
Linear Convergence of a Frank-Wolfe Type
Algorithm over Trace-Norm Balls∗

Zeyuan Allen-Zhu
Microsoft Research, Redmond
zeyuan@csail.mit.edu

Elad Hazan
Princeton University

ehazan@cs.princeton.edu

Wei Hu
Princeton University

huwei@cs.princeton.edu

Yuanzhi Li
Princeton University

yuanzhil@cs.princeton.edu

Abstract

We propose a rank-k variant of the classical Frank-Wolfe algorithm to solve convex
optimization over a trace-norm ball. Our algorithm replaces the top singular-vector
computation (1-SVD) in Frank-Wolfe with a top-k singular-vector computation
(k-SVD), which can be done by repeatedly applying 1-SVD k times. Alternatively,
our algorithm can be viewed as a rank-k restricted version of projected gradient
descent. We show that our algorithm has a linear convergence rate when the
objective function is smooth and strongly convex, and the optimal solution has rank
at most k. This improves the convergence rate and the total time complexity of the
Frank-Wolfe method and its variants.

1 Introduction
Minimizing a convex matrix function over a trace-norm ball, which is: (recall that the trace norm
‖X‖∗ of a matrix X equals the sum of its singular values)

minX∈Rm×n

{
f(X) : ‖X‖∗ ≤ θ

}
, (1.1)

is an important optimization problem that serves as a convex surrogate to many low-rank machine
learning tasks, including matrix completion [2, 10, 16], multiclass classification [4], phase retrieval [3],
polynomial neural nets [12], and more. In this paper we assume without loss of generality that θ = 1.
One natural algorithm for Problem (1.1) is projected gradient descent (PGD). In each iteration,
PGD first moves X in the direction of the gradient, and then projects it onto the trace-norm ball.
Unfortunately, computing this projection requires the full singular value decomposition (SVD) of the
matrix, which takes O(mnmin{m,n}) time in general. This prevents PGD from being efficiently
applied to problems with large m and n.
Alternatively, one can use projection-free algorithms. As first proposed by Frank and Wolfe [5],
one can select a search direction (which is usually the gradient direction) and perform a linear
optimization over the constraint set in this direction. In the case of Problem (1.1), performing linear
optimization over a trace-norm ball amounts to computing the top (left and right) singular vectors
of a matrix, which can be done much faster than full SVD. Therefore, projection-free algorithms
become attractive for convex minimization over trace-norm balls.
Unfortunately, despite its low per-iteration complexity, the Frank-Wolfe (FW) algorithm suffers from
slower convergence rate compared with PGD. When the objective f(X) is smooth, FW requires
O(1/ε) iterations to convergence to an ε-approximate minimizer, and this 1/ε rate is tight even if the
objective is also strongly convex [6]. In contrast, PGD achieves 1/

√
ε rate if f(X) is smooth (under

Nesterov’s acceleration [14]), and log(1/ε) rate if f(X) is both smooth and strongly convex.

∗The full version of this paper can be found on https://arxiv.org/abs/1708.02105.

31st Conference on Neural Information Processing Systems (NIPS 2017), Long Beach, CA, USA.

https://arxiv.org/abs/1708.02105

Recently, there were several results to revise the FW method to improve its convergence rate for
strongly-convex functions. The log(1/ε) rate was obtained when the constraint set is a polyhe-
dron [7, 11], and the 1/

√
ε rate was obtained when the constraint set is strongly convex [8] or is a

spectrahedron [6].
Among these results, the spectrahedron constraint (i.e., for all positive semidefinite matrices X with
Tr(X) = 1) studied by Garber [6] is almost identical to Problem (1.1), but slightly weaker.2 When
stating the result of Garber [6], we assume for simplicity that it also applies to Problem (1.1).

Our Question. In this paper, we propose to study the following general question:

Can we design a “rank-k variant” of Frank-Wolfe to improve the convergence rate?

(That is, in each iteration it computes the top k singular vectors – i.e., k-SVD – of some matrix.)

Our motivation to study the above question can be summarized as follows:
• Since FW computes a 1-SVD and PGD computes a full SVD in each iteration, is there a value
k � min{n,m} such that a rank-k variant of FW can achieve the convergence rate of PGD?
• Since computing k-SVD costs roughly the same (sequential) time as “computing 1-SVD for k

times” (see recent work [1, 13]),3 if using a rank-k variant of FW, can the number of iterations be
reduced by a factor more than k? If so, then we can improve the sequential running time of FW.
• k-SVD can be computed in a more distributed manner than 1-SVD. For instance, using block

Krylov [13], one can distribute the computation of k-SVD to k machines, each in charge of
independent matrix-vector multiplications. Therefore, it is beneficial to study a rank-k variant of
FW in such settings.

1.1 Our Results
We propose blockFW, a rank-k variant of Frank-Wolfe. Given a convex function f(X) that is β-
smooth, in each iteration t, blockFW performs an update Xt+1 ← Xt + η(Vt −Xt), where η > 0 is
a constant step size and Vt is a rank-k matrix computed from the k-SVD of (−∇f(Xt) + βηXt). If
k = min{n,m}, blockFW can be shown to coincide with PGD, so it can also be viewed as a rank-k
restricted version of PGD.

