
A Ridge leverage score sampling bounds

Here we give the primary matrix concentration results used to bound the performance of ridge
leverage score sampling in Theorems 3, 7, and 14.
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where in the last step we use the cyclic property of the trace. Writing y = (B
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Union bounding over failure probabilities gives the lemma.

Lemma 9 yields an easy corollary about sampling without rescaling the columns in S:
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A.1 Spectral Error Kernel Approximation

We now give the deferred proof of Theorem 3, our main approximation bound, using the matrix
concentration results proven above.
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B Projection-cost preserving kernel approximation

In addition to the basic spectral approximation guarantee of Theorem 3, we prove that, with high prob-
ability, the RLS-Nyström method presented in Algorithm 1 outputs an approximation ˜
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what is known as a projection-cost preservation guarantee.
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Intuitively, Theorem 12 ensures that the distance from ˜

K to any low dimensional subspace closely
approximates the distance from K to the subspace. Accordingly, ˜

K can be used in place of K to
approximately solve low-rank approximation problems, both constrained (e.g. k-means clustering)
and unconstrained (e.g. principal component analysis). See Theorems 17 and 18.
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C Correctness of Recursive RLS-Nyström Algorithm

In this section we prove Theorem 8, our main recursive invariant for proving the correctness of
Algorithm 2, RECURSIVERLS-NYSTRÖM.
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Proof. RECURSIVERLS-NYSTRÖM is a recursive algorithm and we prove Theorem 8 via induction
on the size of the input, m. In particular, we will show that, if Theorem 8 holds for any all m < n,
then it also holds for m = n. Our base case is m = 1.

Base case: Theorem 8 holds for any inputs as long as m = 1.

Suppose m = 1, so the input consists of a single point x
1

. Then the if statement on Line 1 clearly
evaluates to true since 192 log(1/�) > 1. So, S is set to a 1⇥ 1 identity matrix and (20) of Theorem
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all holds with probability 1, and thus for any input failure probability �.

Inductive Step: Theorem 8 holds for m = n as long as it holds for all m < n.

Depending on the setting of �, we split our analysis into 2 cases:

Case 1: The number of input data points n is < 192 log(1/�).

In this case, as for the base case, the if statement on Line 1 evaluates to true. S is set to an n ⇥ n
identity matrix so (6) holds trivially. Furthermore, the number of samples s is equal to n, and
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dot products, the runtime bound required by Theorem 8 holds, and all statements hold with probability
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Case 2: The number of input data points n is � 192 log(1/�).

For this case we will use our inductive assumption since RECURSIVERLS-NYSTRÖM will call itself
recursively at Step 5, for a smaller input size m < n.

We first note that the expected number of samples taken in Step 4 is n/2. I.e. E | ¯S| = n/2. By a
standard multiplicative error Chernoff bound, with high probability the number of samples taken
is not much larger than this expectation. This is important because it tells us that our problem size
decreases substantially before we make the recursive call in Step 5. Following the simplified Chernoff
bounds in e.g. [MU17], when n � 192 log(1/�), and thus E | ¯S| � 96 log(1/�), we have :

P
⇥

1  | ¯S|  .56n
⇤

� (1� �) (21)

as long as � < 1/32, as required by Theorem 8.

So, with probability (1� �), on Step (5), RECURSIVERLS-NYSTRÖM is called recursively on a data
set ¯X of size � 1 and  .56n. Accordingly, we can apply our inductive assumption that Theorem 8
holds for all m between 1 and n� 1 to conclude that, with probability (1� 3 · �/3)2:

1. Let K
¯S denote the kernel matrix for the data points in ¯

X (corresponding to the sample ¯S
with kernel function K. Then B

¯S =

¯

S

T

B satisfies B
¯SB

T

¯S = K

¯S . Thus:

1

2

(B

T

¯SB ¯S + �I) � (B

T

¯S
˜

S

˜

S

T

B

¯S + �I) � 3

2

(B

T

¯SB ¯S + �I). (22)

2. ˜

S has  s
max

(d�eff(K ¯S), �/3) columns.

3. The recursive call at Step 5 evaluates K, the kernel function,  c
1

· | ¯S| ·s
max

(d�eff(K ¯S), �/3)
times and uses  c

2

· | ¯S| · s
max

(d�eff(K ¯S), �/3)
2 additional runtime steps.

We first use (22) to prove (20). We can write K

¯S =

¯

S

T

K

¯

S. For all i 2 {1, . . . n} let

¯`�
i

=

⇣

B

�

B

T

¯

S

¯

S

T

B+ �I
��1

B

T

⌘

i,i

and p̄
i

= min{1, 16¯l�
i

log(

X

i

¯l�
i

/�)}.

2Note that in Step 5 we run RECURSIVERLS-NYSTRÖM with failure probability �/3

18



By Lemma 5, since ¯
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B, it follows from (22) and from the well known fact that M � N =)
N

�1 � M

�1, that for any vector z,

2

3

z

T

�

B

T

¯

S

¯

S

T

B+ �I
��1

z  z

T

⇣

B

T

¯

S

˜

S

˜

S

T

¯

S

T

B+ �I
⌘�1

z  2z

T

�

B

T

¯

S

¯

S

T

B+ �I
��1

z.

Accordingly, since we set ˆS :=

¯

S · ˜S, for all i 2 {1, . . . , n}

¯`�
i

 3

2

✓

B

⇣

B

T

ˆ

S

ˆ

S

T

WB+ �I
⌘�1

B

T

◆

i,i

 3

¯`�
i

. (24)

By Lemma 6, the middle term is exactly equal to ˜l�
i

as computed in Step 7 of
RECURSIVERLS-NYSTRÖM. So combining (24) and (23) we have that:

˜`�
i

� `�
i

(K) and
n

X

i=1

p
i

 192d�eff(K) log

�

d�eff(K)/�
�

. (25)

The second bound holds because, as computed on Step 8 of RECURSIVERLS-NYSTRÖM,

p
i

= min{1, ˜l�
i

· 16 log(
X

˜l�
i

/�)}  3min{1, ¯l�
i

· 16 log(
X

¯l�
i

/�)}

= 3p̄
i

 192d�eff(K) log

�

d�eff(K)/�
�

by (24). Equation (25) guarantees that S is sampled by valid over-estimates of the ridge leverage
scores and we have a bound on the sum of the sampling probabilities. So, to establish (20), we just
apply the matrix Bernstein results presented in Lemma 9. We conclude that, with probability (1� �),

1

2

(B

T

B+ �I) � (B

T

SS

T

B+ �I) � 3

2

(B

T

B+ �I) for any B with BB

T

= K.

