
A Proof of main results

In this section, we present the proofs of our main results. The technical details are deferred to Section B.

In the following, recalling the discussion in Section 2.3, we denote the vector of function values of a function
f ∈H evaluated at (x1, x2, . . . , xn) as θf : = f(xn1 ) = (f(x1), f(x2), . . . f(xn)) ∈ Rn, where we omit the
subscript f when it is clear from the context. As mentioned in the main text, updates on the function value
vectors θt ∈ Rn correspond uniquely to updates of the functions f t ∈H . In the following we repeatedly abuse
notation by defining the Hilbert norm and empirical norm on vectors in ∆ ∈ range(K) as

‖∆‖2H =
1

n
∆TK†∆ and ‖∆‖2n =

1

n
‖∆‖22,

where K† is the pseudoinverse of K. We also use BH (θ, r) to denote the ball with respect to the ‖ · ‖H -norm
in range(K).

A.1 Proof of Theorem 1

The proof of our main theorem is based on a sequence of lemmas, all of which are stated with the assump-
tions of Theorem 1 in force. The first lemma establishes a bound on the empirical norm ‖ · ‖n of the error
∆t+1 : = θt+1 − θ∗, provided that its Hilbert norm is suitably controlled.

Lemma 1. For any stepsize α ∈ (0, 1
M

] and any iteration t we have

m

2
‖∆t+1‖2n ≤

1

2α

{
‖∆t‖2H − ‖∆t+1‖2H

}
+ 〈∇L(θ∗ + ∆t)−∇Ln(θ∗ + ∆t), ∆t+1〉. (17)

See Section B.1 for the proof of this claim.

The second term on the right-hand side of the bound (17) involves the difference between the population and
empirical gradient operators. Since this difference is being evaluated at the random points ∆t and ∆t+1, the
following lemma establishes a form of uniform control on this term.

Let us define the set

S : =

{
∆, ∆̃ ∈ Rn | ‖∆‖H ≥ 1, and θ∗ + ∆, θ∗ + ∆̃ ∈ BH (θ∗, 2CH )

}
, (18)

and consider the uniform bound

〈∇L(θ∗ + ∆̃)−∇Ln(θ∗ + ∆̃), ∆〉 ≤ 2δn‖∆‖n + 2δ2
n‖∆‖H +

m

c3
‖∆‖2n for all ∆, ∆̃ ∈ S. (19)

Lemma 2. Let E be the event that bound (19) holds. There are universal constants (c1, c2) such that P[E ] ≥
1− c1 exp(−c2m

2nδ2n
σ2 ).

See Section B.2 for the proof of Lemma 2.

Note that Lemma 1 applies only to error iterates with a bounded Hilbert norm. Our last lemma provides this
control for some number of iterations:

Lemma 3. There are constants (C1, C2) independent of n such that for any step size α ∈
(
0,min{M, 1

M
}
]
,

we have

‖∆t‖H ≤ CH for all iterations t ≤ m
8Mδ2n

(20)

with probability at least 1− C1 exp(−C2nδ
2
n), where C2 = max{m

2

σ2 , 1}.

See Section B.3 for the proof of this lemma which also uses Lemma 2.

Taking these lemmas as given, we now complete the proof of the theorem. We first condition on the event E
from Lemma 2, so that we may apply the bound (19). We then fix some iterate t such that t < m

8Mδ2n
− 1, and

condition on the event that the bound (20) in Lemma 3 holds, so that we are guaranteed that ‖∆t+1‖H ≤ CH .
We then split the analysis into two cases:

Case 1: First, suppose that ‖∆t+1‖n ≤ δnCH . In this case, inequality (12b) holds directly.



Case 2: Otherwise, we may assume that ‖∆t+1‖n > δn‖∆t+1‖H . Applying the bound (19) with the choice
(∆̃,∆) = (∆t,∆t+1) yields

〈∇L(θ∗ + ∆t)−∇Ln(θ∗ + ∆t), ∆t+1〉 ≤ 4δn‖∆t+1‖n +
m

c3
‖∆t+1‖2n. (21)

Substituting inequality (21) back into equation (17) yields

m

2
‖∆t+1‖2n ≤

1

2α

{
‖∆t‖2H − ‖∆t+1‖2H

}
+ 4δn‖∆t+1‖n +

m

c3
‖∆t+1‖2n.