Convergence. Suppose f(X) is also α-strongly convex and suppose the optimal solution X∗
of Problem (1.1) has rank k, then we show that blockFW achieves linear convergence: it finds an
ε-approximate minimizer within O(βα log 1

ε) iterations, or equivalently, in

T = O

(
kβ

α
log

1

ε

)
computations of 1-SVD.

We denote by T the number of 1-SVD computations throughout this paper. In contrast,

TFW = O
(
β
ε

)
for Frank-Wolfe

TGar = O
(

min
{
β
ε ,

(
β
α

)1/4(β
ε

)3/4√
k ,

(
β
α

)1/2(β
ε

)1/2 1
σmin(X∗)

})
for Garber [6].

Above, σmin(X∗) is the minimum non-zero singular value of X∗. Note that σmin(X∗) ≤ ‖X∗‖∗
rank(X∗) ≤

1
k .
We note that TGar is always outperformed by min{T, TFW}: ignoring the log(1/ε) factor, we have

• min
{
β
ε ,

kβ
α

}
≤
(
β
α

)1/4(β
ε

)3/4
k1/4 <

(
β
α

)1/4(β
ε

)3/4√
k, and

• min
{
β
ε ,

kβ
α

}
≤
(
β
α

)1/2(β
ε

)1/2
k1/2 <

(
β
α

)1/2(β
ε

)1/2 1
σmin(X∗) .

2The the best of our knowledge, given an algorithm that works for spectrahedron, to solve Problem (1.1), one
has to define a function g(Y) over (n+m)× (n+m) matrices, by setting g(Y) = f(2Y1:m,m+1:m+n) [10].
After this transformation, the function g(Y) is no longer strongly convex, even if f(X) is strongly convex. In
contrast, most algorithms for trace-norm balls, including FW and our later proposed algorithm, work as well for
spectrahedron after minor changes to the analysis.

3Using block Krylov [13], Lanszos [1], or SVRG [1], at least when k is small, the time complexity of
(approximately) computing the top k singular vectors of a matrix is no more than k times the complexity of
(approximately) computing the top singular vector of the same matrix. We refer interested readers to [1] for
details.

2

algorithm # rank # iterations time complexity per iteration

PGD [14] min{m,n} κ log(1/ε) O
(
mnmin{m,n}

)
accelerated
PGD [14] min{m,n}

√
κ log(1/ε) O

(
mnmin{m,n}

)
Frank-

Wolfe [9] 1 β
ε

Õ
(
nnz(∇)

)
×min

{
‖∇‖1/22

ε1/2
,

‖∇‖1/22

(σ1(∇)−σ2(∇))1/2

}

Garber [6] 1
κ

1
4
(
β
ε

) 3
4
√
k , or

κ
1
2
(
β
ε

) 1
2 1
σmin(X

∗)

Õ
(
nnz(∇) + (m+ n)

)
×min

{
‖∇‖1/22

ε1/2
,

‖∇‖1/22

(σ1(∇)−σ2(∇))1/2

}
blockFW k κ log(1/ε)

k · Õ
(
nnz(∇) + k(m+ n)κ

)
×min

{
(‖∇‖2+α)1/2

ε1/2
, κ(‖∇‖2+α)

1/2

α1/2σmin(X
∗)

}
Table 1: Comparison of first-order methods to minimize a β-smooth, α-strongly convex function over the

unit-trace norm ball in Rm×n. In the table, k is the rank of X∗, κ = β
α

is the condition number,
∇ = ∇f(Xt) is the gradient matrix, nnz(∇) is the complexity to multiply∇ to a vector, σi(X) is the
i-th largest singular value of X , and σmin(X) is the minimum non-zero singular value of X .

REMARK. The low-rank assumption on X∗ should be reasonable: as we mentioned, in most
applications of Problem (1.1), the ultimate reason for imposing a trace-norm constraint is to ensure
that the optimal solution is low-rank; otherwise the minimization problem may not be interesting to
solve in the first place. Also, the immediate prior work [6] also assumes X∗ to have low rank.

k-SVD Complexity. For theoreticians who are concerned about the time complexity of k-SVD, we
also compare it with the 1-SVD complexity of FW and Garber. If one uses LazySVD [1]4 to compute
k-SVD in each iteration of blockFW, then the per-iteration k-SVD complexity can be bounded by

k · Õ
(
nnz(∇) + k(m+ n)κ

)
×min

{
(‖∇‖2 + α)1/2

ε1/2
,
κ(‖∇‖2 + α)1/2

α1/2σmin(X∗)

}
. (1.2)

Above, κ = β
α is the condition number of f , ∇ = ∇f(Xt) is the gradient matrix of the current

iteration t, nnz(∇) is the complexity to multiply ∇ to a vector, σmin(X∗) is the minimum non-zero
singular value of X∗, and Õ hides poly-logarithmic factors.
In contrast, if using Lanczos, the 1-SVD complexity for FW and Garber can be bounded as (see [6])