The same lemma guarantees that S will have s columns where

1

2

X

p
i

 s  2

X

p
i

. (26)

2

P

p
i

 384d�eff(K) log

�

d�eff(K)/�
�

 s
max

(d�eff(K), �) columns.

To finish our proof of Theorem 8, we still need a bound the algorithms runtime.

Kernel evaluations are performed both during the recursive call at Step 5 and when computing
approximate leverage scores at Step 7. Let s̃ be the number of columns in ˜

S, and hence in ˆ

S. At Step
7, K needs to be evaluated n · (s̃+ 1) times: ns̃ times to compute K

ˆ

S and n times to compute the
diagonal of K. Additionally, by the 3rd guarantee that comes from our inductive assumption, we
need at most c

1

· | ¯S| · s
max

(d�eff(K ¯S), �/3) kernel evaluations for the recursive call. We claim that:

s
max

(d�eff(K ¯S), �/3)  1.317s
max

(d�eff(K), �). (27)

This follows from Lemma 20: since K
¯S =

¯

S

T

K

¯

S and ¯

S

¯

S

T � I for any sampling matrix, d�eff(K ¯S) 
d�eff(K). Additionally, we use that log(3/�)  1.317 log(1/�) when �  1/32.

Using this bound and (21) we see that our total number of kernel evaluations can be bounded by:

n · (s̃+ 1) + c
1

· | ¯S| · s
max

(d�eff(K ¯S), �/3)

 n · (s
max

(d�eff(K ¯S), �/3) + 1) + c
1

· .56n · s
max

(d�eff(K ¯S), �/3)

 (2.317 + .74c
1

)n · s
max

(d�eff(K), �).

As long as c
1

> 9, the above is < c
1

ns
max

(d�eff(K), �), so we see that RECURSIVERLS-NYSTRÖM
run on a data set of size n performs no more kernel evaluations than that allowed by Theorem 8.
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We finally bound runtime, accounting for the recursive call to RECURSIVERLS-NYSTRÖM and all
other steps. Again, using the 3rd guarantee from our inductive assumption, (27), and (21) to bound
| ¯S|, the recursive call that computes ˜S has runtime at most:

c
2

· | ¯S| · s
max

(d�eff(K ¯S), �/3)
2  .972c

2

n · s
max

(d�eff(K), �)2.

In addition to the recursive call, the remaining runtime of the algorithm is dominated by the time to

compute
⇣

ˆ

S

T

K

ˆ

S+ �I
⌘�1

and then to multiply this matrix by the n⇥ s̃ matrix K

ˆ

S at Step 7. Both
of these operations and all other steps can be performed in O(s̃3 + ns̃2) time. Since s̃  n, there is
some constant c such that the number of steps required for the algorithm besides the recursive call is
cns̃2  cns

max

(d�eff(K ¯S), �/3)
2. Again applying (27), our total runtime is bounded by:

.972c
2

n · s
max

(d�eff(K), �)2 + cns
max

(d�eff(K ¯S), �/3)
2

which is  c
2

n · s
max

(d�eff(K), �)2 as long as c
2

� 40c.

The proof of our statements above relied on three events succeeding: (21), (23), that the recursive
call succeeded in satisfying (22) and the two following guarantees. Each of these events fails with
probability at most �, so we conclude via a union bound that they all succeed with probability 1� 3�.

Accordingly, we have proven that Theorem (8) holds for fixed universal constants c
1

and c
2

for any
input data set of size n as long as it holds for any input data set of size m with 1  m < n. Along
with our base case, this establishes the theorem for all input sizes.

D Recursive RLS-Nyström algorithm for fixed sample size

We now discuss our variant of Algorithm 2 where, instead of fixing �, the user sets a sample size s and
� is determined such that s = ⇥(d�eff · log(d�eff/�)). This variant is practically useful and necessary in
applications to kernel PCA and kernel k-means clustering, when � is unknown, but where we set
s ⇡ k log k (see Appendices B and E).

Given a fixed sample size s, we will control � using the following fact:
Fact 13 (Proven in (19)). For any K and integer k, for � =

1

k

P

n

i=k+1

�
i

(K), d�eff  2k.

If we choose k such that s ⇡ k log k then setting � as above will yield an RLS-Nyström approximation
with approximately s sampled columns. The details are given in Algorithm 3.

Algorithm 3 RECURSIVE RLS-NYSTRÖM SAMPLING, FIXED SAMPLE SIZE.
input: x

1

, . . . ,x
m

2 X , kernel function K : X ⇥X ! R, sample size s, failure prob. � 2 (0, 1/32)

output: sampling matrix S 2 Rm⇥s

0
.

1: if m  s then
2: return S := I

m⇥m

.
3: end if
4: Let ¯S be a random subset of {1, ...,m}, with each i included independently with probability 1

2

.
. Let ¯X = {x

i

1

,x
i

2

, ...,x
i| ¯S|} for i

j

2 ¯S be the data sample corresponding to ¯S.
. Let ¯S = [e

i

1

, e
i

2

, ..., e
i| ¯S| ] be the sampling matrix corresponding to ¯S .

5: ˜

S := RECURSIVERLS-NYSTRÖM(

¯

X,K, s, �/3).
6: ˆ

S :=

¯

S · ˜S.
7: Set k to the maximum integer with ck log(2k/�)  s, where c is some fixed constant.
8: ˜� :=

1

k

P

n

i=k+1

�
i

(

ˆ

S

T

K

ˆ

S) . Approximate �

9: Set ˜l�
i

:=

5

˜

�

✓

K�K

ˆ

S

⇣

ˆ

S

T

K

ˆ

S+

˜�I
⌘�1

ˆ

S

T

K

◆

i,i

for each i 2 {1, ...,m}.