Re-arranging terms yields the bound

γm‖∆t+1‖2n ≤ Dt + 4δn‖∆t+1‖n, (22)

where we have introduced the shorthand notation Dt : = 1
2α

{
‖∆t‖2H − ‖∆t+1‖2H

}
, as well as γ = 1

2
− 1

c3

Equation (22) defines a quadratic inequality with respect to ‖∆t+1‖n; solving it and making use of the inequality
(a+ b)2 ≤ 2a2 + 2b2 yields the bound

‖∆t+1‖2n ≤
cδ2
n

γ2m2
+

2Dt

γm
, (23)

for some universal constant c. By telescoping inequality (23), we find that

1

T

T∑
t=1

‖∆t‖2n ≤
cδ2
n

γ2m2
+

1

T

T∑
t=1

2Dt

γm
(24)

≤ cδ2
n

γ2m2
+

1

αγmT
[‖∆0‖2H − ‖∆T ‖2H ]. (25)

By Jensen’s inequality, we have

‖f̄T − f∗‖2n = ‖ 1

T

T∑
t=1

∆t‖2n ≤
1

T

T∑
t=1

‖∆t‖2n,

so that inequality (12b) follows from the bound (24).

On the other hand, by the smoothness assumption, we have

L(f̄T )− L(f∗) ≤ M

2
‖f̄T − f∗‖2n,

from which inequality (12a) follows.

A.2 Proof of Corollary 2

The general statement follows directly from Theorem 1. In order to invoke Theorem 1 for the particular cases of
LogitBoost and AdaBoost, we need to verify the conditions, i.e. that the m-M -condition and φ′-boundedness
conditions hold for the respective loss function over the ball BH (θ∗, 2CH ). The following lemma provides
such a guarantee:

Lemma 4. With D : = CH + ‖θ∗‖H , the logistic regression cost function satisfies the m-M -condition with
parameters

m =
1

e−D + eD + 2
, M =

1

4
, and B = 1.

The AdaBoost cost function satisfies the m-M -condition with parameters

m = e−D, M = eD, and B = eD.

See Section B.4 for the proof of Lemma 4.

γ-exponential decay: If the kernel eigenvalues satisfy a decay condition of the form µj ≤ c1 exp(−c2jγ),
where c1, c2 are universal constants, the functionR from equation (14) can be upper bounded as

R(δ) =

√
2

n

√√√√ n∑
i=1

min{δ2, µj} ≤
√

2

n

√√√√kδ2 +

n∑
j=k+1

c1e−c2j
2 ,



where k is the smallest integer such that c1 exp(−c2kγ) < δ2. Since the localized Gaussian width Gn
(
En(δ, 1)

)
can be sandwiched above and below by multiples ofR(δ), some algebra shows that the critical radius scales as
δ2
n � n

log(n)1/γσ2 .

Consequently, if we take T � log(n)1/γσ2

n
steps, then Theorem 1 guarantees that the averaged estimator θ̄T

satisfies the bound

‖θ̄T − θ∗‖2n .

(
1

αm
+

1

m2

)
log1/γ n

n
σ2,

with probability 1− c1exp(−c2m2 log1/γ n).

β-polynomial decay: Now suppose that the kernel eigenvalues satisfy a decay condition of the form
µj ≤ c1j−2β for some β > 1/2 and constant c1. In this case, a direct calculation yields the bound

R(δ) ≤
√

2

n

√√√√kδ2 + c2

n∑
j=k+1

j−2,

where k is the smallest integer such that c2k−2 < δ2. Combined with upper bound c2
∑n
j=k+1 j

−2 ≤
c2
∫
k+1

j−2 ≤ kδ2, we find that the critical radius scales as δ2
n � n−2β/(1+2β).

Consequently, if we take T � n−2β/(1+2β) many steps, then Theorem 1 guarantees that the averaged estimator
θ̄T satisfies the bound

‖θ̄T − θ∗‖2n ≤
(

1

αm
+

1

m2

)(
σ2

n

)2β/(2β+1)

,

with probability at least 1− c1exp(−c2m2( n
σ2 )1/(2β+1)).

B Proof of technical lemmas

B.1 Proof of Lemma 1

Recalling that K† denotes the pseudoinverse of K, our proof is based on the linear transformation

z : = n−1/2(K†)1/2θ ⇐⇒ θ =
√
nK1/2z.

as well as the new function Jn(z) : = Ln(
√
n
√
Kz) and its population equivalent J (z) : = EJn(z). Ordinary

gradient descent on Jn with stepsize α takes the form

zt+1 = zt − α∇Jn(zt) = zt − α
√
n
√
K∇Ln(

√
n
√
Kzt). (26)

If we transform this update on z back to an equivalent one on θ by multiplying both sides by
√
n
√
K, we see

that ordinary gradient descent on Jn is equivalent to the kernel boosting update θt+1 = θt − αnK∇Ln(θt).

