preserved, the balance point is easily
adjustable according to the available resources. Our method can be applied to off-the-shelf net-
work structures and reaches a better tradeoff between speed and accuracy. Experimental results
demonstrated the effectiveness of the proposed approach.

Acknowledgements

We would like to thank Song Han, Huazhe (Harry) Xu, Xiangyu Zhang and Jian Sun for their generous
help and insightful advice. This work is supported by the National Natural Science Foundation of
China under Grants 61672306 and the National 1000 Young Talents Plan Program. The corresponding
author of this work is Jiwen Lu.

References
[1] Amjad Almahairi, Nicolas Ballas, Tim Cooijmans, Yin Zheng, Hugo Larochelle, and Aaron Courville.

Dynamic capacity networks. arXiv preprint arXiv:1511.07838, 2015.

[2] Sajid Anwar, Kyuyeon Hwang, and Wonyong Sung. Structured pruning of deep convolutional neural
networks. arXiv preprint arXiv:1512.08571, 2015.

[3] Richard Bellman. Dynamic programming and lagrange multipliers. PNAS, 42(10):767–769, 1956.

[4] Djalel Benbouzid, Róbert Busa-Fekete, and Balázs Kégl. Fast classification using sparse decision dags.
arXiv preprint arXiv:1206.6387, 2012.

[5] Emmanuel Bengio, Pierre-Luc Bacon, Joelle Pineau, and Doina Precup. Conditional computation in neural
networks for faster models. arXiv preprint arXiv:1511.06297, 2015.

[6] Yoshua Bengio, Nicholas Léonard, and Aaron Courville. Estimating or propagating gradients through
stochastic neurons for conditional computation. arXiv preprint arXiv:1308.3432, 2013.

[7] Tolga Bolukbasi, Joseph Wang, Ofer Dekel, and Venkatesh Saligrama. Adaptive neural networks for fast
test-time prediction. arXiv preprint arXiv:1702.07811, 2017.

[8] Juan C Caicedo and Svetlana Lazebnik. Active object localization with deep reinforcement learning. In
ICCV, pages 2488–2496, 2015.

[9] Sharan Chetlur, Cliff Woolley, Philippe Vandermersch, Jonathan Cohen, John Tran, Bryan Catanzaro, and
Evan Shelhamer. cudnn: Efficient primitives for deep learning. arXiv preprint arXiv:1410.0759, 2014.

[10] Michael Figurnov, Maxwell D Collins, Yukun Zhu, Li Zhang, Jonathan Huang, Dmitry Vetrov, and Ruslan
Salakhutdinov. Spatially adaptive computation time for residual networks. arXiv preprint arXiv:1612.02297,
2016.

[11] Song Han, Huizi Mao, and William J Dally. Deep compression: Compressing deep neural networks with
pruning, trained quantization and huffman coding. arXiv preprint arXiv:1510.00149, 2015.

[12] Song Han, Jeff Pool, John Tran, and William Dally. Learning both weights and connections for efficient
neural network. In NIPS, pages 1135–1143, 2015.

[13] Stephen José Hanson and Lorien Y Pratt. Comparing biases for minimal network construction with
back-propagation. In NIPS, pages 177–185, 1989.

[14] Babak Hassibi, David G Stork, et al. Second order derivatives for network pruning: Optimal brain surgeon.
NIPS, pages 164–164, 1993.

[15] He He, Jason Eisner, and Hal Daume. Imitation learning by coaching. In Advances in Neural Information
Processing Systems, pages 3149–3157, 2012.

[16] Andrew G Howard, Menglong Zhu, Bo Chen, Dmitry Kalenichenko, Weijun Wang, Tobias Weyand, Marco
Andreetto, and Hartwig Adam. Mobilenets: Efficient convolutional neural networks for mobile vision
applications. arXiv preprint arXiv:1704.04861, 2017.

9



[17] Hengyuan Hu, Rui Peng, Yu-Wing Tai, and Chi-Keung Tang. Network trimming: A data-driven neuron
pruning approach towards efficient deep architectures. arXiv preprint arXiv:1607.03250, 2016.

[18] Gary B Huang, Manu Ramesh, Tamara Berg, and Erik Learned-Miller. Labeled faces in the wild: A
database for studying face recognition in unconstrained environments. Technical report, Technical Report
07-49, University of Massachusetts, Amherst, 2007.

[19] Max Jaderberg, Andrea Vedaldi, and Andrew Zisserman. Speeding up convolutional neural networks with
low rank expansions. arXiv preprint arXiv:1405.3866, 2014.

[20] Yangqing Jia, Evan Shelhamer, Jeff Donahue, Sergey Karayev, Jonathan Long, Ross Girshick, Sergio
Guadarrama, and Trevor Darrell. Caffe: Convolutional architecture for fast feature embedding. arXiv
preprint arXiv:1408.5093, 2014.

[21] Sergey Karayev, Tobias Baumgartner, Mario Fritz, and Trevor Darrell. Timely object recognition. In
Advances in Neural Information Processing Systems, pages 890–898, 2012.

