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A.1 Architecture
We rely on a variant of the compressive autoencoder proposed recently in [30], using convolutional
neural networks for the image encoder and image decoder 3. The first two convolutional layers in the
image encoder each downsample the input image by a factor 2 and collectively increase the number
of channels from 3 to 128. This is followed by three residual blocks, each with 128 filters. Another
convolutional layer then downsamples again by a factor 2 and decreases the number of channels to c,
where c is a hyperparameter ([30] use 64 and 96 channels). For a w × h-dimensional input image,
the output of the image encoder is the w/8× h/8× c-dimensional “bottleneck tensor”.

The image decoder then mirrors the image encoder, using upsampling instead of downsampling, and
deconvolutions instead of convolutions, mapping the bottleneck tensor into aw×h-dimensional output
image. In contrast to the “subpixel” layers [26, 27] used in [30], we use standard deconvolutions for
simplicity.

A.2 Hyperparameters
We do vector quantization toL = 1000 centers, using (pw, ph) = (2, 2), i.e.,m = d/(2·2).We trained
different combinations of β and c to explore different rate-distortion tradeoffs (measuring distortion in
MSE). As β controls to which extent the network minimizes entropy, β directly controls bpp (see top
left plot in Fig. 3). We evaluated all pairs (c, β) with c ∈ {8, 16, 32, 48} andmβ ∈ {1e−4, . . . , 9e−4},
and selected 5 representative pairs (models) with average bpps roughly corresponding to uniformly
spread points in the interval [0.1, 0.8] bpp. This defines a “quality index” for our model family,
analogous to the JPEG quality factor.

We experimented with the other training parameters on a setup with c = 32, which we chose as
follows. In the first stage we train for 250k iterations using a learning rate of 1e−4. In the second stage,
we use an annealing schedule with T = 50k,KG = 100, over 800k iterations using a learning rate
of 1e−5. In both stages, we use a weak l2 regularizer over all learnable parameters, with λ = 1e−12.

A.3 Effect of Vector Quantization and Entropy Loss
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Figure 2: PSNR on ImageNET100 as a function of the rate for 2×2-dimensional centers (Vector), for
1× 1-dimensional centers (Scalar), and for 2× 2-dimensional centers without entropy loss (β = 0).
JPEG is included for reference.
To investigate the effect of vector quantization, we trained models as described in Section 4, but
instead of using vector quantization, we set L = 6 and quantized to 1×1-dimensional (scalar) centers,

3We note that the image encoder (decoder) refers to the left (right) part of the autoencoder, which encodes
(decodes) the data to (from) the bottleneck (not to be confused with the symbol encoder (decoder) in Section 3).
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i.e., (ph, pw) = (1, 1),m = d. Again, we chose 5 representative pairs (c, β). We chose L = 6 to get
approximately the same number of unique symbol assignments as for 2× 2 patches, i.e., 64 ≈ 1000.

To investigate the effect of the entropy loss, we trained models using 2 × 2 centers for c ∈
{8, 16, 32, 48} (as described above), but used β = 0.

Fig. 2 shows how both vector quantization and entropy loss lead to higher compression rates at a given
reconstruction MSE compared to scalar quantization and training without entropy loss, respectively.
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A.4 Effect of Annealing
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Figure 3: Entropy loss for three β values, soft and hard PSNR, as well as gap(t) and σ as a function
of the iteration t.

A.5 Data Sets and Quality Measure Details

Kodak [2] is the most frequently employed dataset for analizing image compression performance
in recent years. It contains 24 color 768× 512 images covering a variety of subjects, locations and
lighting conditions.

B100 [31] is a set of 100 content diverse color 481×321 test images from the Berkeley Segmentation
Dataset [22].

Urban100 [14] has 100 color images selected from Flickr with labels such as urban, city, architecture,
and structure. The images are larger than those from B100 or Kodak, in that the longer side of an
image is always bigger than 992 pixels. Both B100 and Urban100 are commonly used to evaluate
image super-resolution methods.

ImageNET100 contains 100 images randomly selected by us from ImageNET [25], also downsam-
pled and cropped, see above.