Our goal is to analyze the behavior of the update (26) in terms of the population cost J (zt). Thus, our problem
is one of analyzing a noisy form of gradient descent on the function J , where the noise is induced by the
difference between the empirical gradient operator∇Jn and the population gradient operator∇J .

Recall that the L is M -smooth by assumption. Since the kernel matrix K has been normalized to have largest
eigenvalue at most one, the function J is also M -smooth, whence

J (zt+1) ≤ J (zt) + 〈∇J (zt), dt〉+
M

2
‖dt‖22, where dt : = zt+1 − zt = −α∇Jn(zt).

Morever, since the function J is convex, we have J (z∗) ≥ J (zt) + 〈∇J (zt), z∗ − zt〉, whence

J (zt+1)− J (z∗) ≤ 〈∇J (zt), dt + zt − z∗〉+
M

2
‖dt‖22

= 〈∇J (zt), zt+1 − z∗〉+
M

2
‖dt‖22. (27)



Now define the difference of the squared errors V t : = 1
2

{
‖zt − z∗‖22 − ‖zt+1 − z∗‖22

}
. By some simple

algebra, we have

V t =
1

2

{
‖zt − z∗‖22 − ‖dt + zt − z∗‖22

}
= −〈dt, zt − z∗〉 − 1

2
‖dt‖22

= −〈dt, −dt + zt+1 − z∗〉 − 1

2
‖dt‖22

= −〈dt, zt+1 − z∗〉+
1

2
‖dt‖22.

Substituting back into equation (27) yields

J (zt+1)− J (z∗) ≤ 1

α
V t + 〈∇J (zt) +

dt

α
, zt+1 − z∗〉 =

1

α
V t + 〈∇J (zt)−∇Jn(zt), zt+1 − z∗〉,

where we have used the fact that 1
α
≥M by our choice of stepsize α.

Finally, we transform back to the original variables θ =
√
n
√
Kz, using the relation∇J (z) =

√
n
√
K∇L(θ),

so as to obtain the bound

L(θt+1)− L(θ∗) ≤ 1

2α

{
‖∆t‖2H − ‖∆t+1‖2H

}
+ 〈∇L(θt)−∇Ln(θt), θt+1 − θ∗〉.

Note that the optimality of θ∗ implies that∇L(θ∗) = 0. Combined with m-strong convexity, we are guaranteed
that m

2
‖∆t+1‖2n ≤ L(θt+1)− L(θ∗), and hence

m

2
‖∆t+1‖2n ≤

1

2α

{
‖∆t‖2H − ‖∆t+1‖2H

}
+ 〈∇L(θ∗ + ∆t)−∇Ln(θ∗ + ∆t), ∆t+1〉,

as claimed.

B.2 Proof of Lemma 2

We split our proof into two cases, depending on whether we are dealing with the least-squares loss
φ(y, θ) = 1

2
(y − θ)2, or a classification loss with uniformly bounded gradient (‖φ′‖∞ ≤ 1).

B.2.1 Least-squares case

The least-squares loss is m-strongly convex with m = M = 1. Moreover, the difference between the population
and empirical gradients can be written as∇L(θ∗ + ∆̃)−∇Ln(θ∗ + ∆̃) = σ

n
(w1, . . . , wn), where the random

variables {wi}ni=1 are i.i.d. and sub-Gaussian with parameter 1. Consequently, we have

|〈∇L(θ∗ + ∆̃)−∇Ln(θ∗ + ∆̃), ∆〉| =

∣∣∣∣∣σn
n∑
i=1

wi∆(xi)

∣∣∣∣∣.
Under these conditions, one can show (see [37] for reference) that∣∣∣∣∣σn

n∑
i=1

wi∆(xi)

∣∣∣∣∣ ≤ 2δn‖∆‖n + 2δ2
n‖∆‖H +

1

16
‖∆‖2n, (28)

which implies that Lemma 2 holds with c3 = 16.

B.2.2 Gradient-bounded φ-functions

We now turn to the proof of Lemma 2 for gradient bounded φ-functions. First, we claim that it suffices to prove
the bound (19) for functions g ∈ ∂H and ‖g‖H = 1 where ∂H : = {f − g | f, g ∈ H }. Indeed, suppose
that it holds for all such functions, and that we are given a function ∆ with ‖∆‖H > 1 . By assumption, we can
apply the inequality (19) to the new function g : = ∆/‖∆‖H , which belongs to ∂H by nature of the subspace
H = span{K(·, xi)}ni=1. Applying the bound (19) to g and then multiplying both sides by ‖∆‖H , we obtain

〈∇L(θ∗ + ∆̃)−∇Ln(θ∗ + ∆̃), ∆〉 ≤ 2δn‖∆‖n + 2δ2
n‖∆‖H +

m

c3

‖∆‖2n
‖∆‖H

≤ 2δn‖∆‖n + 2δ2
n‖∆‖H +

m

c3
‖∆‖2n,

where the second inequality uses the fact that ‖∆‖H > 1 by assumption.

