A Proof of main results

In this section, we present the proofs of our main results. The technical details are deferred to Section[B]

In the following, recalling the discussion in Section 23] we denote the vector of function values of a function
f € A evaluated at (x1, 2, ...,2,) as 0f : = f(z7) = (f(z1), f(x2),... f(zn)) € R™, where we omit the
subscript f when it is clear from the context. As mentioned in the main text, updates on the function value
vectors #* € R"™ correspond uniquely to updates of the functions f* € J#. In the following we repeatedly abuse
notation by defining the Hilbert norm and empirical norm on vectors in A € range(K) as

1 1
|A2e = TATKTA and A2 = L|AJ3,

where KT is the pseudoinverse of K. We also use B (6, ) to denote the ball with respect to the || - || #-norm
in range(K).

A.1 Proof of Theorem I

The proof of our main theorem is based on a sequence of lemmas, all of which are stated with the assump-
tions of Theorem [I]in force. The first lemma establishes a bound on the empirical norm || - ||, of the error
AL = 9t _ g% provided that its Hilbert norm is suitably controlled.

L

Lemma 1. For any stepsize o € (0, 37

| and any iteration t we have

1 * *
THAHE < S {IA3e — 1A 30 } + (VEE" +A) = VL0 + A1, A a7)

See Section [B-T]for the proof of this claim.

The second term on the right-hand side of the bound (I7) involves the difference between the population and
empirical gradient operators. Since this difference is being evaluated at the random points A’ and A*™?, the
following lemma establishes a form of uniform control on this term.

Let us define the set
S ;—{A,Z ER" | |Alle >1, and 6"+ A, 0" +Ac B‘%(G*Jcﬁ)}, (18)

and consider the uniform bound

(VLO" + A) = VL, (0" + A), A) < 26, | Alln + 282 | All e + C@umli forall A,A€S. (19)
3

Lemma 2. Let & be the event that bound (19) holds. There are universal constants (c1, c2) such that P[E] >
m?ns2
)

1 —c1exp(—c2——3

See Section[B2]for the proof of Lemma 2}

Note that Lemma|T] applies only to error iterates with a bounded Hilbert norm. Our last lemma provides this
control for some number of iterations:

Lemma 3. There are constants (C1, C2) independent of n such that for any step size o € (0, min{M, 7 }].
we have

|A e < Coe  forall iterations t < ST (20)

with probability at least 1 — Cy exp(—Cand?), where Cy = max{’:—;, 1}.

See Section [B3|for the proof of this lemma which also uses Lemma 2]

Taking these lemmas as given, we now complete the proof of the theorem. We first condition on the event £
from Lemma so that we may apply the bound (T9). We then fix some iterate ¢ such that ¢ < 8%5;{ —1,and
condition on the event that the bound 20) in Lemmaholds, so that we are guaranteed that || A* || p < Cup.
We then split the analysis into two cases:

Case 1: First, suppose that || A**"||,, < 6,Cs. In this case, inequality (T25) holds directly.



Case 2: Otherwise, we may assume that || A+ ||, > 6,|| A" || . Applying the bound (T9) with the choice
(A, A) = (A%, A™1) yields

(VLO + A") = VL0 + A"), AT <48, [| AT | + A2, (21)
Cc3
Substituting inequality (ZT)) back into equation (I7) yields

1
AR < o (1A% = 1A 3 |+ 48l AT 4+ T AT
2 2« c3

Re-arranging terms yields the bound
yml AR < D'+ 46, ]| A |, (22)

where we have introduced the shorthand notation D* : = - { A3, — [|ATTY2, } aswellasy = 5 — -
Equatlon (22) defines a quadratic inequality with respect to | A*Y||..; solving it and making use of the inequality
(a +b)? < 2a* + 2b? yields the bound

2 ¢
jarz < 2n g 20 23)
¥2m ym
for some universal constant c. By telescoping inequality @) we find that
T
1 ¢ o 2D*
72 A < s TZ (24)
t=1
62 1
<55t 1A%N5 — 1A711%¢]. (25)

v2m?2  aymT

By Jensen’s inequality, we have

1« 1«
177 = fln =17 DA < =D 1A,
T T
t=1 t=1
so that inequality (T2B) follows from the bound (24).
On the other hand, by the smoothness assumption, we have
* M *
L") = () < S U7 = £711%
from which inequality (T12a) follows.

