
Supplementary Material:
Scalable Demand-Aware Recommendation

Jinfeng Yi1∗, Cho-Jui Hsieh2, Kush R. Varshney1, Lijun Zhang3, Yao Li2

1IBM Thomas J. Watson Research Center, Yorktown Heights, NY, USA
2University of California, Davis, CA, USA

3National Key Laboratory for Novel Software Technology, Nanjing University, Nanjing, China
jinfengyi.ustc@gmail.com, chohsieh@ucdavis.edu, krvarshn@us.ibm.com,

zhanglj@lamda.nju.edu.cn, yaoli@ucdavis.edu

1 Illustration of Time Utility’s Impact on Rank

To illustrate the point that the purchase intention matrix can be of high-rank, we construct a toy
example with 50 users and 100 durable goods. As discussed in the main paper, user i’s purchase
intention of item j is mediated by a time utility factor hij , which is a function of item j’s inter-
purchase duration d and the time gap t of user i’s most recent purchase within the item j’s category.
If d and t are Gaussian random variables, then the time utility hij = max(0, d− t) follows a rectified
Gaussian distribution. Following the widely adopted low-rank assumption, we also assume that the
form utility matrix X ∈ R50×100 is generated by UV>, where U ∈ R50×10 and V ∈ R100×10 are
both Gaussian random matrices. Here we assume that U, V, and the time utility matrix H share the
same mean (= 1) and standard deviation (= 0.5). Given the form utility X and time utility H, the
purchase intention matrix B ∈ R50×100 is given by B = X−H. Figure 1 shows the distributions of
singular values for matrices X and B. It clearly shows that although the form utility matrix X is of
low-rank, the purchase intention matrix B is a full-rank matrix since all its singular values are greater
than 0. This simple example illustrates that considering users’ demands can make the underlying
matrix no longer of low-rank, thus violating the key assumption made by many collaborative filtering
algorithms.

Figure 1: A toy example that illustrates the impact of time utility. It shows that although the form utility matrix
is of low-rank (rank 10), the purchase intention matrix is of full-rank (rank 50).

∗Now at Tencent AI Lab, Bellevue, WA, USA

31st Conference on Neural Information Processing Systems (NIPS 2017), Long Beach, CA, USA.

2 The Proposed Optimization Algorithm

In this section, we introduce how to efficiently optimize the following optimization problem:

min
X∈Rm×n

d∈Rr

η
∑

ijk: pijk=1

max[1− (xij −max(0, dcj − ticjk)), 0]2

+ (1− η)
∑

ijk: pijk=0

x2ij + λ ‖X‖∗ := f(X,d), (1)

We note that optimizing (1) is a very challenging problem for two reasons: (i) the objective is highly
non-smooth with nested hinge losses, and (ii) it contains mnl terms: a naive optimization algorithm
will take at least O(mnl) time.

To address these challenges, we adopt an alternating minimization scheme that iteratively fixes one of
d and X and minimizes with respect to the other. Specifically, we apply an alternating minimization
scheme to iteratively solve the following subproblems:

d← arg min
d
f(X,d). (2)

X← arg min
X

f(X,d) (3)

We note that both subproblems are non-trivial to solve because subproblem (3) is a nuclear norm
minimization problem, and both subproblems involve nested hinge losses. In the following, we
discuss how to efficiently optimize subproblems (2) and (3):

2.1 Update d

Eq (2) can be written as

min
d

∑
ijk: pijk=1

{
max

(
1− (xij −max(0, dcj − ticjk)), 0

)2
}

:= g(d) :=
∑

ijk: pijk=1

gijk(dcj).

We then analyze the value of each gijk by comparing dcj and ticjk:

1. If dcj ≤ ticjk, we have
gijk(dcj) = max(1− xij , 0)2

2. If dcj > ticjk, we have

gijk(dcj) = max(1− (xij − dcj + ticjk), 0)2,

which can be further separated into two cases:

gijk(dcj) =

{
1− (xij − dcj + ticjk))2, if dcj > xij + ticjk − 1

0, if dcj ≤ xij + ticjk − 1

Therefore, we have the following observations:

1. If xij ≤ 1, we have

gijk(dcj) =

{
max(1− xi,j , 0)2, if dcj ≤ ticjk
(1− (xij − dcj + ticjk))2, if dcj > ticjk

2. If xij > 1, we have

gijk(dcj) =

{
(1− (xij − dcj + ticjk))2, if dcj > ticjk + xij − 1

0, if dcj ≤ ticjk + xij − 1

2

This further implies

gijk(dcj) =

{
max(1− xij , 0)2, if dcj ≤ ticjk + max(xij − 1, 0)

(1− (xij − dcj + ticjk))2, if dcj > ticjk + max(xij − 1, 0)

For notational simplicity, we let sijk = ticjk + max(xij − 1, 0) for all triplets (i, j, k) satisfying
pijk = 1.