. By Lemma 6, equals 3

2

(B(B

T

ˆ

S

ˆ

S

T

B+

˜�I)�1

B

T

)

i,i

. K denotes the kernel matrix for data-
points {x

1

, . . . ,x
m

} and kernel function K.
10: Set p

i

:= min{1, ˜l�
i

· 16 log(2k/�)} for each i 2 {1, ...,m}.
11: Initially set weighted sampling matrix S to be empty. For each i 2 {1, . . . ,m}, with probability

p
i

, append the column 1p
p

i

e

i

onto S.
12: return S
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Theorem 14. For sufficiently large universal constant c, let k be any positive integer with s �
ck log(2k/�) and � =

1

k

P

n

i=k+1

�
i

(K). Let S 2 Rn⇥s

0
be computed by Algorithm 3. With

probability 1 � 3�, s0  2s, S is sampled by overestimates of the �-ridge leverage scores of K,
and the Nyström approximation ˜

K = KS(S

T

KS)

+

S

T

K satisfies the guarantee of Theorem 3.
Algorithm 3 uses O(ns) kernel evaluations and O(ns2) runtime.

For the � given in Theorem 14, we have d�eff = ⇥(k). Hence, since we set s = ⇥(k log k/�), additive
error � is essentially the smallest we can obtain using an s sample Nyström approximation. The proof
of Theorem 14 is similar to that of Theorem 7. It follows from the recursive invariant:
Theorem 15. With probability 1 � 3�, Algorithm 3 performs O(ns) kernel evaluations, runs in
O(ns2) time, and for any integer k with s � ck log(2k/�) returns S satisfying, for any B with
BB

T

= K:
1

2

(B

T

B+ �I) � (B

T

SS

T

B+ �I) � 3

2

(B

T

B+ �I) (28)

for � =

1

k

P

n

i=k+1

�
i

(K).

Proof. Assume by induction that after forming ¯

S via uniformly sampling, the recursive call to
Algorithm 3 returns ˜S such that ˆS =

¯

S · ˜S satisfies:

1

2

(B

T

¯

S

¯

S

T

B+ �0
I) � (B

T

ˆ

S

ˆ

S

T

B+ �0
I) � 3

2

(B

T

¯

S

¯

S

T

B+ �0
I). (29)

where �0
=

1

k

P

n

i=k+1

�
i

(

¯

S

T

K

¯

S). This implies that ˜� =

1

k

P

n

i=k+1

�
i

(

ˆ

S

T

K

ˆ

S) satisfies:

1

2k

 

n

X

i=k+1

�
i

(

¯

S

T

K

¯

S) + k�0

!

 ˜�  3

2k

 

n

X

i=k+1

�
i

(

¯

S

T

K

¯

S) + k�0

!

�0  ˜�  3�0.

Combining with (29) we have:

1

2

(B

T

¯

S

¯

S

T

B+ �0
I) � (B

T

ˆ

S

ˆ

S

T

B+

˜�I) � 9

2

(B

T

¯

S

¯

S

T

B+ �0
I).

So, for all i, ˜l�
i

(which is computed using (B

T

ˆ

S

ˆ

S

T

B+

˜�I) and oversampling factor 5 in Step 9 of
Algorithm 3) is at least as large as the approximate leverage score computed using ¯

S instead of ˆS. If
we sample by these scores, by Lemma 5 and Lemma 9 we will have with probability 1� �:

1

2

(B

T

B+ �0
I) � (B

T

SS

T

B+ �0
I) � 3

2

(B

T

B+ �0
I)

which implies (28) since �0  � since k¯Sk
2

 1 so �
i

(

¯

S

T

K

¯

S)  �
i

(K) for all i.

It just remains to show that we do not sample too many points. This can be shown using a sim-
ilar reweighting argument to that used in the fixed � case in Lemma 5. Full details appear in
Lemma 13 of [CMM17]. When forming the reweighting matrix W, decreasing W

i,i

will decrease
P

n

i=k+1

�
i

(WKW) and hence will decrease �. However, it is not hard to show that the ith ridge
leverage score will still decrease. So we can find W giving a uniform ridge leverage score upper
bound of ↵. Let �0

=

P

n

i=k+1

�
i

(WKW).

Using the same argument as Lemma 5, we can bound the sum of estimated sampling probabilities by
64 log(

P

l�
0

i

(WKW)/�) ·
P

l�
0

i

(WKW)  s/5 by Fact 13 if we set c large enough. The runtime
and failure probability analysis is identical to that of Algorithm 2 (Theorem 8) – the only extra step is
computing ˜� which can be done in O(s3) time via an SVD of ˆST

K

ˆ

S.

Proof of Theorem 14. The theorem follows immediately since Theorem 15 guarantees that in the
final level of recussion K is sampled by overestimates of its �-ridge leverage scores. The runtime
bound follows from Theorem 15 and the fact that it is possible to compute KS using O(ns) kernel
evaluations and (S

T

KS)

+ using O(ns2 + s3) = O(ns2) additional time.
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E Applications to learning tasks

In this section use our general approximation gaurantees from Theorems 3 and 12 to prove that
the kernel approximations given by RLS-Nyström sampling are sufficient for many downstream
learning tasks. In other words, ˜K can be used in place of K without sacrificing accuracy or statistical
performance in the final computation.

E.1 Kernel ridge regression

We begin with a standard formulation of the ubiquitous kernel ridge regression task [SS02]. Given
input data points x

1

, . . . ,x
n

2 Rd and labels y
1

, . . . , y
n

2 R this problem asks us to solve:

↵
def

= argmin

c2Rn

kKc� yk2
2

+ �cTKc, (30)

which can be done in closed form by computing:

↵ = (K+ �I)�1

y.

For prediction, when we’re given a new input x, we evaluate its label to be:

y =

n

X

i=1

↵
i

K(x

i

,x). (31)

E.1.1 Approximate kernel ridge regression

Naively, solving for ↵ exactly requires at least O(n2

) time to compute K, plus the cost of a direct
or iterative matrix inversion algorithm. Prediction is also costly since it requires a kernel evaluation
with all n training points. These costs can be reduced significantly using Nyström approximation.

In particular, we first select landmark points and compute the kernel approximation ˜

K =

KS(S

T

KS)

+

S

T

K. We can then compute an approximate set of coefficients:

↵̃
def

= (

˜

K+ �I)�1

y. (32)

With a direct matrix inversion, doing so only takes O(ns2) time when our sampling matrix S 2 Rn⇥s

selects s landmark points. This is a significant improvement on the O(n3

) time required to invert
the full kernel. Additionally, the cost of multiplying by ˜

K+ �I, which determines the cost of most
iterative regression solvers, is reduced, from O(n2

) to O(ns).