Õ
(
nnz(∇)

)
×min

{‖∇‖1/22

ε1/2
,

‖∇‖1/22

(σ1(∇)− σ2(∇))1/2

}
. (1.3)

Above, σ1(∇) and σ2(∇) are the top two singular values of ∇, and the gap σ1(∇)− σ2(∇) can be
as small as zero.
We emphasize that our k-SVD complexity (1.2) can be upper bounded by a quantity that only
depends poly-logarithmically on 1/ε. In contrast, the worst-case 1-SVD complexity (1.3) of FW
and Garber depends on ε−1/2 because the gap σ1 − σ2 can be as small as zero. Therefore, if one
takes this additional ε dependency into consideration for the convergence rate, then blockFW has
rate polylog(1/ε), but FW and Garber have rates ε−3/2 and ε−1 respectively. The convergence rates
and per-iteration running times of different algorithms for solving Problem (1.1) are summarized
in Table 1.

Practical Implementation. Besides our theoretical results above, we also provide practical sugges-
tions for implementing blockFW. Roughly speaking, one can automatically select a different “good”
rank k for each iteration. This can be done by iteratively finding the 1st, 2nd, 3rd, etc., top singular
vectors of the underlying matrix, and then stop this process whenever the objective decrease is not
worth further increasing the value k. We discuss the details in Section 6.

4In fact, LazySVD is a general framework that says, with a meaningful theoretical support, one can apply
a reasonable 1-SVD algorithm k times in order to compute k-SVD. For simplicity, in this paper, whenever
referring to LazySVD, we mean to apply the Lanczos method k times.

3

2 Preliminaries and Notation
For a positive integer n, we define [n] := {1, 2, . . . , n}. For a matrix A, we denote by ‖A‖F , ‖A‖2
and ‖A‖∗ respectively the Frobenius norm, the spectral norm, and the trace norm of A. We use
〈·, ·〉 to denote the (Euclidean) inner products between vectors, or the (trace) inner products between
matrices (i.e., 〈A,B〉 = Tr(AB>)). We denote by σi(A) the i-th largest singular value of a matrix
A, and by σmin(A) the minimum non-zero singular value of A. We use nnz(A) to denote the time
complexity of multiplying matrix A to a vector (which is at most the number of non-zero entries of
A). We define the (unit) trace-norm ball Bm,n in Rm×n as Bm,n := {X ∈ Rm×n : ‖X‖∗ ≤ 1}.
Definition 2.1. For a differentiable convex function f : K → R over a convex set K ⊆ Rm×n, we
say

• f is β-smooth if f(Y) ≤ f(X) + 〈∇f(X), Y −X〉+ β
2 ‖X − Y ‖

2
F for all X,Y ∈ K;

• f is α-strongly convex if f(Y) ≥ f(X) + 〈∇f(X), Y −X〉+ α
2 ‖X − Y ‖

2
F for all X,Y ∈ K.

For Problem (1.1), we assume f is differentiable, β-smooth, and α-strongly convex over Bm,n. We
denote by κ = β

α the condition number of f , and by X∗ the minimizer of f(X) over the trace-norm
ball Bm,n. The strong convexity of f(X) implies:

Fact 2.2. f(X)− f(X∗) ≥ α
2 ‖X −X

∗‖2F for all X ∈ K.

Proof. The minimality of X∗ implies 〈∇f(X∗), X −X∗〉 ≥ 0 for all X ∈ K. The fact follows then
from the α-strong convexity of f . �

The Frank-Wolfe Algorithm. We now quickly review the Frank-Wolfe algorithm (see Algorithm 1)
and its relation to PGD.

Algorithm 1 Frank-Wolfe

Input: Step sizes {ηt}t≥1 (ηt ∈ [0, 1]), starting point X1 ∈ Bm,n
1: for t = 1, 2, . . . do
2: Vt ← argminV ∈Bm,n

〈∇f(Xt), V 〉
� by finding the top left/right singular vectors ut, vt of −∇f(Xt), and taking Vt = utv

>
t .

3: Xt+1 ← Xt + ηt(Vt −Xt)
4: end for

Let ht = f(Xt)−f(X∗) be the approximation error ofXt. The convergence analysis of Algorithm 1
is based on the following relation:

ht+1 = f(Xt + ηt(Vt −Xt))− f(X∗)
¬
≤ ht + ηt〈∇f(Xt), Vt −Xt〉+

β

2
η2
t ‖Vt −Xt‖2F

­
≤ ht + ηt〈∇f(Xt), X

∗ −Xt〉+
β

2
η2
t ‖Vt −Xt‖2F

®
≤ (1− ηt)ht +

β

2
η2
t ‖Vt −Xt‖2F .