In order to establish the bound (19) for functions with ‖g‖H = 1, we first prove it uniformly over the set
{g | ‖g‖H = 1, ‖g‖n ≤ t}, where t > 1 is a fixed radius (of course, we restrict our attention to those radii t



for which this set is non-empty.) We then extend the argument to one that is also uniform over the choice of t by
a “peeling” argument.

Define the random variable

Zn(t) : = sup
∆,∆̃∈E(t,1)

〈∇L(θ∗ + ∆̃)−∇Ln(θ∗ + ∆̃), ∆〉. (29)

The following two lemmas, respectively, bound the mean of this random variable, and its deviations above the
mean:
Lemma 5. For any t > 0, the mean is upper bounded as

EZn(t) ≤ σGn(E(t, 1)), (30)

where σ : = 2M + 4CH .
Lemma 6. There are universal constants (c1, c2) such that

P
[
Zn(t) ≥ EZn(t) + α

]
≤ c1 exp

(
− c2nα

2

t2

)
. (31)

See Appendices B.2.3 and B.2.4 for the proofs of these two claims.

Equipped with Lemmas 5 and 6, we now prove inequality (19). We divide our argument into two cases:

Case t = δn: We first prove inequality (19) for t = δn. From Lemma 5, we have

EZn(δn) ≤ σGn(E(δn, 1))
(i)

≤ δ2
n, (32)

where inequality (i) follows from the definition of δn in inequality (11). Setting α = δ2
n in expression (31) yields

P
[
Zn(δn) ≥ 2δ2

n

]
≤ c1 exp

(
−c2nδ2

n

)
, (33)

which establishes the claim for t = δn.

Case t > δn: On the other hand, for any t > δn, we have

EZn(t)
(i)

≤ σGn(E(t, 1))
(ii)

≤ tσ
Gn(E(t, 1))

t
≤ tδn,

where step (i) follows from Lemma 5, and step (ii) follows because the function u 7→ Gn(E(u,1))
u

is non-
increasing on the positive real line. (This non-increasing property is a direct consequence of the star-shaped
nature of ∂H .) Finally, using this upper bound on expression EZn(δn) and setting α = t2m/(4c3) in the tail
bound (31) yields

P
[
Zn(t) ≥ tδn +

t2m

4c3

]
≤ c1 exp

(
−c2nm2t2

)
. (34)

Note that the precise values of the universal constants c2 may change from line to line throughout this section.

Peeling argument Equipped with the tail bounds (33) and (34), we are now ready to complete the peeling
argument. Let A denote the event that the bound (19) is violated for some function g ∈ ∂H with ‖g‖H = 1.
For real numbers 0 ≤ a < b, let A(a, b) denote the event that it is violated for some function such that
‖g‖n ∈ [a, b], and ‖g‖H = 1. For k = 0, 1, 2, . . ., define tk = 2kδn. We then have the decomposition
E = (0, t0) ∪ (

⋃∞
k=0A(tk, tk+1)) and hence by union bound,

P[E ] ≤ P[A(0, δn)] +

∞∑
k=1

P[A(tk, tk+1)]. (35)

From the bound (33), we have P[A(0, δn)] ≤ c1 exp
(
−c2nδ2

n

)
. On the other hand, suppose that A(tk, tk+1)

holds, meaning that there exists some function g with ‖g‖H = 1 and ‖g‖n ∈ [tk, tk+1] such that

〈∇L(θ∗ + ∆̃)−∇Ln(θ∗ + ∆̃), g〉 > 2δn‖g‖n + 2δ2
n +

m

c3
‖g‖2n

(i)

≥ 2δntk + 2δ2
n +

m

c3
t2k

(ii)

≥ δntk+1 + 2δ2
n +

m

4c3
t2k+1,



where step (i) uses the ‖g‖n ≥ tk and step (ii) uses the fact that tk+1 = 2tk. This lower bound implies that

Zn(tk+1) > tk+1δn +
t2k+1m

4c3
and applying the tail bound (34) yields

P(A(tk, tk+1)) ≤ P(Zn(tk+1) > tk+1δn +
t2k+1m

4c3
) ≤ exp

(
−c2nm222k+2δ2

n

)
.

Substituting this inequality and our earlier bound (33) into equation (35) yields

P(E) ≤ c1 exp(−c2nm2δ2
n),

where the reader should recall that the precise values of universal constants may change from line-to-line. Since
σ2 > 1 by definition, this concludes the proof of Lemma 2.

