
Appendix

A Proof of Proposition 1

To show that θ − θ′ = c · 1|S| implies behavioral equivalence, we note that for any policy π the
occupancy vector ηπµ,P always satisfies 1>|S|η

π
µ,P = 1, so ∀π, |θT ηπµ,P − θ′T ηπµ,P | = c, and therefore

the set of optimal policies is the same.

To show the other direction, we prove that if θ − θ′ /∈ span({1|S|}), then there exists (E,R) such
that the sets of optimal policies differ. In particular, we choose R = −θ′, so that all policies are
optimal under R + θ′ = 0. Since θ − θ′ /∈ span({1|S|}), there exists states i and j such that
θ(i) + R(i) 6= θ(j) + R(j). Suppose i is the one with smaller sum of rewards, then we can make
j an absorbing state, and have two deterministic actions in i that transition to i and j respectively.
Under R+ θ, the self-loop in state i is suboptimal, and this completes the proof.

B Proof of Lemma 2

The construction is as follows. Choose sref as the initial state, and make all other states absorbing.
Let R′(sref) = 0 and R′ restricted on S \ {sref} coincide with R. The remaining work is to design
the transition distribution of each action in sref so that the induced state occupancy matches exactly
one column of X .

Fixing any action a, and let x be the feature that we want to associate a with. The next-state
distribution of (sref, a) is as follows: with probability p = 1−‖x‖1

1−γ‖x‖1 the next-state is sref itself, and the

probability of transitioning to the j-th state in S \ {sref} is 1−γ
1−γ‖x‖1x(j). Given ‖x‖1 ≤ 1 and x ≥ 0,

it is easy to verify that this is a valid distribution.

Now we calculate the occupancy of policy π(sref) = a. The normalized occupancy on sref is

(1− γ)(p+ γp2 + γ2p3 + · · · ) =
p(1− γ)

1− γp
= 1− ‖x‖1.

The remaining occupancy, with a total `1 mass of ‖x‖1, is split among S \ {sref} proportional to x.
Therefore, when we convert the MDP problem as in Example 1, the corresponding feature vector is
exactly x, so we recover the original linear bandit problem.

C Proof of Proposition 2

Assume towards contradiction that ‖cT0 − θ?‖∞ > ε. We will choose (Rt, x
(1)
t , x

(2)
t ) to make the

algorithm err. In particular, let Rt = −cT0 , so that the algorithm acts greedily with respect to 0d.
Since 0>d x

a
t ≡ 0, any action would be a valid choice for the algorithm.

On the other hand, ‖cT0
−θ?‖∞ > ε implies that there exists a coordinate j such that |e>j (θ?−cT0

)| >
ε, where ej is a basis vector. Let x(1)

t = 0d and x(2)
t = ej . So the value of action 1 is always 0 under

any reward function (including θ?+Rt), and the value of action 2 is (θ?+Rt)
>x

(2)
t = (θ?−cT0

)>ej ,
whose absolute value is greater than ε. At least one of the 2 actions is more than ε suboptimal, and
the algorithm may take any of them, so the algorithm can err again.

D Proof of Theorem 4

It suffices to show that in any round t, if ‖ct − θ?‖∞ >
ε
√

(K−1)/2

spread(X) , then lt > ε. The bound on T
follows directly from Theorem 2. Similar to the proof of Proposition 2, our choice of the task reward
is Rt = −ct, so that any a ∈ A would be a valid choice of at, and we will choose the worst action.
Note that ∀a, a′ ∈ D,

lt = (θ? +Rt)
>(xa

?
t − xat) ≥ (θ? − ct)>(xa − xa

′
).
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So it suffices to show that there exists a, a′ ∈ D, such that (θ?−ct)>(xa−xa′) > ε. Let yt = θ?−ct,
and the precondition implies that ‖yt‖2 ≥ ‖yt‖∞ >

ε
√

(K−1)/2

spread(X) .

Define a matrix D of size K × (K(K − 1)), where each column

D =



1 1 · · · 0
−1 0 · · · 0
0 −1 · · · 0

. . .
0 0 · · · −1
0 0 · · · 1

 . (5)

contains exactly one 1 and one −1 (the remaining entries are 0), and the columns enumerate
all possible positions of them. With the help of this matrix, we can rewrite the desired result
(∃ a, a′ ∈ A, s.t. (θ?− ct)>(xa−xa′) > ε) as ‖y>t XD‖∞ ≥ ε. We relax the LHS as ‖y>t XD‖∞ ≥
‖y>t XD‖2/

√
K(K − 1), and will provide a lower bound on ‖y>t XD‖2. Note that

y>t XD = y>t (X̃ + (X − X̃))D = y>t X̃D,

because every row of (X − X̃) is some multiple of 1>K (recall Definition 2), and every column of D
is orthogonal to 1K . Let (̂·) be the vector normalized to unit length,

‖y>t X̃D‖2 = ‖yt‖2‖ŷ>t X̃D‖2 = ‖yt‖2‖ŷ>t X̃‖2‖
̂̂
y>t X̃ D‖2.