To predict a label for a new x, we first compute its kernel product with all of our landmark points.
Specifically, let x(1), . . . ,x(s) be the landmarks selected by S’s columns. Define w 2 Rs as:

w

i

def

= K(x

(i),x).

and let

y = w

T

(S

T

KS)

+

S

T

K↵̃. (33)

Computationally, it makes sense to precompute (S

T

KS)

+

S

T

K↵̃. Then the cost of prediction is just
s kernel evaluations to compute w, plus s additional operations to multiply w

T by (S

T

KS)

+

S

T

K↵̃.

This approach is the standard way of applying Nyström approximation to the ridge regression problem
and there are a number of ways to evaluate its performance. Beyond directly bounding minimization
error for (30) (see e.g. [CLL+15, YPW15, YZ13]), one particularly natural approach is to consider
how the statistical risk of the estimator output by our approximate ridge regression routine compares
to that of the exactly computed estimator.

E.1.2 Relative error bound on statistical risk

To evaluate statistical risk we consider a fixed design setting which has been especially -popular
[Bac13, AM15, LJS16, PD16]. Note that more complex statistical models can be analyzed as well
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[HKZ14, RCR15]. In this setting, we assume that our observed labels y = [y
1

, . . . , y
n

] represent
underlying true labels z = [z

1

, . . . , z
n

] perturbed with noise. For simplicity, we assume uniform
Gaussian noise with variance �2, but more general noise models can be handled with essentially the
same proof [Bac13]. In particular, our modeling assumption is that:

y
i

= z
i

+ ⌘
i

where ⌘
i

⇠ N(0,�2

).

Following, [Bac13] and [AM15], we want to bound the expected in sample risk of our estimator for
z, which is computed using the noisy measurements y = z+ ⌘. For exact kernel ridge regression,
we can check from (31) that this estimator is equal to K↵. The risk R is:

R def

= E
⌘
kK(K+ �I)�1

(z+ ⌘)� zk2
2

= k
�

K(K+ �I)�1 � I

�

zk2
2

+ E
⌘
kK(K+ �I)�1⌘k2

2

= �2

z

T

(K+ �I)�2

z+ �2

tr(K

2

(K+ �I)�2

).

The two terms that compose R are referred to as the bias and variance terms of the risk:

bias(K)

2

def

= �2

z

T

(K+ �I)�2

z

variance(K)

def

= �2

tr(K

2

(K+ �I)�2

).

For approximate kernel ridge regression, it follows from (33) that our predictor for z is ˜

K↵̃. Accord-
ingly, the risk of the approximate estimator, ˜R is equal to:

˜R = bias(˜K)

2

+ variance(˜K)

We’re are ready to prove our main theorem on kernel ridge regression.
Theorem 16 (Kernel Ridge Regression Risk Bound). Suppose ˜

K is computed using RLS-Nyström
with approximation parameter ✏� and failure probability � 2 (0, 1/8). Let ↵̃ = (

˜

K+ �I)�1

y and
let ˜

K↵̃ be our estimator for z computed with the approximate kernel. With probability 1� �:
˜R  (1 + 3✏)R.

By Theorem 7, Algorithm 2 can compute ˜

K with just O(ns) kernel evaluations and O(ns2) computa-

tion time, with s = O

✓

d

�

eff

✏

log

d

�

eff

�✏

◆

.

In other words, replacing K with the approximation ˜

K is provably sufficient for obtaining a 1 +⇥(✏)
quality solution to the downstream task of ridge regression.

Proof. The proof follows that of Theorem 1 in [AM15]. First we show that:

bias(˜K)  (1 + ✏)bias(K). (34)
At first glance this might appear trivial as Theorem 3 easily implies that

(

˜

K+ �I)�1 � (1 + ✏)(K+ �I)�1

However, this statement does not imply that

(

˜

K+ �I)�2 � (1 + ✏)2(K+ �I)�2

since (

˜

K+ �I)�1 and (K+ �I)�1 do not necessarily commute. Instead we proceed:
1

�
bias(˜K) = k(˜K+ �I)�1

zk
2

 k(K+ �I)�1

zk
2

+ k(˜K+ �I)�1

z� (K+ �I)�1

zk
2

(triangle inequality)

= k(K+ �I)�1

zk
2

+ k(˜K+ �I)�1

[(K+ �I)� (

˜

K+ �I)](K+ �I)�1

zk
2

= k(K+ �I)�1

zk
2

+ k(˜K+ �I)�1

(K� ˜

K)(K+ �I)�1

zk
2

 k(K+ �I)�1

zk
2

+ k(˜K+ �I)�1

(K� ˜

K)k
2

k(K+ �I)�1

zk
2

(submultiplicativity)

=

1

�
bias(K)

⇣

1 + k(˜K+ �I)�1

(K� ˜

K)k
2

⌘

. (35)
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So we just need to bound k(˜K+ �I)�1

(K� ˜

K)k
2

 ✏. First note that, by Theorem 3, Corollary 4,

K� ˜

K � ✏�I

and since (K� ˜

K) and I commute, it follows that

(K� ˜

K)

2 � ✏2�2

I. (36)
Accordingly,

k(˜K+ �I)�1

(K� ˜

K)k2
2

= k(˜K+ �I)�1

(K� ˜

K)

2

(

˜

K+ �I)�1k
2

 ✏2�2k(˜K+ �I)�2k
2

 ✏2�2

1

�2

= ✏2.

So k(˜K + �I)�1

(K � ˜

K)k
2

 ✏ as desired and plugging into (35) we have shown (34), that
bias(˜K)  (1 + ✏)bias(K). We next show that:

variance(˜K)  variance(K), (37)

where variance(K) = �2

tr(K

2

(K+ �I)�2

) = �2

P

n

i=1

⇣

�

i

(K)

�

i

(K)+�

⌘

2

. Since ˜

K � K by Theorem

3, �
i

(

˜

K)  �
i

(K) for all i. It follows that, for every i,

�
i

(

˜

K)

�
i

(

˜

K) + �
 �

i

(K)

�
i

(K) + �
.