(2.1)
Above, inequality ¬ uses the β-smoothness of f , inequality ­ is due to the choice of Vt in Line 2,
and inequality ® follows from the convexity of f . Based on (2.1), a suitable choice of the step size
ηt = Θ(1/t) gives the convergence rate O(β/ε) for the Frank-Wolfe algorithm.
If f is also α-strongly convex, a linear convergence rate can be achieved if we replace the linear
optimization step (Line 2) in Algorithm 1 with a constrained quadratic minimization:

Vt ← argmin
V ∈Bm,n

〈∇f(Xt), V −Xt〉+
β

2
ηt‖V −Xt‖2F . (2.2)

In fact, if Vt is defined as above, we have the following relation similar to (2.1):

ht+1 ≤ ht + ηt〈∇f(Xt), Vt −Xt〉+
β

2
η2
t ‖Vt −Xt‖2F

≤ ht + ηt〈∇f(Xt), X
∗ −Xt〉+

β

2
η2
t ‖X∗ −Xt‖2F ≤ (1− ηt + κη2

t)ht ,

(2.3)

where the last inequality follows from Fact 2.2. Given (2.3), we can choose ηt = 1
2κ to obtain a linear

convergence rate because ht+1 ≤ (1− 1/4κ)ht. This is the main idea behind the projected gradient

4

descent (PGD) method. Unfortunately, optimizing Vt from (2.2) requires a projection operation onto
Bm,n, and this further requires a full singular value decomposition of the matrix∇f(Xt)− βηtXt.

3 A Rank-k Variant of Frank-Wolfe
Our main idea comes from the following simple observation. Suppose we choose ηt = η = 1

2κ for
all iterations, and suppose rank(X∗) ≤ k. Then we can add a low-rank constraint to Vt in (2.2):

Vt ← argmin
V ∈Bm,n, rank(V)≤k

〈∇f(Xt), V −Xt〉+
β

2
η‖V −Xt‖2F . (3.1)

Under this new choice of Vt, it is obvious that the same inequalities in (2.3) remain to hold, and thus
the linear convergence rate of PGD can be preserved. Let us now discuss how to solve (3.1).

3.1 Solving the Low-Rank Quadratic Minimization (3.1)
Although (3.1) is non-convex, we prove that it can be solved efficiently. To achieve this, we first show
that Vt is in the span of the top k singular vectors of βηXt −∇f(Xt).

Lemma 3.1. The minimizer Vt of (3.1) can be written as Vt =
∑k
i=1 aiuiv

>
i , where a1, . . . , ak

are nonnegative scalars, and (ui, vi) is the pair of the left and right singular vectors of At :=
βηXt −∇f(Xt) corresponding to its i-th largest singular value.

The proof of Lemma 3.1 is given in the full version of this paper. Now, owing to Lemma 3.1, we
can perform k-SVD on At to compute {(ui, vi)}i∈[k], plug the expression Vt =

∑k
i=1 aiuiv

>
i into

the objective of (3.1), and then search for the optimal values {ai}i∈[k]. The last step is equivalent
to minimizing −

∑k
i=1 σiai + β

2 η
∑k
i=1 a

2
i (where σi = u>i Atvi) over the simplex ∆ :=

{
a ∈ Rk :

a1, . . . , ak ≥ 0, ‖a‖1 ≤ 1
}

, which is the same as projecting the vector 1
βη (σ1, . . . , σk) onto the

simplex ∆. It can be easily solved in O(k log k) time (see for instance the applications in [15]).

3.2 Our Algorithm and Its Convergence
We summarize our algorithm in Algorithm 2 and call it blockFW.

Algorithm 2 blockFW

Input: Rank parameter k, starting point X1 = 0
1: η ← 1

2κ .
2: for t = 1, 2, . . . do
3: At ← βηXt −∇f(Xt)
4: (u1, v1, . . . , uk, vk)← k-SVD(At)

� (ui, vi) is the i-th largest pair of left/right singular vectors of At
5: a← argmina∈Rk,a≥0,‖a‖1≤1 ‖a− 1

βησ‖2 � where σ := (u>i Atvi)
k
i=1

6: Vt ←
∑k
i=1 aiuiv

>
i

7: Xt+1 ← Xt + η(Vt −Xt)
8: end for

Since the state-of-the-art algorithms for k-SVD are iterative methods, which in theory can only give
approximate solutions, we now study the convergence of blockFW given approximate k-SVD solvers.
We introduce the following notion of an approximate solution to the low-rank quadratic minimization
problem (3.1).

Definition 3.2. Let gt(V) = 〈∇f(Xt), V −Xt〉+ β
2 η‖V −Xt‖2F be the objective function in (3.1),

and let g∗t = gt(X
∗). Given parameters γ ≥ 0 and ε ≥ 0, a feasible solution V to (3.1) is called

(γ, ε)-approximate if it satisfies g(V) ≤ (1− γ)g∗t + ε.

Note that the above multiplicative-additive definition makes sense because g∗t ≤ 0:

Fact 3.3. If rank(X∗) ≤ k, for our choice of step size η = 1
2κ , we have g∗t = gt(X

∗) ≤
−(1− κη)ht = −ht

2 ≤ 0 according to (2.3).

The next theorem gives the linear convergence of blockFW under the above approximate solutions to
(3.1). Its proof is simple and uses a variant of (2.3) (see the full version of this paper).