A.2  Proof of Corollary2]

The general statement follows directly from Theorem|[T] In order to invoke Theorem [T] for the particular cases of
LogitBoost and AdaBoost, we need to verify the conditions, i.e. that the m-M-condition and ¢’'-boundedness
conditions hold for the respective loss function over the ball B (6", 2C s ). The following lemma provides
such a guarantee:

Lemma 4. With D : = Cup + ||0”|| se, the logistic regression cost function satisfies the m-M -condition with
parameters

1 1
=— M=- d B=1.
e D el +2’ v
The AdaBoost cost function satisfies the m- M -condition with parameters

mze_D7 M:eD, and B ="
See Section[B-4]for the proof of Lemma ]

~v-exponential decay: If the kernel eigenvalues satisfy a decay condition of the form p; < ¢1 exp(—c2j”),
where c1, c2 are universal constants, the function R from equation (T4) can be upper bounded as

[2 | [2 = ‘
=4/ = i 2 it < = 2 —caj2
d) - ;:1 min{0?, u; } < . ko2 + E cre—°23”

j=h+1




where k is the smallest integer such that c1 exp(—c2k”) < 6°. Since the localized Gaussian width Gy, (£,.(6, 1))
can be sandwiched above and below by multiples of R(d), some algebra shows that the critical radius scales as
2 n
6" ™ log(n)l/ve2"
Consequently, if we take T =< M

steps, then Theorem |I| guarantees that the averaged estimator A7
satisfies the bound

5 . 1 1\ log'/”
07 =01 5 ()
am m n
with probability 1 — ciexp(—czm? log'/7 n).

(S-polynomial decay: Now suppose that the kernel eigenvalues satisfy a decay condition of the form
pi < c1j 2P for some 8 > 1/2 and constant c;. In this case, a direct calculation yields the bound

2 n
<. ]2 2 )
R() <[5 [k +er 3 572

j=k+1

where k is the smallest integer such that cok™? < 6. Combined with upper bound c2 E;L:Hl j72 <
C2 ka 72 < k62, we find that the critical radius scales as 62 =< n =28/ (1+25)

—28/(1+2p) many steps, then Theorem guarantees that the averaged estimator

) 1 21 28/(28+1)
7 -0 < (o 2) (S) ,
am m n

with probability at least 1 — clexp(702m2(a—"2)1/(2ﬂ+1)).

Consequently, if we take T' < n
07 satisfies the bound

B Proof of technical lemmas

B.1 Proof of Lemmal[ll

Recalling that KT denotes the pseudoinverse of K, our proof is based on the linear transformation
zi=nYAKH? = 0=nK"

as well as the new function 75, (2) : = £, (v/nV K z) and its population equivalent 7 (z) : = EJy(2). Ordinary
gradient descent on 7, with stepsize « takes the form

T =2 —aVTL(Z") = 2" — avnVKVL, (ViVKz). (26)

If we transform this update on z back to an equivalent one on 6 by multiplying both sides by v/nv K, we see
that ordinary gradient descent on 7,, is equivalent to the kernel boosting update #* ™" = #* — anKV L, (6").

Our goal is to analyze the behavior of the update ([26)) in terms of the population cost J (z"). Thus, our problem
is one of analyzing a noisy form of gradient descent on the function 7, where the noise is induced by the
difference between the empirical gradient operator V7, and the population gradient operator V.7 .

Recall that the £ is M-smooth by assumption. Since the kernel matrix K has been normalized to have largest
eigenvalue at most one, the function 7 is also M -smooth, whence

T < TE)+(VTEY, dYY + %Hdt\l%, where d':= """ — 2" = —aVT,.(2").
Morever, since the function 7 is convex, we have J(2*) > J(2') + (VJ ("), 2* — 2"), whence
* X M
T = TE) S (VIE), d+ 2 =)+ )

— (YT, 2 ) %deuz. 27



Now define the difference of the squared errors V* : = {||zt — 23 — ||t — z*||§} By some simple

1
2
algebra, we have
1 * * * 1
vi= Sl =213 -+ 2 = I = —(d 2 =2 — 5l

_1

2

1

_ —<dt, Zt+1 _ Z*> + §||dt||§

:_<dt7 _dt+zt+l_z*> HdtHg

Substituting back into equation (27) yields

t
T — 72" < iavf +(VT() + %, A2y = éVt +(VI(') = VTu(z"), 27 = 27),
where we have used the fact that é > M by our choice of stepsize a.