This in turn implies that
n

X

i=1

 

�
i

(

˜

K)

�
i

(

˜

K) + �

!

2


n

X

i=1

✓

�
i

(K)

�
i

(K) + �

◆

2

,

which gives (37). Combining (37) and (34) we conclude that, for ✏ < 1,

R(

ˆf
˜

K

)  (1 + ✏)2R(

ˆf
K

)  (1 + 3✏)R(

ˆf
K

).

E.2 Kernel k-means

Kernel k-means clustering asks us to partition x

1

, . . . ,x
n

, into k cluster sets, {C
1

, . . . , C
k

}. Let
µ

i

=

1

|C
i

|
P

x

j

2C

i

�(x
j

) be the centroid of the vectors in C
i

after mapping to kernel space. The goal
is to choose {C

1

, . . . , C
k

} which minimize the objective:
k

X

i=1

X

x

j

2C

i

k�(x
j

)� µ
i

k2F (38)

It is well known that this optimization problem can be rewritten as a constrained low-rank approxima-
tion problem (see e.g. [BMD09] or [CEM+15]). In particular, for any clustering C = {C

1

, . . . , C
k

}
we can define a rank k orthonormal matrix C 2 Rn⇥k called the cluster indicator matrix for C.
C

i,j

= 1/
p

|C
j

| if x
i

is assigned to C
j

and C

i,j

= 0 otherwise. CT

C = I, so CC

T is a rank k
projection matrix. Furthermore, it is not hard to check that:

k

X

i=1

X

x

j

2C

i

k�(x
j

)� µ
i

k2F = tr

�

K�CC

T

KCC

T

�

. (39)

Informally, if we work with the kernalized data matrix �, (39) is equivalent to

k��CC

T

�k2
F

.

Regardless, it’s clear that solving kernel k-means is equivalent to solving:

min

C2S
tr

�

K�CC

T

KCC

T

�

(40)

where S is the set of all rank k cluster indicator matrices. From this formulation, we easily obtain:
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Theorem 17 (Kernel k-means Approximation Bound). Let ˜

K be computed by RLS-Nyström with
� =

✏

k

P

n

i=k+1

�
i

(K) and � 2 (0, 1/8). Let ˜C⇤ be the optimal cluster indicator matrix for ˜

K and
let ˜C be an approximately optimal cluster indicator matrix satisfying:

tr

⇣

˜

K� ˜

C

˜

C

T

˜

K

˜

C

˜

C

T

⌘

 (1 + �) tr
⇣

˜

K� ˜

C

⇤
˜

C

⇤T
˜

K

˜

C

⇤
˜

C

⇤T
⌘

.

Then, if C⇤ is the optimal cluster indicator matrix for K:

tr

⇣

K� ˜

C

˜

C

T

K

˜

C

˜

C

T

⌘

 (1 + �)(1 + ✏) tr
�

K�C

⇤
C

⇤T
KC

⇤
C

⇤T �

By Theorem 14, Algorithm 3 can compute ˜

K with O(ns) kernel evaluations and O(ns2) computation
time, with s = O

�

k

✏

log

k

�✏

�

.

In other words, if we find an optimal set of clusters for our approximate kernel matrix, those clusters
will provide a (1+ ✏) approximation to the original kernel k-means problem. Furthermore, if we only
solve the kernel k-means problem approximately on ˜

K, i.e. with some approximation factor (1 + �),
we will do nearly as well on the original problem. This flexibility allows for the use of k-means
approximation algorithms (since the problem is NP-hard to solve exactly).

Proof. The proof is almost immediate from our bounds on RLS-Nyström:

tr

⇣

K� ˜

C

˜

C

T

K

˜

C

˜

C

T

⌘

 tr

⇣

˜

K� ˜

C

˜

C

T

˜

K

˜

C

˜

C

T

⌘

+ c (Theorem 12)

 (1 + �) tr
⇣

˜

K� ˜

C

⇤
˜

C

⇤T
˜

K

˜

C

⇤
˜

C

⇤T
⌘

+ (1 + �)c (by assumption)

 (1 + �) tr
⇣

˜

K�C

⇤
C

⇤T
˜

KC

⇤
C

⇤T
⌘

+ (1 + �)c (optimality of ˜

C

⇤ )

 (1 + �) tr
⇣

˜

K�C

⇤
C

⇤T
˜

KC

⇤
C

⇤T
⌘

+ c (since c � 0)

 (1 + �)(1 + ✏) tr
⇣

K� ˜

C

⇤
C

⇤T
KC

⇤
C

⇤T
⌘

. (Theorem 12)

E.3 Kernel principal component analysis

We consider the standard formulation of kernel principal component analysis (PCA) presented in
[SSM99]. The goal is to find principal components in the kernel space F that capture as much
variance in the kernelized data as possible. In particular, if we work informally with the kernelized
data matrix �, we want to find a matrix Z

k

containing k orthonormal columns such that:

��

T � (�Z

k

Z

T

k

)(�Z

k

Z

T

k

)

T

is as small as possible. In other words, if we project �’s rows to the k dimensional subspace spanned
by V

k

’s columns and then recompute our kernel, we want the approximate kernel to be close to the
original.

We focus in particular on minimizing PCA error according to the metric:

tr

⇣

��

T � (�Z

k

Z

T

k

)(�Z

k

Z

T

k

)

T

⌘

= k���Z

k

Z

T

k

k2
F

, (41)

which is standard in the literature [Woo14, ANW14]. As with f in kernel ridge regression, to solve
this problem we cannot write down Z

k

explicitly for most kernel functions. However, the optimal
Z

k

always lies in the column span of �T , so we can implicitly represent it by constructing a matrix
X 2 Rn⇥k such that �T

X = Z

k

. It is then easy to compute the projection of any new data vector
onto the span of Z

k

(the typical objective of principal component analysis) since we can multiply by
�

T

X using the kernel function.