B.2.3 Proof of Lemma 5

Recalling the definitions (1) and (2) of L and Ln, we can write

Zn(t) = sup
∆,∆̃∈E(t,1)

1

n

n∑
i=1

(φ′(yi, θ
∗
i + ∆̃i)− Eφ′(yi, θ∗i + ∆̃i))∆i

Note that the vectors ∆ and ∆̃ contain function values of the form f(xi) − f∗(xi) for functions f ∈
BH (f∗, 2CH ). Recall that the kernel function is bounded uniformly by one. Consequently, for any function
f ∈ BH (f∗, 2CH ), we have

|f(x)− f∗(x)| = |〈f − f∗, K(·, x)〉H | ≤ ‖f − f∗‖H ‖K(·, x)‖H ≤ 2CH .

Thus, we can restrict our attention to vectors ∆, ∆̃ with ‖∆‖∞, ‖∆̃‖∞ ≤ 2CH from hereonwards.

Letting {εi}ni=1 denote an i.i.d. sequence of Rademacher variables, define the symmetrized variable

Z̃n(t) : = sup
∆,∆̃∈E(t,1)

1

n

n∑
i=1

εiφ
′(yi, θ

∗
i + ∆̃i) ∆i. (36)

By a standard symmetrization argument [33], we have Ey[Zn(t)] ≤ 2Ey,ε[Z̃n(t)]. Moreover, since

φ′(yi, θ
∗
i + ∆̃i) ∆i ≤

1

2

(
φ′(yi, θ

∗
i + ∆̃i)

)2

+
1

2
∆2
i

we have

EZn(t) ≤ E sup
∆̃∈E(t,1)

1

n

n∑
i=1

εi
(
φ′(yi, θ

∗
i + ∆̃i)

)2
+ E sup

∆∈E(t,1)

1

n

n∑
i=1

εi∆
2
i

≤ 2E sup
∆̃∈E(t,1)

1

n

n∑
i=1

εiφ
′(yi, θ

∗
i + ∆̃i)︸ ︷︷ ︸

T1

+ 4CH E sup
∆∈E(t,1)

1

n

n∑
i=1

εi∆i︸ ︷︷ ︸
T2

,

where the second inequality follows by applying the Rademacher contraction inequality [22], using the fact that
‖φ′‖∞ ≤ 1 for the first term, and ‖∆‖∞ ≤ 2CH for the second term.

Focusing first on the term T1, since E[εiφ
′(yi, θ

∗
i )] = 0, we have

T1 = E sup
∆̃∈E(t,1)

1

n

n∑
i=1

εi
(
φ′(yi, θ

∗
i + ∆̃i)− φ′(yi; θ∗i )

)
︸ ︷︷ ︸

ϕi(∆̃i)

(i)

≤ ME sup
∆̃∈E(t,1)

1

n

n∑
i=1

εi∆̃i

(ii)

≤ MGn(E(t, 1)),

where step (i) follows since each function ϕi is M -Lipschitz by assumption; and step (ii) follows since the
Gaussian complexity upper bounds the Rademacher complexity. Similarly, we have

T2 ≤ Gn(E(t, 1)),

and putting together the pieces yields the claim.



B.2.4 Proof of Lemma 6

Recall the definition (36) of the symmetrized variable Z̃n. By a standard symmetrization argument [33], there
are universal constants c1, c2 such that

P
[
Zn(t) ≥ EZn[t] + c1α

]
≤ c2P

[
Z̃n(t) ≥ EZ̃n[t] + α

]
.

Since {εi}ni=1 are {yi}ni=1 are independent, we can study Z̃n(t) conditionally on {yi}ni=1. Viewed as a function
of {εi}ni=1, the function Z̃n(t) is convex and Lipschitz with respect to the Euclidean norm with parameter

L2 : = sup
∆,∆̃∈E(t,1)

1

n2

n∑
i=1

(
φ′(yi, θ

∗
i + ∆̃i) ∆i

)2

≤ t2

n
,

where we have used the facts that ‖φ′‖∞ ≤ 1 and ‖∆‖n ≤ t. By Ledoux’s concentration for convex and
Lipschitz functions [21], we have

P
[
Z̃n(t) ≥ EZ̃n[t] + α | {yi}ni=1

]
≤ c3 exp

(
− c4

nα2

t2

)
.

Since the right-hand side does not involve {yi}ni=1, the same bound holds unconditionally over the randomness
in both the Rademacher variables and the sequence {yi}ni=1. Consequently, the claimed bound (31) follows,
with suitable redefinitions of the universal constants.

B.3 Proof of Lemma 3

We first require an auxiliary lemma, which we state and prove in the following section. We then prove Lemma 3
in Section B.3.2.