Finally, we transform back to the original variables § = v/n\/K z, using the relation V.7 (z) = /nvV KV L(),
so as to obtain the bound

L6 = £67) < 5= {1813 — 1A I3 |+ (VL(E) = VL (6, 6 —67).

Note that the optimality of 6* implies that V.L(6") = 0. Combined with m-strong convexity, we are guaranteed
that 2| A*FH|2 < £(6°1") — £(6*), and hence

1 * *
ZIATE < o= {IA3e — 1A 30 } + (VL + AY) = VLL(07 +A%), ™),

as claimed.

B.2 Proof of Lemmalf2l

We split our proof into two cases, depending on whether we are dealing with the least-squares loss
#(y,0) = % (y — 0)*, or a classification loss with uniformly bounded gradient (||¢'[|oc < 1).

B.2.1 Least-squares case

The least-squares loss is m-strongly convex with m = M = 1. Moreover, the difference between the population

and empirical gradients can be written as VL(0* + A) — VL, (6" + A) = Z (w1, ..., wn), where the random
variables {w; }i; are i.i.d. and sub-Gaussian with parameter 1. Consequently, we have

~ ~ O’ n
0" +A) — R(07 + A), AY| =|= A ()]
(VL0 +A) = VL (6" + A), A)| n;w (z4)
Under these conditions, one can show (see [37] for reference) that
= 1
2> wid(@)| < 20| All + 267 [AlLe + S AR 28)
=1

which implies that Lemma 2]holds with c3 = 16.

B.2.2 Gradient-bounded ¢-functions

We now turn to the proof of Lemmal[2]for gradient bounded ¢-functions. First, we claim that it suffices to prove
the bound (T9) for functions g € O and ||g||s¢ = 1 where 057 :={f — g | f, g € 5}. Indeed, suppose
that it holds for all such functions, and that we are given a function A with ||A]| s» > 1. By assumption, we can
apply the inequality (T9) to the new function g : = A/||A|| s, which belongs to &% by nature of the subspace
A = span{K(-, ;) }i1. Applying the bound (I9) to g and then multiplying both sides by ||A[| s+, we obtain

f Ry * X 2 m ||A[7

(VLO 4+ A) = VLL(0" + A), A) < 20, ||Alln + 26, || Al 52 +

cs Al

m
< 200 [|Alln + 205 | Al + EHAHfu

where the second inequality uses the fact that ||A|| s+ > 1 by assumption.

In order to establish the bound (T9) for functions with ||g||» = 1, we first prove it uniformly over the set
{91 llgllse =1, |lglln < t}, wheret > 1is a fixed radius (of course, we restrict our attention to those radii ¢



for which this set is non-empty.) We then extend the argument to one that is also uniform over the choice of ¢ by
a “peeling” argument.
Define the random variable
Z.(t):=  sup (VL0 +A)—VL,(6" +A), A). 29)
AAEE(t,1)

The following two lemmas, respectively, bound the mean of this random variable, and its deviations above the
mean:

Lemma 5. For anyt > 0, the mean is upper bounded as
EZ,(t) < oGn(E(t, 1)), (30)
where o : = 2M + 4C 4.