Quality measures. PSNR (peak signal-to-noise ratio) is a standard measure in direct monotonous
relation with the mean square error (MSE) computed between two signals. SSIM and MS-SSIM
are the structural similarity index [37] and its multi-scale SSIM computed variant [36] proposed to
measure the similarity of two images. They correlate better with human perception than PSNR.

We compute quantitative similarity scores between each compressed image and the corresponding
uncompressed image and average them over whole datasets of images. For comparison with JPEG
we used libjpeg4, for JPEG 2000 we used the Kakadu implementation5, subtracting in both cases
the size of the header from the file size to compute the compression rate. For comparison with BPG
we used the reference implementation6 and used the value reported in the picture_data_length
header field as file size.

4http://libjpeg.sourceforge.net/
5http://kakadusoftware.com/
6https://bellard.org/bpg/
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A.6 Image Compression Performance
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Figure 4: Average MS-SSIM, SSIM, and PSNR as a function of the rate for the ImageNET100,
Urban100, B100 and Kodak datasets.

A.7 Image Compression Visual Examples

Fig. 5–12 show the output of compressing the first four images of each of the four datasets with our
method, BPG, JPEG, and JPEG 2000, at low bitrates.
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SHVQ (ours) 0.15bpp / 0.92 / 0.75 / 27.75dB 0.15bpp / 0.93 / 0.78 / 29.31dB BPG

JPEG 0.16bpp / 0.76 / 0.58 / 21.38dB 0.15bpp / 0.91 / 0.74 / 27.87dB JPEG 2000

SHVQ (ours) 0.20bpp / 0.92 / 0.72 / 24.13dB 0.21bpp / 0.93 / 0.74 / 24.93dB BPG

JPEG 0.21bpp / 0.83 / 0.58 / 20.28dB 0.21bpp / 0.91 / 0.68 / 23.60dB JPEG 2000

Figure 5: Our SHVQ vs. BPG, JPEG and JPEG 2000 on the first and second image of the Ima-
geNET100 dataset, along with bit rate / MS-SSIM / SSIM / PSNR.
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SHVQ (ours) 0.21bpp / 0.91 / 0.68 / 23.57dB 0.23bpp / 0.92 / 0.68 / 24.35dB BPG

JPEG 0.21bpp / 0.80 / 0.51 / 20.14dB 0.22bpp / 0.90 / 0.65 / 23.51dB JPEG 2000

SHVQ (ours) 0.24bpp / 0.92 / 0.67 / 21.08dB 0.27bpp / 0.91 / 0.66 / 21.73dB BPG

JPEG 0.26bpp / 0.79 / 0.48 / 18.25dB 0.24bpp / 0.89 / 0.61 / 20.72dB JPEG 2000

Figure 6: Our SHVQ vs. BPG, JPEG and JPEG 2000 on the third and forth image of the ImageNET100
dataset, along with bit rate / MS-SSIM / SSIM / PSNR.
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SHVQ (ours) 0.17bpp / 0.88 / 0.54 / 22.69dB 0.19bpp / 0.88 / 0.54 / 23.13dB BPG

JPEG 0.18bpp / 0.74 / 0.36 / 19.54dB 0.18bpp / 0.87 / 0.52 / 22.32dB JPEG 2000

SHVQ (ours) 0.12bpp / 0.93 / 0.77 / 26.69dB 0.12bpp / 0.94 / 0.80 / 27.71dB BPG

JPEG 0.16bpp / 0.78 / 0.63 / 22.01dB 0.13bpp / 0.92 / 0.76 / 26.43dB JPEG 2000

Figure 7: Our SHVQ vs. BPG, JPEG and JPEG 2000 on the first and second image of the B100
dataset, along with bit rate / MS-SSIM / SSIM / PSNR.
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SHVQ (ours) 0.14bpp / 0.93 / 0.79 / 25.96dB 0.14bpp / 0.93 / 0.80 / 27.17dB BPG