By the Eckart-Young theorem the optimal Z
k

contains the top k row principal components of �.
Accordingly, if we write the singular value decomposition � = U⌃V

T we want to set X = U

k

⌃

�1

k

,
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which can be computed from the SVD of K = U⌃

2

U

T . Z
k

will equal V
k

and (41) reduces to:

tr(K��V

k

V

T

k

�) = tr(K�V

k

V

T

k

K) (cyclic property)

=

n

X

i=k+1

�
i

(K). (42)

Theorem 18 (Kernel PCA Approximation Bound). Let ˜

K be computed by RLS-Nyström with
� =

✏

k

P

n

i=k+1

�
i

(K) and � 2 (0, 1/8). From ˜

K we can compute a matrix X 2 Rs⇥k such that if
we set Z = �

T

SX, with probability 1� �:

k���ZZ

T k2
F

 (1 + 2✏)k���V

k

V

T

k

k2
F

= (1 + 2✏)

n

X

i=k+1

�
i

(K).

By Theorem 14, Algorithm 3 can compute ˜

K with O(ns) kernel evaluations and O(ns2) computation
time, with s = O

�

k

✏

log

k

�✏

�

.

Note that S is the sampling matrix used to construct ˜

K. Z = �

T

SX can be applied to vectors (in
order to project onto the approximate low-rank subspace) using only s kernel evaluations.

Proof. Re-parameterizing Z

k

= �

T

Y, we see that minimizing (41) is equivalent to minimizing

tr(K�KYY

T

K)

over Y 2 Rn⇥k such that (�T

Y)

T

�

T

Y = Y

T

KY = I. Then we re-parameterize again by writing
Y = K

�1/2

W where W is an n⇥ k matrix with orthonormal columns. Using linearity and cyclic
property of the trace, we can write:

tr(K�KYY

T

K) = tr(K)� tr(Y

T

KKY) = tr(K)� tr(W

T

KW) = tr(K)� tr(WW

T

KWW

T

).

So, we have reduced our problem to a low-rank approximation problem that looks exactly like the
k-means problem from Section E.2, except without constraints.

Accordingly, following the same argument as Theorem 17, if we find ˜

W minimizing:

tr(

˜

K)� tr(

˜

W

˜

W

T

˜

K

˜

W

˜

W

T

),

then:

tr(K)� tr(

˜

W

˜

W

T

K

˜

W

˜

W

T

)  (1 + ✏)
h

min

W

tr(K)� tr(WW

T

KWW

T

)

i

= (1 + ✏)

n

X

i=k+1

�
i

(K).

˜

W can be taken to equal the top k eigenvectors of ˜

K, which can be found in O(n · s2) time.

However, we are not quite done. Thanks to our re-parameterization this bound guarantees that
�

T

K

�1/2

˜

W is a good set of approximate kernel principal components for �. Unfortunately,
�

T

K

�1/2

˜

W cannot be represented efficiently (it requires computing K

�1/2) and projecting new
vectors to �

T

K

�1/2

˜

W would require n kernel evaluations to multiply by �

T .

Instead, recalling the definition of P
S

= �

T

S(S

T

K

T

S)

+

S

T

� from Section 2.1, we suggest using
the approximate principal components:

P

S

�

T

˜

K

�1/2

˜

W.

Clearly P

S

�

T

˜

K

�1/2

˜

W is orthonormal because:

(P

S

�

T

˜

K

�1/2

˜

W)

T

P

S

�

T

˜

K

�1/2

˜

W =

˜

W

T

˜

K

�1/2

�

T

P

S

�

˜

K

�1/2

˜

W

=

˜

W

T

I

˜

W = I.
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We will argue that it is offers nearly as a good of a solution as �T

K

�1/2

˜

W. Specifically, substituting
into (41) gives a value of:

tr(K��P

S

�

T

˜

K

�1/2

˜

W

˜

W

T

˜

K

�1/2

�P

S

�

T

) = tr(K)� tr(

˜

W

˜

W

T

˜

K

�1/2

�P

S

�

T

�P

S

�

T

˜

K

�1/2

)

= tr(K)� tr(

˜

W

˜

W

T

˜

K

�1/2

˜

K

2

˜

K

�1/2

)

= tr(K)� tr(

˜

W

˜

W

T

˜

K).

Compare this to the value obtained from �

T

K

�1/2

˜

W:
h

tr(K)� tr(

˜

W

˜

W

T

K

˜

W

˜

W

T

)

i

�
h

tr(K)� tr(

˜

W

˜

W

T

˜

K

˜

W

˜

W

T

)

i

= tr

⇣

˜

W

˜

W

T

(K� ˜

K)

⌘

= tr

⇣

˜

W

T

(K� ˜

K)

˜

W

⌘

=

k

X

i=1

w̃

T

i

(K� ˜

K)w̃

i

 k
✏

k

n

X

i=k+1

�
i

(K).

(43)

The last step follows from Theorem 3 which guarantees that (K � ˜

K) � ✏�I. Recall that we set
� =

✏

k

P

n

i=k+1

�
i

(K) and each column w̃

i

of ˜

W has unit norm.

We conclude that the cost obtained by P

S

�

T

˜

K

�1/2

˜

W is bounded by:

tr(K��P

S

�

T

˜

K

�1/2

˜

W

˜

W

T

˜

K

�1/2

�P

S

�

T

)  tr(K)� tr(

˜

W

˜

W

T

K

˜

W

˜

W

T

) + ✏
n

X

i=k+1

�
i

(K)

 (1 + 2✏)

n

X

i=k+1

�
i

(K).

This gives the result. Notice that P
S

�

T

˜

K

�1/2

˜

W = �

T

S(S

T

K

T

S)

+

S

T

��

T

˜

K

�1/2

˜

W so, if we
set:

X = (S

T

K

T

S)

+

S

T

˜

K

1/2

˜

W,

our solution can be represented as Z = �

T

SX as desired.

E.4 Kernel canonical correlation analysis

We briefly discuss a final application to canonical correlation analysis (CCA) that follows from
applying our spectral approximation guarantee of Theorem 3 to recent work in [Wan16].

Consider n pairs of input points (x
1

,y
1

), ..., (x
n

,y
n

) 2 (X ,Y) along with two positive semidefinite
kernels, K

x

: X ⇥ X ! R and K
y

: Y ⇥ Y ! R. Let F
x

and F
y

and �
x

: X ! F
x

and
�
y

: Y ! F
y

be the Hilbert spaces and feature maps associated with these kernels. Let �
x

and
�

y

denote the kernelized X and Y inputs respectively and K

x

and K

y

denote the associated kernel
matrices.