We lower bound each of the 3 terms. For the first term, we have the precondition ‖yt‖2 >
ε
√

(K−1)/2

spread(X) .

The second term is X̃ left multiplied by a unit vector, so its `2 norm can be lower bounded by the
smallest non-zero singular value of X̃ (recall that X̃ is full-rank), which is spread(X).

To lower bound the last term, note that DD> = 2KIK − 21K1>K , and rows of X̃ are orthogonal to
1>K and so is y>t X̃ , so

‖̂̂y>t X̃ D‖22 ≥ inf
‖z‖2=1, z⊥1K

z>DD>z = inf
‖z‖2=1, z⊥1K

z>(2KIK − 21K1>K)z = 2K.

Putting all the pieces together, we have

‖y>t X̃D‖∞ ≥
‖yt‖2‖ŷ>t X̃‖2‖

̂̂
y>t X̃ D‖2√

K(K − 1)
>
ε
√

(K − 1)/2

spread(X)
· spread(X) ·

√
2K√

K(K − 1)
= ε.

E Proof of Theorem 3

As a standard trick, we randomize θ? by sampling each element i.i.d. from Unif([−1, 1]). We will
prove that there exists a strategy of choosing (Xt, Rt) such that any algorithm’s expected number
of mistakes is Ω(d log(1/ε), where the expectation is with respect to the randomness of θ? and the
internal randomness of the algorithm. This immediately implies a worst-case result as max is no less
than average (regarding the sampling of θ?).

In our construction, Xt = [0d, ejt ], where jt is some index to be specified. Hence, every round
the agent is essentially asked to decided whether θ(jt) ≥ −Rt(jt). The adversary’s strategy goes in
phases, andRt remains the same during each phase. Every phase has d rounds where jt is enumerated
over {1, . . . , d}. To fully specify the nature’s strategy, it remains to specify Rt for each phase.

In the 1st phase, Rt ≡ 0. For each coordinate j, the information revealed to the agent is one of
the following: θ?(j) > ε, θ?(j) ≥ −ε, θ?(j) < −ε, θ?(j) ≤ ε. For clarity we first make an
simplification, that the revealed information is either θ?(j) > 0 or θ?(j) ≤ 0; we will deal with the
subtleties related to ε at the end of the proof.

In the 2nd phase, we fix Rt as

Rt(j) =

{
−1/2 if θ?(j) ≥ 0,
1/2 if θ?(j) < 0.
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Since θ? is randomized i.i.d. for each coordinate, the posterior of θ? +Rt conditioned on the revealed
information is Unif[−1/2, 1/2], for any algorithm and any interaction history. Therefore the 2nd
phase is almost identical to the 1st phase except that the intervals have shrunk by a factor of 2.
Similarly in the 3rd phase we use Rt to offset the posterior of θ? +Rt to Unif([−1/4, 1/4]), and so
on.

In phase m, the half-length of the interval is 2−m+1, and the probability that a mistake occurs is at
least 1/2− ε/2−m+2 for any algorithm. The whole process continues as long as this probability is
greater than 0. By linearity of expectation, we can lower bound the total mistakes by the sum of
expected mistakes in each phase, which gives∑

2−m+1≥ε

d(1/2− ε/2−m+2) ≥
∑

2−m+1≥2ε

d · 1/4 ≥ blog2(1/ε)cd/4. (6)

The above analysis made a simplification that the posterior of θ?+Rt in phasem is [−2−m+1, 2−m+1].
We now remove the simplification. Note, however, that if we choose Rt to center the posterior, Rt
reveals no additional information about θ?, and in the worst case the interval shrinks to half of its
previous size minus ε. So the length of interval in phase m is at least 2−m+2(1 + ε)− 2ε, and the
error probability is at least 1/2− ε/(2−m+1(1 + ε)− ε). The rest of the analysis is similar: we count
the number of phases until the error probability drops below 1/4, and in each of these phases we get
at least d/4 mistakes in expectation. The number of such phases is given by

1/2− ε/(2−m+1(1 + ε)− ε) ≥ 1/4,

which is satisfied when 2−m+1 ≥ 5ε, that is, when m ≤ blog2
2
5εc. This completes the proof.

F Bounding the `∞ distance between θ? and the ellipsoid center

To prove Theorem 5, we need an upper bound on ‖θ? − c‖∞ for quantifying the error due to H-step
truncation and sampling effects, where c is the ellipsoid center. As far as we know there is no
standard result on this issue. However, a simple workaround, described below, allows us to assume
‖θ? − c‖∞ ≤ 2 without loss of generality.