JPEG 0.17bpp / 0.76 / 0.63 / 21.11dB 0.15bpp / 0.92 / 0.77 / 26.24dB JPEG 2000

SHVQ (ours) 0.11bpp / 0.91 / 0.76 / 27.59dB 0.10bpp / 0.91 / 0.76 / 28.04dB BPG

JPEG 0.15bpp / 0.72 / 0.53 / 22.34dB 0.12bpp / 0.91 / 0.75 / 27.81dB JPEG 2000

Figure 8: Our SHVQ vs. BPG, JPEG and JPEG 2000 on the third and forth image of the B100 dataset,
along with bit rate / MS-SSIM / SSIM / PSNR.
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SHVQ (ours) 0.14bpp / 0.92 / 0.68 / 25.95dB 0.13bpp / 0.92 / 0.69 / 27.00dB BPG

JPEG 0.18bpp / 0.79 / 0.52 / 21.61dB 0.14bpp / 0.89 / 0.63 / 25.28dB JPEG 2000

SHVQ (ours) 0.17bpp / 0.95 / 0.79 / 25.28dB 0.17bpp / 0.95 / 0.80 / 26.05dB BPG

JPEG 0.19bpp / 0.82 / 0.54 / 20.80dB 0.17bpp / 0.93 / 0.73 / 24.57dB JPEG 2000

Figure 9: Our SHVQ vs. BPG, JPEG and JPEG 2000 on the first and second image of the Urban100
dataset, along with bit rate / MS-SSIM / SSIM / PSNR.
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SHVQ (ours) 0.19bpp / 0.91 / 0.66 / 22.85dB 0.20bpp / 0.90 / 0.65 / 23.28dB BPG

JPEG 0.21bpp / 0.76 / 0.43 / 19.25dB 0.20bpp / 0.88 / 0.59 / 22.14dB JPEG 2000

SHVQ (ours) 0.22bpp / 0.96 / 0.83 / 24.74dB 0.22bpp / 0.97 / 0.85 / 26.30dB BPG

JPEG 0.24bpp / 0.86 / 0.62 / 20.13dB 0.23bpp / 0.95 / 0.79 / 24.37dB JPEG 2000

Figure 10: Our SHVQ vs. BPG, JPEG and JPEG 2000 on the third and forth image of the Urban100
dataset, along with bit rate / MS-SSIM / SSIM / PSNR.
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SHVQ (ours) 0.16bpp / 0.89 / 0.63 / 24.42dB 0.16bpp / 0.90 / 0.64 / 24.97dB BPG

JPEG 0.18bpp / 0.70 / 0.42 / 19.90dB 0.17bpp / 0.87 / 0.59 / 24.02dB JPEG 2000

SHVQ (ours) 0.12bpp / 0.88 / 0.72 / 28.76dB 0.12bpp / 0.91 / 0.78 / 30.99dB BPG

JPEG 0.14bpp / 0.58 / 0.49 / 21.73dB 0.12bpp / 0.89 / 0.74 / 30.06dB JPEG 2000

Figure 11: Our SHVQ vs. BPG, JPEG and JPEG 2000 on the first and second image of the Kodak
dataset, along with bit rate / MS-SSIM / SSIM / PSNR.
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SHVQ (ours) 0.10bpp / 0.93 / 0.82 / 29.81dB 0.11bpp / 0.95 / 0.87 / 32.14dB BPG

JPEG 0.14bpp / 0.76 / 0.67 / 22.68dB 0.10bpp / 0.93 / 0.82 / 30.42dB JPEG 2000

SHVQ (ours) 0.11bpp / 0.89 / 0.73 / 28.36dB 0.12bpp / 0.92 / 0.78 / 30.14dB BPG

JPEG 0.14bpp / 0.64 / 0.54 / 21.21dB 0.11bpp / 0.90 / 0.75 / 29.19dB JPEG 2000

Figure 12: Our SHVQ vs. BPG, JPEG and JPEG 2000 on the third and forth image of the Kodak
dataset, along with bit rate / MS-SSIM / SSIM / PSNR.
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A.8 DNN Compression: Entropy and Histogram Evolution
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Figure 13: We show how the sample entropy H(p) decays during training, due to the entropy loss
term in (6), and corresponding index histograms at three time instants. Top left: Evolution of the
sample entropy H(p). Top right: the histogram for the entropy H = 4.07 at t = 216. Bottom left
and right: the corresponding sample histogram when H(p) reaches 2.90 bits per weight at t = 475
and the final histogram for H(p) = 1.58 bits per weight at t = 520.
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