B.3.1 An auxiliary lemma

The following result relates the Hilbert norm of the error to the difference between the empirical and population
gradients:
Lemma 7. For any convex and differentiable loss function L, the kernel boosting error ∆t+1 : = θt+1 − θ∗
satisfies the bound

‖∆t+1‖2H ≤ ‖∆t‖H ‖∆t+1‖H + α〈∇L(θ∗ + ∆t)−∇Ln(θ∗ + ∆t), ∆t+1〉. (37)

Proof. Recall that ‖∆t‖2H = ‖θt − θ∗‖2H = ‖zt − z∗‖22 by definition of the Hilbert norm. Let us define the
population update operator G on the population function J and the empirical update operator Gn on Jn as

G(zt) : = zt − α∇J (
√
n
√
Kzt), and zt+1 : = Gn(zt) = zt − α∇Jn(

√
n
√
Kzt). (38)

Since J is convex and smooth, it follows from standard arguments in convex optimization that G is a non-
expansive operator—viz.

‖G(x)−G(y)‖2 ≤ ‖x− y‖2 for all x, y ∈ C. (39)

In addition, we note that the vector z∗ is a fixed point of G—that is, G(z∗) = z∗. From these ingredients, we
have

‖∆t+1‖2H = 〈zt+1 − z∗, Gn(zt)−G(zt) +G(zt)− z∗〉
(i)

≤ ‖zt+1 − z∗‖2‖G(zt)−G(z∗)‖2 + α〈
√
n
√
K[∇L(θ∗ + ∆t)−∇Ln(θ∗ + ∆t)], zt+1 − z∗〉

(ii)

≤ ‖∆t+1‖H ‖∆t‖H + α〈∇L(θ∗ + ∆t)−∇Ln(θ∗ + ∆t), ∆t+1〉
where step (i) follows by applying the Cauchy-Schwarz to control the inner product, and step (ii) follows since
∆t+1 =

√
n
√
K(zt+1 − z∗), and the square root kernel matrix

√
K is symmetric.

B.3.2 Proof of Lemma 3

We now prove Lemma 3, in which we make use of Lemma 1 and Lemma 2 combined with Lemma 7.

In order to prove inequality (20), we follow an inductive argument. Instead of proving (20) directly, we prove a
slightly stronger relation which implies it, i.e.

max{1, ‖∆t‖2H } ≤ max{1, ‖∆0‖2H }+ tδ2
n

4M

γ̃m
(40)



for constants γ̃, c3 such that

γ̃ : =
1

32
− 1

4c3
= 1/C2

H . (41)

We claim that it suffices to prove that the error iterates ∆t+1 satisfy the inequality (40). Indeed, if we take
inequality (40) as given, then we have

‖∆t‖2H ≤ max{1, ‖∆0‖2H }+
1

2γ̃
≤ C2

H ,

where we used the definition C2
H = 2 max{‖θ∗‖2H , 32}. Thus, it suffices to focus our attention on proving

inequality (40).

For t = 0, it is trivially true. Now let us assume inequality (40) holds for some t ≤ m
8Mδ2n

, and then prove that it
also holds for step t+ 1.

If ‖∆t+1‖H < 1, then inequality (40) follows directly.Therefore, we can assume in the following without loss
of generality that ‖∆t+1‖H ≥ 1.

We break down the proof of this induction into two steps:

• first showing that ‖∆t+1‖H ≤ 2CH so that Lemma 2 is applicable.
• second, showing that the bound (40) holds and thus in fact ‖∆t+1‖H ≤ CH .

Throughout the proof, we condition on the event E and E0 := { 1√
n
‖y − E[y | x]‖2 ≤

√
2σ}. Lemma 2

guarantees that P(Ec) ≤ c1 exp(−c2m
2nδ2n
σ2 ) whereas P(E0) ≥ 1 − e−n follows from the fact that Y 2 is

sub-exponential with parameter σ2n and applying Hoeffding’s inequality. Putting things together we obtain the
upper bound of the complement event

P(Ec ∪ Ec0) ≤ 2c1 exp(−C2nδ
2
n)

with C2 = max{m
2

σ2 , 1}.

Showing that ‖∆t+1‖H ≤ 2CH In this step, we assume that inequality (40) holds at step t, and show

that ‖∆t+1‖H ≤ 2CH . Recalling that z : = (K†)1/2√
n

θ, our update can be written as

zt+1 − z∗ = zt − α
√
n
√
K∇L(θt)− z∗ + α

√
n
√
K(∇Ln(θt)−∇L(θt)).