Lemma 6. There are universal constants (c1, c2) such that

P[Zn(t) > EZ, (1) + a} < ¢ exp ( - 62?20‘2) 31)
See Appendices[B.2.3|and [B.2.4] for the proofs of these two claims.
Equipped with Lemmas[5]and[f] we now prove inequality (T9). We divide our argument into two cases:
Caset = §,,: We first prove inequality (T9) for ¢ = §,,. From Lernrna we have
BZ0(0,) < 0Gn(E(00, 1) < 82, 62

where inequality (i) follows from the definition of &,, in inequality (TT). Setting o = &7 in expression (BI) yields
]P’[Zn(&,,) > 25,%] < c1exp (—cond?) (33)

which establishes the claim for t = §,,.
Caset > §,: On the other hand, for any t > §,,, we have

(1) (i)
EZ,(t) < 0Gn(E(t,1)) < to

Gu(EW L) _ 5
t — ?

where step (i) follows from Lemma and step (ii) follows because the function u — w is non-
increasing on the positive real line. (This non-increasing property is a direct consequence of the star-shaped
nature of 9.7¢.) Finally, using this upper bound on expression EZ,,(,,) and setting o« = t*m,/(4c3) in the tail
bound (BT) yields

2
]P’[Zn(t) >ty + ZTT} < c1 exp (—CQantQ) . 34)

Note that the precise values of the universal constants c; may change from line to line throughout this section.

Peeling argument Equipped with the tail bounds (33) and (34), we are now ready to complete the peeling
argument. Let A denote the event that the bound (19) is violated for some function g € 9.5 with ||g|| s = 1.
For real numbers 0 < a < b, let A(a,b) denote the event that it is violated for some function such that
lglln € [a,b], and ||g||sz = 1. For k = 0,1,2,..., define t;, = 2%3,,. We then have the decomposition
€ = (0,t0) U (Up—y A(tk, tx+1)) and hence by union bound,

P[€] < PLA(0,6n)] + iP[A(tkatk+l)]- (35)

From the bound (33), we have P[A(0, 6,)] < c1 exp (—c2ndy). On the other hand, suppose that A(ty, te+1)
holds, meaning that there exists some function g with ||g||» = 1 and ||g||n € [tk, tk+1] such that

(VLO" +B) = VLL(0" + D), g) > 20uglln + 207 + gl\gl\i

(i)
> 20t + 202 + 42
C3

(i)
> Sptig1 + 202 + m

thit
des +1



where step (i) uses the ||g||» > ¢ and step (ii) uses the fact that tx1 = 2¢%. This lower bound implies that
2

Zn(tht1) > tht10n + t’“zczm and applying the tail bound (34) yields

t2
]P)(.A(tk, tk+1)) S P(Zn(tk+1) > tk+15n + %ﬁn) S exp (762nm222k+25i> .
C3

Substituting this inequality and our earlier bound (33)) into equation (33) yields
PE)<a exp(—cznm25,21),

where the reader should recall that the precise values of universal constants may change from line-to-line. Since
o2 > 1 by definition, this concludes the proof of Lemma

B.2.3 Proof of Lemmalf3

Recalling the definitions (I) and ) of £ and L,,, we can write

n

Zut) = sup S8 (i, 07 + Ag) — B (i, 07 + Ai))As

AAee) i

Note that the vectors A and A contain function values of the form f(z;) — f*(x;) for functions f €
Bue (f*,2C ). Recall that the kernel function is bounded uniformly by one. Consequently, for any function
f €Bue(f*,2C ), we have

[f(@) = @) = (F =7 KRG 2)oe| <N = Frllwe K @) e < 200
Thus, we can restrict our attention to vectors A, A with || Al|o, || A]jee < 2Cs from hereonwards.

Letting {£;}7— denote an i.i.d. sequence of Rademacher variables, define the symmetrized variable

Z,(t) = sup 1 Zeiqﬁ'(yi, 0; + Ai) A (36)
AAee,1) ™

By a standard symmetrization argument [33], we have E, [Z,(t)] < 2E, [Z,(t)]. Moreover, since

/ * N 1 ’ * N 2 1
9405 + 8) A < o (807 +B0)) + A7
we have
1 = * N 2 1 = 2
EZ,(t) <E sup — € (gb'(yi,@i +Ai)) + E sup — YA
Ace(t,1) ; Acg(t,) T ;
1 n , i} _ 1 n
<2E sup 7281'(]5 (i, 0; +A;) +4C# E  sup *Z&Ai’
Aegt,)) Vi Aegt,1) M