[22] Alex Krizhevsky and Geoffrey Hinton. Learning multiple layers of features from tiny images. 2009.

[23] Neeraj Kumar, Alexander Berg, Peter N Belhumeur, and Shree Nayar. Describable visual attributes for
face verification and image search. PAMI, 33(10):1962–1977, 2011.

[24] Yann LeCun, Léon Bottou, Yoshua Bengio, and Patrick Haffner. Gradient-based learning applied to
document recognition. Proceedings of the IEEE, 86(11):2278–2324, 1998.

[25] Yann LeCun, John S Denker, and Sara A Solla. Optimal brain damage. In NIPS, pages 598–605, 1990.

[26] Sam Leroux, Steven Bohez, Elias De Coninck, Tim Verbelen, Bert Vankeirsbilck, Pieter Simoens, and Bart
Dhoedt. The cascading neural network: building the internet of smart things. Knowledge and Information
Systems, pages 1–24, 2017.

[27] Hao Li, Asim Kadav, Igor Durdanovic, Hanan Samet, and Hans Peter Graf. Pruning filters for efficient
convnets. arXiv preprint arXiv:1608.08710, 2016.

[28] Haoxiang Li, Zhe Lin, Xiaohui Shen, Jonathan Brandt, and Gang Hua. A convolutional neural network
cascade for face detection. In CVPR, pages 5325–5334, 2015.

[29] Michael L Littman. Reinforcement learning improves behaviour from evaluative feedback. Nature,
521(7553):445–451, 2015.

[30] Lanlan Liu and Jia Deng. Dynamic deep neural networks: Optimizing accuracy-efficiency trade-offs by
selective execution. arXiv preprint arXiv:1701.00299, 2017.

[31] Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Andrei A Rusu, Joel Veness, Marc G Bellemare,
Alex Graves, Martin Riedmiller, Andreas K Fidjeland, Georg Ostrovski, et al. Human-level control through
deep reinforcement learning. Nature, 518(7540):529–533, 2015.

[32] Kenton Murray and David Chiang. Auto-sizing neural networks: With applications to n-gram language
models. arXiv preprint arXiv:1508.05051, 2015.

[33] Augustus Odena, Dieterich Lawson, and Christopher Olah. Changing model behavior at test-time using
reinforcement learning. arXiv preprint arXiv:1702.07780, 2017.

[34] Martin L Puterman. Markov decision processes: discrete stochastic dynamic programming. John Wiley &
Sons, 2014.

[35] Shaoqing Ren, Kaiming He, Ross Girshick, and Jian Sun. Faster r-cnn: Towards real-time object detection
with region proposal networks. In NIPS, pages 91–99, 2015.

[36] Olga Russakovsky, Jia Deng, Hao Su, Jonathan Krause, Sanjeev Satheesh, Sean Ma, Zhiheng Huang,
Andrej Karpathy, Aditya Khosla, Michael Bernstein, Alexander C. Berg, and Li Fei-Fei. ImageNet Large
Scale Visual Recognition Challenge. IJCV, 115(3):211–252, 2015.

[37] Karen Simonyan and Andrew Zisserman. Very deep convolutional networks for large-scale image recogni-
tion. arXiv preprint arXiv:1409.1556, 2014.

[38] Nikko Ström. Phoneme probability estimation with dynamic sparsely connected artificial neural networks.
The Free Speech Journal, 5:1–41, 1997.

10



[39] Chen Sun, Manohar Paluri, Ronan Collobert, Ram Nevatia, and Lubomir Bourdev. Pronet: Learning to
propose object-specific boxes for cascaded neural networks. In CVPR, pages 3485–3493, 2016.

[40] Yi Sun, Xiaogang Wang, and Xiaoou Tang. Deep convolutional network cascade for facial point detection.
In CVPR, pages 3476–3483, 2013.

[41] Christian Szegedy, Sergey Ioffe, Vincent Vanhoucke, and Alex Alemi. Inception-v4, inception-resnet and
the impact of residual connections on learning. arXiv preprint arXiv:1602.07261, 2016.

[42] Tijmen Tieleman and Geoffrey Hinton. Lecture 6.5-rmsprop: Divide the gradient by a running average of
its recent magnitude. COURSERA: Neural networks for machine learning, 4(2), 2012.

[43] Christopher JCH Watkins and Peter Dayan. Q-learning. Machine learning, 8(3-4):279–292, 1992.

[44] Wei Wen, Chunpeng Wu, Yandan Wang, Yiran Chen, and Hai Li. Learning structured sparsity in deep
neural networks. In NIPS, pages 2074–2082, 2016.

[45] Fangyi Zhang, Jürgen Leitner, Michael Milford, Ben Upcroft, and Peter Corke. Towards vision-based deep
reinforcement learning for robotic motion control. arXiv preprint arXiv:1511.03791, 2015.

[46] Xiangyu Zhang, Jianhua Zou, Kaiming He, and Jian Sun. Accelerating very deep convolutional networks
for classification and detection. PAMI, 38(10):1943–1955, 2016.

11