5

Theorem 3.4. Suppose rank(X∗) ≤ k and ε > 0. If each Vt computed in blockFW is a (1
2 ,

ε
8)-

approximate solution to (3.1), then for every t, the error ht = f(Xt)− f(X∗) satisfies

ht ≤
(
1− 1

8κ

)t−1
h1 + ε

2 .

As a consequence, it takes O(κ log h1

ε) iterations to achieve the target error ht ≤ ε.

Based on Theorem 3.4, the per-iteration running time of blockFW is dominated by the time necessary
to produce a (1

2 ,
ε
8)-approximate solution Vt to (3.1), which we study in Section 4.

4 Per-Iteration Running Time Analysis
In this section, we study the running time necessary to produce a (1

2 , ε)-approximate solution Vt
to (3.1). In particular, we wish to show a running time that depends only poly-logarithmically on 1/ε.
The reason is that, since we are concerning about the linear convergence rate (i.e., log(1/ε)) in this
paper, it is not meaningful to have a per-iteration complexity that scales polynomially with 1/ε.
Remark 4.1. To the best of our knowledge, the Frank-Wolfe method and Garber’s method [6] have
their worst-case per-iteration complexities scaling polynomially with 1/ε. In theory, this also slows
down their overall performance in terms of the dependency on 1/ε.

4.1 Step 1: The Necessary k-SVD Accuracy
We first show that if the k-SVD in Line 4 of blockFW is solved sufficiently accurate, then Vt obtained
in Line 6 will be a sufficiently good approximate solution to (3.1). For notational simplicity, in this
section we denote Gt := ‖∇f(Xt)‖2 + α, and we let k∗ = rank(X∗) ≤ k.

Lemma 4.2. Suppose γ ∈ [0, 1] and ε ≥ 0. In each iteration t of blockFW, if the vectors
u1, v1, . . . , uk, vk returned by k-SVD in Line 4 satisfy u>i Atvi ≥ (1− γ)σi(At)− ε for all i ∈ [k∗],
then Vt =

∑k
i=1 aiuiv

>
i obtained in Line 6 is

((
6Gt

ht
+ 2
)
γ, ε
)
-approximate to (3.1).

The proof of Lemma 4.2 is given in the full version of this paper, and is based on our earlier
characterization Lemma 3.1.

4.2 Step 2: The Time Complexity of k-SVD
We recall the following complexity statement for k-SVD:

Theorem 4.3 ([1]). The running time to compute the k-SVD of A ∈ Rm×n using LazySVD is5

Õ
(
k·nnz(A)+k2(m+n)√

γ

)
or Õ

(
k·nnz(A)+k2(m+n)√

gap

)
.

In the former case, we can have u>i Avi ≥ (1 − γ)σi(A) for all i ∈ [k]; in the latter case, if

gap ∈
(

0,
σk∗ (A)−σk∗+1(A)

σk∗ (A)

]
for some k∗ ∈ [k], then we can guarantee u>i Avi ≥ σi(A)− ε for all

i ∈ [k∗].

The First Attempt. Recall that we need a (1
2 , ε)-approximate solution to (3.1). Using Lemma 4.2,

it suffices to obtain a (1 − γ)-multiplicative approximation to the k-SVD of At (i.e., u>i Atvi ≥
(1− γ)σi(At) for all i ∈ [k]), as long as γ ≤ 1

12Gt/ht+4 . Therefore, we can directly apply the first

running time in Theorem 4.3: Õ
(k·nnz(At)+k

2(m+n)√
γ

)
. However, when ht is very small, this running

time can be unbounded. In that case, we observe that γ = ε
Gt

(independent of ht) also suffices:
since ‖At‖2 =

∥∥α
2Xt −∇f(Xt)

∥∥
2
≤ α

2 + ‖∇f(Xt)‖2 ≤ Gt, from u>i Atvi ≥ (1− ε/Gt)σi(At)
we have u>i Atvi ≥ σi(At) − ε

Gt
σi(At) ≥ σi(At) − ε

Gt
‖At‖2 ≥ σi(At) − ε; then according to

Lemma 4.2 we can obtain (0, ε)-approximation to (3.1), which is stronger than (1
2 , ε)-approximation.

We summarize this running time (using γ = ε
Gt

) in Claim 4.5; the running time depends polynomially
on 1

ε .

The Second Attempt. To make our linear convergence rate (i.e., the log(1/ε) rate) meaningful, we
want the k-SVD running time to depend poly-logarithmically on 1/ε. Therefore, when ht is small,
we wish to instead apply the second running time in Theorem 4.3.

5The first is known as the gap-free result because it does not depend on the gap between any two singular
values. The second is known as the gap-dependent result, and it requires a k×k full SVD after the k approximate
singular vectors are computed one by one. The Õ notation hides poly-log factors in 1/ε, 1/γ, m, n, and 1/gap.