We consider standard regularized kernel CCA, following the presentation in [Wan16]. The goal is to
compute coefficient vectors ↵x and ↵y such that f⇤

x

=

P

n

i=1

↵x

i

�
x

(x

i

) and f

⇤
y

=

P

n

i=1

↵y

i

�
y

(y

i

)

satisfy:

(f

⇤
x

, f⇤
y

) = argmax

f

x

2F
x

,f

y

2F
y

f

T

x

�

T

x

�

y

f

⇤
y

subject to

f

T

x

�

T

x

�

x

f

x

+ �
x

kf
x

k2F
x

= 1

f

T

y

�

T

y

�

y

f

y

+ �
y

kf
y

k2F
y

= 1

In [Wan16], the kernelized points are centered to their means. For simplicity we ignore centering, but
note that [Wan16] shows how bounds for the uncentered problem carry over to the centered one.

It can be shown that ↵x

= (K

x

+ �
x

I)

�1�x and ↵y

= (K

y

+ �
y

I)

�1�y where �x and �y are the
top left and right singular vectors respectively of

T = (K

x

+ �
x

I)

�1

K

x

K

y

(K

y

+ �
y

I)

�1.
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The optimum value of the above program will be equal to �
1

(T).

[Wan16] shows that if ˜

K

x

and ˜

K

y

satisfy:

˜

K

x

� K

x

� ˜

K

x

+ ✏�
x

I

˜

K

y

� K

y

� ˜

K

y

+ ✏�
x

I

then if ↵̃x and ↵̃y are computed using these approximations, the achieved objective function value
will be within ✏ of optimal (see their Lemma 1 and Theorem 1). So we have:

Theorem 19 (Kernel CCA Approximation Bound). Suppose ˜

K

x

and ˜

K

y

are computed by RLS-
Nyström with approximation parameters ✏�

x

and ✏�
y

and failure probability � 2 (0, 1/8). If we
solve for ↵̃x and ↵̃y, the approximate canonical correlation will be within an additive ✏ of the true
canonical correlation �

1

(T).

By Theorem 7, Algorithm 2 can compute ˜

K

x

and ˜

K

y

with O(ns
x

+ ns
y

) kernel evaluations and

O(ns2
x

+ ns2
y

) computation time, with s
x

= O

✓

d

�

x

eff

✏

log

d

�

x

eff

�✏

◆

and s
y

= O

✓

d

�

y

eff

✏

log

d

�

y

eff

�✏

◆

.

F Additional proofs

F.1 Ridge leverage score approximation via uniform sampling

Lemma 5. For any B 2 Rn⇥n with BB

T

= K and S 2 Rn⇥s chosen by sampling each data point
independently with probability 1/2, let

˜l�
i

= b

T

i

(B

T

SS

T

B+ �I)�1

b

i

(44)

and p
i

= min{1, 16˜l�
i

log(

P

i

˜l�
i

/�)} for any � 2 (0, 1/8). Then with probability at least 1� �:

1. ˜l�
i

� l�
i

for all i.

2.
P

i

p
i

 64

P

i

l�
i

log(

P

i

l�
i

/�).

Proof. The first bound follows trivially since B

T

SS

T

B � B

T

B so:

˜l�
i

= b

T

i

(B

T

SS

T

B+ �I)�1

b

i

� b

T

i

(B

T

B+ �I)�1

b

i

= l�
i

.

The challenge is showing the second bound. The key observation is that there exists a diagonal
reweighting matrix W 2 Rn⇥n, 0 � W � I such that for all i, l�

i

(WKW)  ↵ where ↵
def

=

1

2

· 1

16 log(

P
l

�

i

/�)

. This bound ensures that uniformly sampling rows with probability 1/2 from the
reweighted kernel WKW is a valid ridge leverage score sampling. Additionally, |{i : W

i,i

< 1}| 
32 log(

P

l�
i

/�) ·
P

l�
i

. That is, we do not need to reweight too many columns to achieve the ridge
leverage score upper bound.

Although W is never actually computed, its existence can be proved algorithmically: we can construct
a valid W by iteratively considering any i with l�

i

(WKW) � ↵. Since � > 0, it is always possible
to decrease the ridge leverage score to exactly ↵ by decreasing W

i,i

sufficiently.

It is clear from the interpretation of Definition 1 given in (4) that decreasing W

i,i

, which corresponds
to decreasing the weight of one row of B, will only increase the ridge leverage scores of other rows.
So, any reweighted row will always maintain leverage score � ↵ as other rows are reweighted.
Theorem 2 of [CLM+15] demonstrates rigorously that the leverage scores of these reweighted rows
in fact converge to ↵. Furthermore, since W � I, it is not hard to show (see Lemma 20):

X

i

l�
i

(WKW) 
X

i

l�
i

(K)

def

=

X

i

l�
i

.

Thus, since each reweighted row has l�
i

(WKW) � ↵, ↵ · |{i : W
i,i

< 1}| 
P

i

l�
i

and so:

|{i : W
i,i

< 1}|  1

↵

X

i

l�
i

= 32 log

⇣

X

l�
i

/�
⌘

·
X

l�
i

.
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We can now bound
P

i

p
i

. For any i that is reweighted by W we just trivially bound p
i

 1. Since
l�
i

(WKW)  1

2

· 1

16 log(

P
l

�

i

/�)

for all i, and since S samples each i with probability 1/2, by the
matrix Bernstein bound of Lemma 9, with probability 1� �/2:

1

2

(B

T

W

2

B+ �I) � (B

T

WSS

T

WB+ �I) � 3

2

(B

T

W

2

B+ �I).

Hence:
˜l�
i

= b

T

i

(B

T

SS

T

B+ �I)�1

b

i

 b

T

i

(B

T

WSS

T

WB+ �I)�1

b

i

 2b

T

i

(B

T

W

2

B+ �I)�1

b

i

= 2l�
i

(WBB

T

W) = 2l�
i

(WKW).

Again using that W � I and Lemma 20,
P

{i:W
i,i

=1}
˜l�
i

 2

P

i

l�
i

. Overall:
X

i

p
i

=

X

{i:W
i,i

<1}

p
i

+

X

{i:W
i,i

=1}

p
i

 |{i : W
i,i

< 1}|+ 32 log

⇣

X

l�
i

/�
⌘

·
X

i

l�
i

= 64 log

⇣

X

l�
i

/�
⌘

·
X

i

l�
i

.