Algorithm. For each category κ, we collect the set Q = {(i, j, k) | pijk = 1 and cj = κ} and
calculate the corresponding sijks. We then sort sijks such that s(i1j1k1) ≤ · · · ≤ s(i|Q|j|Q|k|Q|). For
each interval [s(iqjqkq), s(iq+1jq+1kq+1)], the function is

gκ(d) =

|Q|∑
t=q+1

max(1− xitjt , 0)2 +

q∑
t=1

(d+ 1− xitjt − titcjtkt)
2

By letting

Rq =

|Q|∑
t=q+1

max(1− xitjt , 0)2,

Fq =

q∑
t=1

(1− xitjt − titcjtkt),

Wq =

q∑
t=1

(1− xitjt − titcjtkt)
2,

we have

gκ(d) = qd2 + 2Fqd+Wq +Rq

= q

(
d+

Fq
q

)2

−
F 2
q

q
+Wq +Rq.

Thus the optimal solution in the interval [s(iqjqkq), s(iq+1jq+1kq+1)] is given by

d∗ = max

(
s(iqjqkq), min

(
s(iq+1jq+1kq+1), −

Fq
q

))
,

and the optimal function value is gr(d∗). By going through all the intervals from small to large, we
can obtain the optimal solution for the whole function. We note that each time when q ⇒ q + 1,
the constants Rq, Fq,Wq only change by one element. Thus the time complexity for going from
q ⇒ q + 1 is O(1), and the whole procedure has a time complexity O(|Q|).

In summary, we can solve the subproblem (2) by the following steps:

1. generate the set Qκ = {(i, j, k) | pijk = 1 and cj = κ} for each category r,

2. sort each list (costing O(|Qκ| log |Qκ|) time),

3. compute R0, F0,W0 (costing O(|Qκ|) time), and then

4. search for the optimal solution for each q = 1, 2, · · · , |Qκ| (costing O(|Qκ|) time).

The above steps lead to an overall time complexity O(‖P‖0 log(‖P‖0)), where ‖P‖0 is the number
of nonzero elements in tensor P . Therefore, we can efficiently update d since P is a very sparse
tensor with only a small number of nonzero elements.

2.2 Update X

By defining

aijk =

{
1 + max(0, dcj − ticjk), if pijk = 1

0, otherwise

3

Algorithm 1: Proximal Gradient Descent for Updating X

Input :P , X0 (initialization), step size γ
Output :A sequence of Xt converges to the optimal solution

1 for t = 1, . . . ,maxiter do
2 [U,Σ,V] = rand_svd(X− γ∇h(Xt))
3 Σ̄ = max(Σ− γλ, 0)
4 k : number of nonzeros in Σ

5 Xt+1 = U(:, 1:k)Σ̄(1:k, 1:k)V(:, 1:k)T

the subproblem (3) can be written as

min
X∈Rm×n

h(X)+λ‖X‖∗ where h(X) :=

{
η

∑
ijk: pijk=1

max(aijk−xij , 0)2+(1−η)
∑

ijk: pijk=0

x2ij

}
.

Since there are O(mnl) terms in the objective function, a naive implementation will take O(mnl)
time, which is computationally infeasible when the data is large. To address this issue, We use
proximal gradient descent to solve the problem. At each iteration, X is updated by

X← Sλ(X− α∇h(X)), (4)

where Sλ(·) is the soft-thresholding operator for singular values 2.

In order to efficiently compute the top singular vectors of X− α∇h(X), we rewrite it as

X−α∇h(X) = [1−2(1−η)l] X+

2(1− η)
∑

ijk: pijk=1

xij − 2η
∑

ijk: pijk=1

max(aijk − xij , 0)

 .

(5)

Since X is a low-rank matrix, [1− 2(1− η)l] X is also of low-rank. Besides, since P is very sparse,
the term 2(1− η)

∑
ijk: pijk=1

xij − 2η
∑

ijk: pijk=1

max(aijk − xij , 0)


is also sparse because it only involves the nonzero elements of P . In this case, when we multiply
(X− α∇h(X)) with a skinny m by k matrix, it can be computed in O(nk2 +mk2 + ‖P‖0k) time.

As shown in [1], each iteration of proximal gradient descent for nuclear norm minimization only
requires a fixed number of iterations before convergence, thus the time complexity to update X is
O(nk2T +mk2T + ‖P‖0kT), where T is the number of iterations.

Since each user should make at least one purchase and each item should be purchased at least once
to be included in P , n and m are smaller than ‖P‖0. Also, since k and T are usually very small,
the time complexity to solve problem (3) is dominated by the term ‖P‖0, which is a significant
improvement over the naive approach with O(mnl) complexity.

References
[1] C.-J. Hsieh and P. A. Olsen. Nuclear norm minimization via active subspace selection. In ICML,

2014.

2If X has the singular value decomposition X = UΣVT , then Sλ(X) = U(Σ − λI)+V
T where a+ =

max(0, a).

4

	Illustration of Time Utility's Impact on Rank
	The Proposed Optimization Algorithm
	Update d
	Update X