Applying the triangle inequality yields the bound

‖zt+1 − z∗‖2 ≤ ‖ zt − α
√
n
√
K∇L(θt)︸ ︷︷ ︸

G(zt)

−z∗‖2 + ‖α
√
n
√
K(∇Ln(θt)−∇L(θt))‖2

where the population update operator G was previously defined (38), and observed to be non-expansive (39).
From this non-expansiveness, we find that

‖zt+1 − z∗‖2 ≤ ‖zt − z∗‖2 + ‖α
√
n
√
K(∇Ln(θt)−∇L(θt))‖2,

Note that the `2 norm of z corresponds to the Hilbert norm of θ . This implies

‖∆t+1‖H ≤ ‖∆t‖H + ‖α
√
n
√
K(∇Ln(θt)−∇L(θt))‖2︸ ︷︷ ︸

: =T

Observe that because of uniform boundedness of the kernel by one, the quantity T can be bounded as

T ≤ α
√
n‖∇Ln(θt)−∇L(θt))‖2 = α

√
n

1

n
‖v − Ev‖2,

where we have define the vector v ∈ Rn with coordinates vi : = φ′(yi, θ
t
i). For functions φ satisfying the

gradient boundedness and m−M condition, since θt ∈ BH (θ∗, CH ), each coordinate of the vectors v and
Ev is bounded by 1 in absolute value. We consequently have

T ≤ α ≤ CH ,

where we have used the fact that α ≤ m/M < 1 ≤ CH
2
. For least-squares φ we instead have

T ≤ α
√
n

n
‖y − E[y | x]‖2 =:

α√
n
Y ≤

√
2σ ≤ CH

conditioned on the event E0 := { 1√
n
‖y − E[y | x]‖2 ≤

√
2σ}. Since Y 2 is sub-exponential with parameter

σ2n it follows by Hoeffding’s inequality that P(E0) ≥ 1− e−n.

Putting together the pieces yields that ‖∆t+1‖H ≤ 2CH , as claimed.



Completing the induction step We are now ready to complete the induction step for proving inequal-
ity (40) using Lemma 1 and Lemma 2 since ‖∆t+1‖H ≥ 1. We split the argument into two cases separately
depending on whether or not ‖∆t+1‖H δn ≥ ‖∆t+1‖n. In general we can assume that ‖∆t+1‖H > ‖∆t‖H ,
otherwise the induction inequality (40) satisfies trivially.

Case 1: When ‖∆t+1‖H δn ≥ ‖∆t+1‖n, inequality (19) implies that

〈∇L(θ∗ + ∆̃)−∇Ln(θ∗ + ∆̃), ∆t+1〉 ≤ 4δ2
n‖∆t+1‖H +

m

c3
‖∆t+1‖2n, (42)

Combining Lemma 7 and inequality (42), we obtain

‖∆t+1‖2H ≤ ‖∆t‖H ‖∆t+1‖H + 4αδ2
n‖∆t+1‖H + α

m

c3
‖∆t+1‖2n

=⇒ ‖∆t+1‖H ≤ 1

1− αδ2
n
m
c3

[
‖∆t‖H + 4αδ2

n

]
, (43)

where the last inequality uses the fact that ‖∆t+1‖n ≤ δn‖∆t+1‖H .

Case 2: When ‖∆t+1‖H δn < ‖∆t+1‖n, we use our assumption ‖∆t+1‖H ≥ ‖∆t‖H together with
Lemma 7 and inequality (19) which guarantee that

‖∆t+1‖2H ≤ ‖∆t‖2H + 2α〈∇L(θ∗ + ∆t)−∇Ln(θ∗ + ∆t), ∆t+1〉

≤ ‖∆t‖2H + 8αδn‖∆t+1‖n + 2α
m

c3
‖∆t+1‖2n.

Using the elementary inequality 2ab ≤ a2 + b2, we find that

‖∆t+1‖2H ≤ ‖∆t‖2H + 8α

[
mγ̃‖∆t+1‖2n +

1

4γ̃m
δ2
n

]
+ 2α

m

c3
‖∆t+1‖2n

≤ ‖∆t‖2H + α
m

4
‖∆t+1‖2n +

2αδ2
n

γ̃m
, (44)

where in the final step, we plug in the constants γ̃, c3 which satisfy equation (41).