T T2
where the second inequality follows by applying the Rademacher contraction inequality [22], using the fact that
|¢'||oc < 1 for the first term, and ||Al|sc < 2C s for the second term.
Focusing first on the term T, since E[e; ¢’ (yi, 0;)] = 0, we have

n

T, =E sup 1 ZEZ' ((b/(yi,e;k + zz) - W(yuﬁf))

AcE(t,1) n i=1

?i(Ay)

n

(i) 1 _

< ME sup 7ZE¢A~;
Aeet,ny) D

(i4)

< MGn(E(¢,1)),

where step (i) follows since each function ; is M-Lipschitz by assumption; and step (ii) follows since the
Gaussian complexity upper bounds the Rademacher complexity. Similarly, we have

To < Gu(E(t, 1)),

and putting together the pieces yields the claim.



B.2.4 Proof of Lemmal6l

Recall the definition (36) of the symmetrized variable Zn. By a standard symmetrization argument [33]], there
are universal constants c1, c2 such that

]P’[Zn(t) > EZ,[t] + cla] < CQP[:S'n (t) > EZ,[t] + a].

Since {¢&; }i=; are {y; }i—, are independent, we can study Zn (t) conditionally on {y; }i—,. Viewed as a function
of {&;}7—1, the function Z,, (¢) is convex and Lipschitz with respect to the Euclidean norm with parameter
5 1 — ~ 2 12
L":= sup — Z (Qf’/(yiy@f +A) Az’) < -
ARes,) VI "
where we have used the facts that ||¢'||oc < 1 and ||A||, < ¢. By Ledoux’s concentration for convex and
Lipschitz functions [21]], we have

2
- ~ " no
P[2.() 2 EZu[f] +a | {yi}is] Scaexp (—ea’y)-
Since the right-hand side does not involve {y; };-1, the same bound holds unconditionally over the randomness
in both the Rademacher variables and the sequence {y; };-;. Consequently, the claimed bound (1)) follows,
with suitable redefinitions of the universal constants.

B.3 Proof of Lemma[3l

We first require an auxiliary lemma, which we state and prove in the following section. We then prove Lemma 3]
in Section[B.3.2]

B.3.1 An auxiliary lemma

The following result relates the Hilbert norm of the error to the difference between the empirical and population
gradients:

Lemma 7. For any convex and differentiable loss function L, the kernel boosting error A™1 . = 9**1 — ¢*
satisfies the bound
1A 20 < A |A lop + oA VLE" + AT) = VLL (67 + A"), AT, 37

Proof. Recall that ||A?||3, = ||0" — 0*||3, = ||2* — 2*||3 by definition of the Hilbert norm. Let us define the
population update operator G on the population function J and the empirical update operator G, on 7, as

G(z") =2 —aVI(VnVKz"), and 2T :=G.(2") = 2" —aV T (VnVKZY). (38)

Since J is convex and smooth, it follows from standard arguments in convex optimization that G is a non-
expansive operator—viz.

1G(z) =Gz < llz -yl forallz,y €C. 39)

In addition, we note that the vector z* is a fixed point of G—that is, G(z*) = z*. From these ingredients, we
have

A5 = (" = 2", Gu(z") = G(z") + G(z") — 27)
(%)
<2 =2 2)G () = G2 + (VAVK[VLO" + A") = VL7 + A", 271 = 27)
(44)
< NAT e A loe + a(VLEO™ + AT) = VLL(07 + A"), AT

where step (i) follows by applying the Cauchy-Schwarz to control the inner product, and step (ii) follows since
AT = /nVEK (2Tt — 2*), and the square root kernel matrix v/ K is symmetric. O

B.3.2 Proof of Lemma[3l

We now prove Lemma([3] in which we make use of Lemma|[l]and Lemma 2] combined with Lemmal[7]

In order to prove inequality (20), we follow an inductive argument. Instead of proving 20) directly, we prove a
slightly stronger relation which implies it, i.e.

4M
max{1, [ A%5¢} < max{1, |5} + 160 = (40)



for constants 7, cs such that
~ 1 1 2
== — — =1/C5%. 41
T35 T I /Coe (41
We claim that it suffices to prove that the error iterates A**! satisfy the inequality ({@0). Indeed, if we take
inequality as given, then we have

1
o~ S C.sz7
2y
where we used the definition C'%, = 2 max{||0*||%,, 32}. Thus, it suffices to focus our attention on proving

inequality (#0).