Whenever ‖c‖∞ > 1, there exists coordinate j such that |cj | > 1. We can make a central cut
e>j (θ − c) < 0 (or > 0 depending on the sign of cj), and replace the original ellipsoid with the
MVEE of the remaining shape. This operation never excludes any point in Θ0, hence it allows the
proofs of Theorem 2 and 5 to work. We keep making such cuts and update the ellipsoid accordingly,
until the new center satisfies ‖c‖∞ ≤ 1. Since central cuts reduce volume substantially (Lemma 1)
and there is a lower bound on the volume, the process must stop after finite number of operations.
After the process stops, we have ‖θ? − c‖∞ ≤ ‖θ?‖∞ + ‖c‖∞ ≤ 2.

G Proof of Theorem 5

We first introduce a standard concentration inequality for martingales.
Lemma 3 (Azuma’s inequality for martingales). Suppose {S0, S1, . . . , Sn} is a martingale and |Si−
Si−1| ≤ b almost surely. Then with probability at least 1− δ we have |Sn − S0| ≤ b

√
2n log(2/δ).

Proof. Since the update rule is still in the format of a central cut through the ellipsoid, Lemma 1
applies. It remains to show that the update rule preserves θ? and a certain volume around it, and then
we can follow the same argument as for Theorem 2.

Fixing a mini-batch, let t0 be the round on which the last update occurs, and Θ = Θt0 , c = ct0 .
Note that Θt = Θ during the collection of the current mini-batch and does not change, and ct = c
similarly.

For each i = 1, 2, . . . , n, define z?,Hi as the expected value of ẑ?,Hi , where expectation is with respect
to the randomness of the trajectory produced by the human, and let z?i be the infinite-step expected
state occupancy. Note that ẑ?,Hi , z?,Hi , z?i ∈ R|S|.

As before, we have θ>? (z?i − zi) > ε and c>(z?i − zi) ≤ 0, so (θ? − c)>(z?i − zi) > ε. Taking
average over i, we get (θ? − c)>( 1

n

∑n
i=1 z

?
i − 1

n

∑n
i=1 zi) > ε.
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What we will show next is that (θ? − c)>( Z̄
?

n −
Z̄
n ) > ε/3 for Z̄? and Z̄ on Line 11, which implies

that the update rule is valid and has enough slackness for lower bounding the volume of Θt as before.
Note that

(θ? − c)>( Z̄
?

n −
Z̄
n ) = (θ? − c)>( 1

n

∑n
i=1 z

?
i − 1

n

∑n
i=1 zi)

− (θ? − c)>( 1
n

∑n
i=1 z

?
i − 1

n

∑n
i=1 z

?,H
i )

− (θ? − c)>( 1
n

∑n
i=1 z

?,H
i − 1

n

∑n
i=1 ẑ

?,H
i ).

Here we decompose the expression of interest into 3 terms. The 1st term is lower bounded by ε as
shown above, and we will upper bound each of the remaining 2 terms by ε/3. For the 2nd term, since
‖z?,Hi − z?i ‖1 ≤ γH , the `1 norm of the average follows the same inequality due to convexity, and
we can bound the term using Hölder’s inequality given ‖θ? − c‖∞ ≤ 2 (see details of this result in
Appendix F). To verify that the choice of H in the theorem statement is appropriate, we can upper
bound the 2nd term as

2γH = 2((1− (1− γ))
1

1−γ )log(6/ε) ≤ 2e− log(6/ε) = ε
3 .

For the 3rd term, fixing θ? and c, the partial sum
∑i
j=1(θ? − c)>(z?,Hi − ẑ?,Hi ) is a martingale.

Since ‖z?,Hi ‖1 ≤ 1, ‖ẑ?,Hi ‖1 ≤ 1, and ‖θ? − c‖∞ ≤ 2, we can initiate Lemma 3 by letting b = 4,
and setting n to sufficiently large to guarantee that the 3rd term is upper bounded by ε/3 with high
probability.

Given (θ? − c)>( Z̄
?

n −
Z̄
n ) > ε/3, we can follow exactly the same analysis as for Theorem 2

to show that B∞(θ?, ε/6) is never eliminated, and the number of updates can be bounded by
2d(d+ 1) log 12

√
d

ε . The number of total mistakes is the number of updates multiplied by n, the size
of the mini-batches. Via Lemma 3, we can verify that the choice of n in the theorem statement satisfies
|
∑i
j=1(θ?−c)>(z?,Hi −ẑ?,Hi )| ≤ nε/3 with probability at least 1−δ/

(
2d(d+ 1) log 12

√
d

ε

)
. Union

bounding over all updates and the total failure probability can be bounded by δ.
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