6

Recall that X∗ has rank k∗ so σk∗(X∗)− σk∗+1(X∗) = σmin(X∗). We can show that this implies
A∗ := α

2X
∗ − ∇f(X∗) also has a large gap σk∗(A∗) − σk∗+1(A∗). Now, according to Fact 2.2,

when ht is small, Xt and X∗ are sufficiently close. This means At = α
2Xt −∇f(Xt) is also close

to A∗, and thus has a large gap σk∗(At)− σk∗+1(At). Then we can apply the second running time
in Theorem 4.3.

4.2.1 Formal Running Time Statements

Fact 4.4. We can store Xt as a decomposition into at most rank(Xt) ≤ kt rank-1 components.6
Therefore, for At = α

2Xt − ∇f(Xt), we have nnz(At) ≤ nnz(∇f(Xt)) + (m + n)rank(Xt) ≤
nnz(∇f(Xt)) + (m+ n)kt.

If we always use the first running time in Theorem 4.3, then Fact 4.4 implies:

Claim 4.5. The k-SVD computation in the t-th iteration of blockFW can be implemented in Õ
((
k ·

nnz(∇f(Xt)) + k2(m+ n)t
)√

Gt/ε
)

time.

Remark 4.6. As long as (m + n)kt ≤ nnz(∇f(Xt)), the k-SVD running time in Claim 4.5
becomes Õ

(
k · nnz(∇f(Xt))

√
Gt/ε

)
, which roughly equals k-times the 1-SVD running time

Õ
(
nnz(∇)

√
‖∇‖2/ε)

)
of FW and Garber [6]. Since in practice, it suffices to run blockFW and FW

for a few hundred 1-SVD computations, the relation (m+ n)kt ≤ nnz(∇f(Xt)) is often satisfied.

If, as discussed above, we apply the first running time in Theorem 4.3 only for large ht, and apply
the second running time in Theorem 4.3 for small ht, then we obtain the following theorem whose
proof is given in the full version of this paper.

Theorem 4.7. The k-SVD comuputation in the t-th iteration of blockFW can be implemented in

Õ
((
k · nnz(∇f(Xt)) + k2(m+ n)t

)
κ
√
Gt/α

σmin(X∗)

)
time.

Remark 4.8. Since according to Theorem 3.4 we only need to run blockFW for O(κ log(1/ε))
iterations, we can plug t = O(κ log(1/ε)) into Claim 4.5 and Theorem 4.7, and obtain the running
time presented in (1.2). The per-iteration running time of blockFW depends poly-logarithmically on
1/ε. In contrast, the per-iteration running times of Garber [6] and FW depend polynomially on 1/ε,
making their total running times even worse in terms of dependency on 1/ε.

5 Maintaining Low-Rank Iterates
One of the main reasons to impose trace-norm constraints is to produce low-rank solutions. However,
the rank of iterate Xt in our algorithm blockFW can be as large as kt, which is much larger than k,
the rank of the optimal solution X∗. In this section, we show that by adding a simple modification
to blockFW, we can make sure the rank of Xt is O(kκ log κ) in all iterations t, without hurting the
convergence rate much.
We modify blockFW as follows. Whenever t− 1 is a multiple of S = d8κ(log κ+ 1)e, we compute
(note that this is the same as setting η = 1 in (3.1))

Wt ← argmin
W∈Bm,n, rank(W)≤k

〈∇f(Xt),W −Xt〉+
β

2
‖W −Xt‖2F ,

and let the next iterate Xt+1 be Wt. In all other iterations the algorithm is unchanged. After this
change, the function value f(Xt+1) may be greater than f(Xt), but can be bounded as follows:

Lemma 5.1. Suppose rank(X∗) ≤ k. Then we have f(Wt)− f(X∗) ≤ κht.

Proof. We have the following relation similar to (2.3):

f(Wt)− f(X∗) ≤ ht + 〈∇f(Xt),Wt −Xt〉+
β

2
‖Wt −Xt‖2F

≤ ht + 〈∇f(Xt), X
∗ −Xt〉+

β

2
‖X∗ −Xt‖2F

≤ ht − ht +
β

2
· 2

α
ht = κht . �

6 In Section 5, we show how to ensure that rank(Xt) is always O(kκ log κ), a quantity independent of t.

7

From Theorem 3.4 we know that hS+1 ≤ (1 − 1
8κ)Sh1 + ε

2 ≤ (1 − 1
8κ)8κ(log κ+1)h1 + ε

2 ≤
e−(log κ+1)h1 + ε

2 = 1
eκh1 + ε/2. Therefore, after setting XS+2 = WS+1, we still have hS+2 ≤

1
eh1 + κε

2 (according to Lemma 5.1). Continuing this analysis (letting the κε here be the “new
ε”), we know that this modified version of blockFW converges to an ε-approximate minimizer in
O
(
κ log κ · log h1

ε

)
iterations.

Remark 5.2. Since in each iteration the rank of Xt is increased by at most k, if we do the modified
step every S = O(κ log κ) iterations, we have that throughout the algorithm, rank(Xt) is never more
than O(kκ log κ). Furthermore we can always store Xt using O(kκ log κ) vectors, instead of storing
all the singular vectors obtained in previous iterations.