F.2 Formula for ridge leverage score computation

Lemma 6. For any sampling matrix S 2 Rn⇥s, and any � > 0:

˜l�
i

def

= b

T

i

(B

T

SS

T

B+ �I)�1

b

i

=

1

�

⇣

K�KS

�

S

T

KS+ �I
��1

S

T

K

⌘

i,i

.

It follows that we can compute ˜l�
i

for all i in O(ns2) time using just O(ns) kernel evaluations.

Proof. Using the SVD write S

T

B =

¯

U

¯

⌃

¯

V

T . ¯

V 2 Rn⇥s forms an orthonormal basis for the row
span of ST

B. Let ¯V? be span for the nullspace of ST

B. Then we can rewrite ˜l�
i

as:
˜l�
i

= b

T

i
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T
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T

B+ �I
��1

b
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= b
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⇥

¯
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⇤

(

¯

⌃

2

+ �I)�1

⇥

¯

V, ¯V?
⇤

T

b

i

.

Here we’re abusing notation a bit by letting ¯

⌃ represent an n ⇥ n diagonal matrix whose first s
entries are the singular values of ST

B and whose remaining entries are all equal to 0. Now:

˜l�
i

= b

T

i

⇥

¯

V, ¯V?
⇤

(
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?
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i

¯
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⌃
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¯
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T

b

T

i

.

(45)
Focusing on the second term of (45),
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i
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Focusing on the second term of (46),
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Substituting back into (46) and then (45), we conclude that:
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We can compute (S

T

KS+ �I)�1 in O(s3)  O(ns2) time and O(s2)  O(ns) kernel evaluations.
Given this inverse, computing the diagonal entries of KS

�

S

T

KS+ �I
��1

S

T

K requires just O(ns)

kernel evaluations to form KS and O(ns2) time to perform the necessary multiplications. Finally,
computing the diagonal entries of K requires n additional kernel evaluations.

F.3 Effective dimension bound

Lemma 20. For any W 2 Rn⇥p with WW

T � I,
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The  step follows from WW
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B. We thus have:
n

X

i=1

l�
i

(W

T

KW) =

p

X

i=1

�
i

(W

T

KW)

�
i

(W

T

KW) + �


n

X

i=1

�
i

(K)

�
i

(K) + �
=

n

X

i=1

l�
i

(K),

giving the lemma.

G Additional empirical results

G.1 Accelerated recursive method

While Recursive RLS-Nyström typically outperforms classic Nyström, on datasets with relatively
uniform ridge leverage scores, such as YearPredictionMSD, it only narrowly beats uniform sam-
pling in terms accuracy. As a result it incurs a higher runtime cost since it is slower per sample (see
Figure 3).

To combat this issue we implement a simple heuristic modification of our algorithm. We note that
the final cost of computing the Nyström factors KS and (S

T

KS)

+ is O(ns+ s3) for both methods.
Recursive RLS-Nyström is only slower because computing leverage scores at intermediate levels of
recursion takes O(ns2) time (Step 9, Algorithm 3) . This cost can be improved by simply adjusting
the regularization � to restrict the sample size on each recursive call to be < s. Specifically, we can
balance runtimes by taking ⇡

p

(ns+ s3)/n samples on lower levels.

Doing so improves our runtime, bringing the per sample cost down to approximately that of random
Fourier features and uniform Nyström (Figure 5a) while nearly maintaining the same approximation
quality.

For datasets such as Covertype in which Recursive RLS-Nyström performs significantly better than
uniform sampling, so does the accelerated method (see Figure 5b). However, the performance of the
accelerated method does not degrade when leverage scores are relatively uniform – it still offers the
best runtime to approximation quality tradeoff (Figure 5c).

We note further runtime optimizations may be possible. Subsequent work extends fast ridge leverage
score methods to distributed and streaming environments [CLV17]. Empirical evaluation of these
techniques could lead to even more scalable, high accuracy Nyström methods.
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(a) Runtimes for Covertype.
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(b) Errors for Covertype.
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Figure 5: Our accelerated Recursive RLS-Nyström, which undersamples at intermediate recursive
calls, nearly matches the per sample runtime of random Fourier features and uniform Nyström while
still providing approximation nearly as good as the standard Recursive RLS-Nyström. For datasets
like YearPredictionMSD with relatively uniform kernel leverage scores, the accelerated version
offers the best runtime vs. approximation tradeoff. All results are averaged over 10 trials.
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Figure 6: Performance of kernel approximation methods for classification and clustering. For
Covertype, classification error is measured in separating Class 2 from the remaining classes. For
YearPredictionMSD, RMSE is for the unnormalized output. Regularization and kernel parameters
are obtained via cross validation on training data. Test results are averaged over 10 trials with a fixed
test set, as all three algorithms are randomized.

G.2 Performance of Recursive RLS-Nyström for learning tasks

We verify the usefulness of our kernel approximations in downstream learning tasks. We focus on
Covertype and YearPredictionMSD, which each have approximately n = 500, 000 data points.
While full kernel methods do not scale in this regime, Recursive RLS-Nyström does since its
runtime depends linearly on n. For example, on YearPredictionMSD the method requires 307 sec.
(averaged over 5 trials) to build a 2, 000 landmark Nyström approximation for 463, 716 training
points. Ridge regression using the approximate kernel then requires 208 sec. for a total of 515 sec.
In comparison, the fastest method, random Fourier features, required 43 sec. to build a rank 2, 000
kernel approximation and 222 sec. for regression, for a total time of 265 sec.

For Covertype we performed classification using the LIBLINEAR support vector machine li-
brary. For all sample sizes the SVM dominated runtime cost, so Recursive RLS-Nyström was only
marginally slower than uniform Nyström and random Fourier features for a fixed sample size.

In terms of classification performance for Covertype and RMSE error for YearPredictionMSD, as
can be seen in Figure 6, both Nyström methods outperform random features when using the same
number of features. However, we do not see much difference between the two Nyström methods. We
leave open understanding why the significantly better kernel approximations discussed in Section
5.1 do not necessarily translate to much better learning performance, or whether they would make a
larger difference for other problems.
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