For ¢t = 0, it is trivially true. Now let us assume inequality (#0) holds for some ¢ <
also holds for step ¢ + 1.

IA*)% < max{1, |A°|5-} +
girsz » and then prove that it

If | A" || s < 1, then inequality (@0) follows directly. Therefore, we can assume in the following without loss
of generality that ||A" || - > 1.

We break down the proof of this induction into two steps:

o first showing that | A*"![| ,» < 20 so that Lemmal2]is applicable.
e second, showing that the bound @0) holds and thus in fact || AT ||, < Coe.

Throughout the proof, we condition on the event £ and & := {ﬁ”y —Ely | 2] < v20}. Lemma

2 2
guarantees that P(£°) < ¢; exp(—c2 mar;én) whereas P(£5) > 1 — e~ " follows from the fact that Y2 is

sub-exponential with parameter o°>n and applying Hoeffding’s inequality. Putting things together we obtain the
upper bound of the complement event

P(E° U ES) < 2¢1 exp(—Cand?)

with Cy = max{?—;, 1}.

Showing that [|A*™!||,, < 2C,r In this step, we assume that inequality holds at step ¢, and show

that || A"™!|| s+ < 2C. Recalling that z : = (Kj/)ﬁlm

2 2 =2 — a/nVKVL(0') — 2 + a/nVEK (VLA (0") — VLOY).
Applying the triangle inequality yields the bound
27 = 2%]l2 < || 2" — an/nVEV L") —2" |2 + [lavnVEK(VLL(0") — VL))

G(zt)

0, our update can be written as

where the population update operator G was previously defined (38), and observed to be non-expansive (39).
From this non-expansiveness, we find that

27 = 22 < |12 = 27|12 + [lav/RVE (VLo (60") — VL(6"))]|2,
Note that the /2 norm of z corresponds to the Hilbert norm of 6. This implies
1A e < [Aloe + JaVaVE (TLa(0) = TLEO)]2

=T
Observe that because of uniform boundedness of the kernel by one, the quantity 7" can be bounded as

T < avallVLn(8") ~ VLEO)Il = avir o — Evla,

where we have define the vector v € R™ with coordinates v; : = ¢’ (y;,0¢). For functions ¢ satisfying the
gradient boundedness and m — M condition, since 0t € By (6™, Cs¢), each coordinate of the vectors v and
Ev is bounded by 1 in absolute value. We consequently have

T<a< C.?f?
where we have used the fact that « < m/M <1 < C% For least-squares ¢ we instead have
Vn «
T<a—|ly—E = —Y <+V20 <(C
< a= =y —Ely | ] NG <V20 < Co

conditioned on the event & := {ﬁ”y —E[y | z]||2 < v20}. Since Y? is sub-exponential with parameter
o?n it follows by Hoeffding’s inequality that P(&) > 1 —e™".

Putting together the pieces yields that | A'™!|| s < 2C., as claimed.



Completing the induction step _We are now ready to complete the induction step for proving inequal-
ity (@0) using Lemmaand Lemmasince HAH'lﬂ s > 1. We split the argument into two cases separately
depending on whether or not || A*|| ;¢ 6, > [|A™|,,. In general we can assume that || A2 > ||AY]| s,
otherwise the induction inequality satisfies trivially.

Case 1:  When ||A"™ | 20, > ||A™ |, inequality (T9) implies that

(VLO" +2) = VL0 +A), A < ds A e + T AT, “2)
3

Combining Lemma[7]and inequality @2), we obtain
m
A 1% < A e A o +dadn | A e + aaHAtHHi
1
1—ad2 ™ [|

nc3

= [|A"™ | < |A"|| e + 4ad?], (43)

where the last inequality uses the fact that || A" ||, < 6, [|A™ || 5.

Case 2: When |A"Y| 06, < ||A"T],,, we use our assumption [|A*1!]| 0 > ||A?| s together with
Lemma([7]and inequality (T9) which guarantee that

IA™ 5 < A" I3 +20(VL(O" + A") = VL (6" + A"), A"

< 1A 30 + Badn |A™ [ + 207 A7

Using the elementary inequality 2ab < a® + b?, we find that
~ 1
1A 30 < A3 +8a [mFI AT + =k [ +2a 2 AT
4ym c3

2062
<A B + T IA R+ 28, (44)
ym

where in the final step, we plug in the constants 7, c3 which satisfy equation (#T).