6 Preliminary Empirical Evaluation
We conclude this paper with some preliminary experiments to test the performance of blockFW. We
first recall two machine learning tasks that fall into Problem (1.1).

Matrix Completion. Suppose there is an unknown matrix M ∈ Rm×n close to low-rank, and we
observe a subset Ω of its entries – that is, we observe Mi,j for every (i, j) ∈ Ω. (Think of Mi,j as
user i’s rating of movie j.) One can recover M by solving the following convex program:

minX∈Rm×n

{
1
2

∑
(i,j)∈Ω(Xi,j −Mi,j)

2 | ‖X‖∗ ≤ θ
}
. (6.1)

Although Problem (6.1) is not strongly convex, our experiments show the effectiveness of blockFW
on this problem.

Polynomial Neural Networks. Polynomial networks are neural networks with quadratic activation
function σ(a) = a2. Livni et al. [12] showed that such networks can express any function computed
by a Turing machine, similar to networks with ReLU or sigmoid activations. Following [12], we
consider the class of 2-layer polynomial networks with inputs from Rd and k hidden neurons:

Pk =
{
x 7→

∑k
j=1 aj(w

>
j x)2

∣∣∣∀j ∈ [k], wj ∈ Rd, ‖wj‖2 = 1
∧
a ∈ Rk

}
.

If we write A =
∑k
i=1 ajwjw

>
j , we have the following equivalent formulation:

Pk =
{
x 7→ x>Ax

∣∣A ∈ Rd×d, rank(A) ≤ k
}
.

Therefore, if replace the hard rank constraint with trace norm ‖A‖∗ ≤ θ, the task of empirical risk
minimization (ERM) given training data {(x1, y1), . . . , (xN , yN)} ⊂ Rd × R can be formulated as7

minA∈Rd×d

{
1
2

∑N
i=1(x>i Axi − yi)2

∣∣ ‖A‖∗ ≤ θ} . (6.2)

Since f(A) = 1
2

∑N
i=1(x>i Axi − yi)2 is convex in A, the above problem falls into Problem (1.1).

Again, this objective f(A) might not be strongly convex, but we still perform experiments on it.

6.1 Preliminary Evaluation 1: Matrix Completion on Synthetic Data
We consider the following synthetic experiment for matrix completion. We generate a random
rank-10 matrix in dimension 1000× 1000, plus some small noise. We include each entry into Ω with
probability 1/2. We scale M to ‖M‖∗ = 10000, so we set θ = 10000 in (6.1).
We compare blockFW with FW and Garber [6]. When implementing the three algorithms, we use
exact line search. For Garber’s algorithm, we tune its parameter ηt = c

t with different constant values
c, and then exactly search for the optimum η̃t. When implementing blockFW, we use k = 10 and
η = 0.2. We use the MATLAB built-in solver for 1-SVD and k-SVD.
In Figure 1(a), we compare the numbers of 1-SVD computations for the three algorithms. The plot
confirms that it suffices to apply a rank-k variant FW in order to achieve linear convergence.

6.2 Auto Selection of k
In practice, it is often unrealistic to know k in advance. Although one can simultaneously try
k = 1, 2, 4, 8, . . . and output the best possible solution, this can be unpleasant to work with. We
propose the following modification to blockFW which automatically chooses k.
In each iteration t, we first run 1-SVD and compute the objective decrease, denoted by d1 ≥ 0. Now,
given any approximate k-SVD decomposition of the matrix At = βηXt −∇f(Xt), we can compute
its (k + 1)-SVD using one additional 1-SVD computation according to the LazySVD framework [1].

7We consider square loss for simplicity. It can be any loss function `(x>i Axi, yi) convex in its first argument.

8

1-SVD computations
0 20 40 60 80 100

Lo
g(

er
ro

r)

-2

-1

0

1

2

3

4

5

6

7

8
FW
Garber
This paper

(a) matrix completion on synthetic
data

1-SVD computations
0 50 100 150 200

Lo
g(

er
ro

r)

1

2

3

4

5

6

7
FW
Garber
This paper

(b) matrix completion
on MOVIELENS1M, θ = 10000

1-SVD computations
0 100 200 300 400 500

Lo
g(

er
ro

r)

-1

-0.5

0

0.5

1

1.5

2

2.5

3

3.5

4
FW
Garber
This paper

(c) polynomial neural network
on MNIST, θ = 0.03

Figure 1: Partial experimental results. The full 6 plots for MOVIELENS and 3 plots for MNIST are included in
the full version of this paper.

We compute the new objective decrease dk+1. We stop this process and move to the next iteration t+1

whenever dk+1

k+1 < dk
k . In other words, we stop whenever it “appears” not worth further increasing k.

We count this iteration t as using k + 1 computations of 1-SVD.
All the experiments on real-life datasets are performed using this above auto-k process.