Now Lemma 1 implies that
m

2
‖∆t+1‖2n ≤ Dt + 4‖∆t+1‖nδn +

m

c3
‖∆t+1‖2n

(i)

≤ Dt + 4

[
γ̃m‖∆t+1‖2n +

1

4γ̃m
δ2
n

]
+
m

c3
‖∆t+1‖2n,

where step (i) again uses 2ab ≤ a2 + b2. Thus, we have m
4
‖∆t+1‖2n ≤ Dt + 1

γ̃m
δ2
n. Together with

expression (44), we find that

‖∆t+1‖2H ≤ ‖∆t‖2H +
1

2
(‖∆t‖2H − ‖∆t+1‖2H ) +

4α

γ̃m
δ2
n

=⇒ ‖∆t+1‖2H ≤ ‖∆t‖2H +
4α

γ̃m
δ2
n. (45)

Combining the pieces: By combining the two previous cases, we arrive at the bound

max
{

1, ‖∆t+1‖2H
}
≤ max

{
1, κ2(‖∆t‖H + 4αδ2

n)2, ‖∆t‖2H +
4M

γ̃m
δ2
n

}
, (46)

where κ : = 1
(1−αδ2n

m
c3

)
and we used that α ≤ min{ 1

M
,M}.

Now it is only left for us to show that with the constant c3 chosen such that γ̃ = 1
32
− 1

4c3
= 1/C2

H , we have

κ2(‖∆t‖H + 4αδ2
n)2 ≤ ‖∆t‖2H +

4M

γ̃m
δ2
n.

Define the function f : (0, CH ] → R via f(ξ) : = κ2(ξ + 4αδ2
n)2 − ξ2 − 4M

γ̃m
δ2
n. Since κ ≥ 1, in

order to conclude that f(ξ) < 0 for all ξ ∈ (0, CH ], it suffices to show that argminx∈R f(x) < 0 and
f(CH ) < 0. The former is obtained by basic algebra and follows directly from κ ≥ 1. For the latter, since
γ̃ = 1

32
− 1

4c3
= 1/C2

H , α < 1
M

and δ2
n ≤ M2

m2 it thus suffices to show

1

(1− M
8m

)2
≤ 4M

m
+ 1



Since (4x+ 1)(1− x
8
)2 ≥ 1 for all x ≤ 1 and m

M
≤ 1, we conclude that f(CH ) < 0.

Now that we have established max{1, ‖∆t+1‖2H } ≤ max{1, ‖∆t‖2H } + 4M
γ̃m

δ2
n, the induction step (40)

follows. which completes the proof of Lemma 3.

B.4 Proof of Lemma 4

Recall that the LogitBoost algorithm is based on logistic loss φ(y, θ) = ln(1 + e−yθ), whereas the AdaBoost
algorithm is based on the exponential loss φ(y, θ) = exp(−yθ). We now verify the m-M -condition for these
two losses with the corresponding parameters specified in Lemma 4.

B.4.1 m-M -condition for logistic loss

The first and second derivatives are given by

∂φ(y, θ)

∂θ
=
−ye−yθ

1 + e−yθ
, and

∂2φ(y, θ)

(∂θ)2
=

y2

(e−yθ/2 + eyθ/2)2
.

It is easy to check that | ∂φ(y,θ)
∂θ
| is uniformly bounded by B = 1.

Turning to the second derivative, recalling that y ∈ {−1,+1}, it is straightforward to show that

max
y∈{−1,+1}

sup
θ

y2

(e−yθ/2 + eyθ/2)2
≤ 1

4
,

which implies that ∂φ(y,θ)
∂θ

is a 1/4-Lipschitz function of θ, i.e. with M = 1/4.

Our final step is to compute a value for m by deriving a uniform lower bound on the Hessian. For this step, we
need to exploit the fact that θ = f(x) must arise from a function f such that ‖f‖H ≤ D : = CH + ‖θ∗‖H .
Since supxK(x, x) ≤ 1 by assumption, the reproducing relation for RKHS then implies that |f(x)| ≤ D.
Combining this inequality with the fact that y ∈ {−1, 1}, it suffices to lower the bound the quantity

min
y∈{−1,+1}

min
|θ|≤D

∣∣∣∣∂2φ(y, θ)

(∂θ)2

∣∣∣∣ = min
|y|≤1

min
|θ|≤D

y2

(e−yθ/2 + eyθ/2)2
≥ 1

e−D + eD + 2︸ ︷︷ ︸
m

,

which completes the proof for the logistic loss.

B.4.2 m-M -condition for AdaBoost

The AdaBoost algorithm is based on the cost function φ(y, θ) = e−yθ , which has first and second derivatives
(with respect to its second argument) given by

∂φ(y, θ)

∂θ
= −ye−yθ, and

∂2φ(y, θ)

(∂θ)2
= e−yθ.

As in the preceding argument for logistic loss, we have the bound |y| ≤ 1 and |θ| ≤ D. By inspection, the
absolute value of the first derivative is uniformly bounded B : = eD , whereas the second derivative always lies
in the interval [m,M ] with M : = eD and m : = e−D , as claimed.
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