Now Lemma [T]implies that

m m
5||A”1Hi < D'+ 4| A b + —|ATH7
C3
(%) _ 1 m
< D' 4 [FmlATZ 4+ =82 + AT,
4ym c3

where step (i) again uses 2ab < @ + b%. Thus, we have Z[|A™ |2 < D' + =57, Together with
expression (@4), we find that

1 4o
1A 50 < A5 + E(HNH?% — 1A 5) + =6
Am
t+12 t)2 da o
= [[A"Ze < A2 + Tmén' 45)

Combining the pieces: By combining the two previous cases, we arrive at the bound

4M
max {1, A% b < max {1, k(18" e + 4082)”, A" % + %52}, (46)
where x : = m and we used that v < min{;, M}.
Now it is only left for us to show that with the constant cs chosen such that y = 31—2 — é =1/C%,, we have

AM
K2(|AY | + 4a62)? < A% + %53.

Define the function f : (0,Cr] — R via f(§) := x*(€ + 4ad2)? — €2 — %6,21. Since k > 1, in
order to conclude that f(£) < 0 for all £ € (0,Cu], it suffices to show that argmin_p f(x) < 0 and
f(Cs) < 0. The former is obtained by basic algebra and follows directly from x > 1. For the latter, since

=135 — 15 = /0%, a < 5 and 6, < %—;itthus suffices to show
1 aM
LI
= &7 = m



Since (4z + 1)(1 — %)2 > 1forallz < 1and §; < 1, we conclude that f(Cx) < 0.

Now that we have established max{1, [A*"*[|%,} < max{1, [[A*[|%,} + 23167, the induction step (@0)
follows. which completes the proof of Lemmal[3]

B.4 Proof of Lemmal

Recall that the LogitBoost algorithm is based on logistic loss ¢(y, 8) = In(1 4 e~¥?), whereas the AdaBoost
algorithm is based on the exponential loss ¢(y, #) = exp(—y6). We now verify the m-M -condition for these
two losses with the corresponding parameters specified in Lemmad]

B.4.1 m-M-condition for logistic loss

The first and second derivatives are given by

9p(y,0)  —ye *’ and 2 0Ww.0) _ v’
80 T 14ev9’ (00)2  — (e=v0/2 4 ev0/2)2"

6¢(y7

It is easy to check that | %) is uniformly bounded by B = 1.

Turning to the second derivative, recalling that y € {—1, 41}, it is straightforward to show that
Y 1

-  J @<
ye{m%xﬂ} gp (e=¥0/2 4 ev0/2)2 = 4’

which implies that %72’9) is a 1/4-Lipschitz function of 0, i.e. with M = 1/4.

Our final step is to compute a value for m by deriving a uniform lower bound on the Hessian. For this step, we
need to exploit the fact that @ = f(z) must arise from a function f such that || f||,e < D := Cux + ||0"|| 2.
Since sup, K(z,z) < 1 by assumption, the reproducing relation for RKHS then implies that |f(x)| < D.
Combining this inequality with the fact that y € {—1, 1}, it suffices to lower the bound the quantity

82¢ y79) min y2 > 1
e (e=v0/2 4 ey0/2)2 = =D 4 eD 42’
[ ——

in
ye{-1,+1} |0]<D
m

which completes the proof for the logistic loss.

B.4.2 m-M-condition for AdaBoost

The AdaBoost algorithm is based on the cost function ¢(y, 8) = e~¥?, which has first and second derivatives
(with respect to its second argument) given by

8¢(y7 9) ., Y0 82¢(y79) __—yb
0 ye 77, and 7(89)2 =e 7.

As in the preceding argument for logistic loss, we have the bound |y| < 1 and |#] < D. By inspection, the
absolute value of the first derivative is uniformly bounded B : = e, whereas the second derivative always lies
in the interval [m, M] with M : = e” and m : = e~ as claimed.
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