6.3 Preliminary Evaluation 2: Matrix Completion on MOVIELENS

We study the same experiment in Garber [6], the matrix completion Problem (6.1) on datasets
MOVIELENS100K (m = 943, n = 1862 and |Ω| = 105) and MOVIELENS1M (m = 6040, n =
3952 and |Ω| ≈ 106). In the second dataset, following [6], we further subsample Ω so it contains
about half of the original entries. For each dataset, we run FW, Garber, and blockFW with three
different choices of θ.8 We present the six plots side-by-side in the full version of this paper.
We observe that when θ is large, there is no significant advantage for using blockFW. This is because
the rank of the optimal solution X∗ is also high for large θ. In contrast, when θ is small (so X∗ is of
low rank), as demonstrated for instance by Figure 1(b), it is indeed beneficial to apply blockFW.

6.4 Preliminary Evaluation 3: Polynomial Neural Network on MNIST

We use the 2-layer neural network Problem (6.2) to train a binary classifier on the MNIST dataset of
handwritten digits, where the goal is to distinguish images of digit “0” from images of other digits.
The training set contains N = 60000 examples each of dimension d = 28×28 = 784. We set yi = 1
if that example belongs to digit “0” and yi = 0 otherwise. We divide the original grey levels by 256
so xi ∈ [0, 1]d. We again try three different values of θ, and compare FW, Garber, and blockFW.9
We present the three plots side-by-side in the full version of this paper.
The performance of our algorithm is comparable to FW and Garber for large θ, but as demonstrated
for instance by Figure 1(c), when θ is small so rank(X∗) is small, it is beneficial to use blockFW.

7 Conclusion
In this paper, we develop a rank-k variant of Frank-Wolfe for Problem (1.1) and show that: (1)
it converges in log(1/ε) rate for smooth and strongly convex functions, and (2) its per-iteration
complexity scales with polylog(1/ε). Preliminary experiments suggest that the value k can also be
automatically selected, and our algorithm outperforms FW and Garber [6] when X∗ is of relatively
smaller rank.
We hope more rank-k variants of Frank-Wolfe can be developed in the future.

Acknowledgments
Elad Hazan was supported by NSF grant 1523815 and a Google research award. The authors would
like to thank Dan Garber for sharing his code for [6].

8We perform exact line search for all algorithms. For Garber [6], we tune the best ηt = c
t

and exactly
search for the optimal η̃t. For blockFW, we let k be chosen automatically and choose η = 0.01 for all the six
experiments.

9We perform exact line search for all algorithms. For Garber [6], we tune the best ηt = c
t

and exactly search
for the optimal η̃t. For blockFW, we let k be chosen automatically and choose η = 0.0005 for all the three
experiments.

9

References
[1] Zeyuan Allen-Zhu and Yuanzhi Li. LazySVD: Even faster SVD decomposition yet without

agonizing pain. In NIPS, pages 974–982, 2016.

[2] Emmanuel Candes and Benjamin Recht. Exact matrix completion via convex optimization.
Communications of the ACM, 55(6):111–119, 2012.

[3] Emmanuel J Candes, Yonina C Eldar, Thomas Strohmer, and Vladislav Voroninski. Phase
retrieval via matrix completion. SIAM review, 57(2):225–251, 2015.

[4] Miroslav Dudik, Zaid Harchaoui, and Jérôme Malick. Lifted coordinate descent for learning
with trace-norm regularization. In AISTATS, pages 327–336, 2012.

[5] Marguerite Frank and Philip Wolfe. An algorithm for quadratic programming. Naval research
logistics quarterly, 3(1-2):95–110, 1956.

[6] Dan Garber. Faster projection-free convex optimization over the spectrahedron. In NIPS, pages
874–882, 2016.

[7] Dan Garber and Elad Hazan. A linearly convergent conditional gradient algorithm with
applications to online and stochastic optimization. arXiv preprint arXiv:1301.4666, 2013.

[8] Dan Garber and Elad Hazan. Faster rates for the frank-wolfe method over strongly-convex sets.
In ICML, pages 541–549, 2015.

[9] Elad Hazan. Sparse approximate solutions to semidefinite programs. In Latin American
Symposium on Theoretical Informatics, pages 306–316. Springer, 2008.

[10] Martin Jaggi and Marek Sulovský. A simple algorithm for nuclear norm regularized problems.
In ICML, pages 471–478, 2010.

[11] Simon Lacoste-Julien and Martin Jaggi. An affine invariant linear convergence analysis for
frank-wolfe algorithms. arXiv preprint arXiv:1312.7864, 2013.

[12] Roi Livni, Shai Shalev-Shwartz, and Ohad Shamir. On the computational efficiency of training
neural networks. In NIPS, pages 855–863, 2014.

[13] Cameron Musco and Christopher Musco. Randomized block krylov methods for stronger and
faster approximate singular value decomposition. In NIPS, pages 1396–1404, 2015.

[14] Yurii Nesterov. Introductory Lectures on Convex Programming Volume: A Basic course,
volume I. Kluwer Academic Publishers, 2004.

[15] Yurii Nesterov. Smooth minimization of non-smooth functions. Mathematical Programming,
103(1):127–152, December 2005.

[16] Shai Shalev-Shwartz, Alon Gonen, and Ohad Shamir. Large-scale convex minimization with a
low-rank constraint. arXiv preprint arXiv:1106.1622, 2011.

10

