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Abstract

In this paper we study the well-known greedy coordinate descent (GCD) algorithm
to solve `1-regularized problems and improve GCD by the two popular strategies:
Nesterov’s acceleration and stochastic optimization. Firstly, based on an `1-norm
square approximation, we propose a new rule for greedy selection which is non-
trivial to solve but convex; then an efficient algorithm called “SOft ThreshOlding
PrOjection (SOTOPO)” is proposed to exactly solve an `1-regularized `1-norm
square approximation problem, which is induced by the new rule. Based on the
new rule and the SOTOPO algorithm, the Nesterov’s acceleration and stochastic
optimization strategies are then successfully applied to the GCD algorithm. The re-
sulted algorithm called accelerated stochastic greedy coordinate descent (ASGCD)
has the optimal convergence rate O(

√
1/ε); meanwhile, it reduces the iteration

complexity of greedy selection up to a factor of sample size. Both theoretically and
empirically, we show that ASGCD has better performance for high-dimensional
and dense problems with sparse solutions.

1 Introduction

In large-scale convex optimization, first-order methods are widely used due to their cheap iteration
cost. In order to improve the convergence rate and reduce the iteration cost further, two important
strategies are used in first-order methods: Nesterov’s acceleration and stochastic optimization.
Nesterov’s acceleration is referred to the technique that uses some algebra trick to accelerate first-
order algorithms; while stochastic optimization is referred to the method that samples one training
example or one dual coordinate at random from the training data in each iteration. Assume the
objective function F (x) is convex and smooth. Let F ∗ = minx∈Rd F (x) be the optimal value. In
order to find an approximate solution x that satisfies F (x) − F ∗ ≤ ε, the vanilla gradient descent
method needs O(1/ε) iterations. While after applying the Nesterov’s acceleration scheme [18],
the resulted accelerated full gradient method (AFG) [18] only needs O(

√
1/ε) iterations, which is

optimal for first-order algorithms [18]. Meanwhile, assume F (x) is also a finite sum of n sample
convex functions. By sampling one training example, the resulted stochastic gradient descent (SGD)
and its variants [15, 25, 1] can reduce the iteration complexity by a factor of the sample size. As an
alternative of SGD, randomized coordinate descent (RCD) can also reduce the iteration complexity
by a factor of the sample size [17] and obtain the optimal convergence rate O(

√
1/ε) by Nesterov’s

acceleration [16, 14]. The development of gradient descent and RCD raises an interesting problem:
can the Nesterov’s acceleration and stochastic optimization strategies be used to improve other
existing first-order algorithms?
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In this paper, we answer this question partly by studying coordinate descent with Gauss-Southwell
selection, i.e., greedy coordinate descent (GCD). GCD is widely used for solving sparse optimization
problems in machine learning [24, 11, 19]. If an optimization problem has a sparse solution, it is
more suitable than its counterpart RCD. However, the theoretical convergence rate is still O(1/ε).
Meanwhile if the iteration complexity is comparable, GCD will be preferable than RCD [19]. However
in the general case, in order to do exact Gauss-Southwell selection, computing the full gradient
beforehand is necessary, which causes GCD has much higher iteration complexity than RCD. To be
concrete, in this paper we consider the well-known nonsmooth `1-regularized problem:

min
x∈Rd

{
F (x)

def
= f(x) + λ‖x‖1

def
=

1

n

n∑
j=1

fj(x) + λ‖x‖1
}
, (1)

where λ ≥ 0 is a regularization parameter, f(x) = 1
n

∑n
j=1 fj(x) is a smooth convex function that is

a finite average of n smooth convex function fj(x). Given samples {(a1, b1), (a2, b2), . . . , (an, bn)}
with aj ∈ Rd (j ∈ [n]

def
= {1, 2, . . . , n}), if each fj(x) = fj(a

T
j x, bj), then (1) is an `1-regularized

empirical risk minimization (`1-ERM) problem. For example, if bj ∈ R and fj(x) = 1
2 (bj − a

T
j x)

2,
(1) is Lasso; if bj ∈ {−1, 1} and fj(x) = log(1 + exp(−bjaTj x)), `1-regularized logistic regression
is obtained.

In the above nonsmooth case, the Gauss-Southwell rule has 3 different variants [19, 24]: GS-s, GS-r
and GS-q. The GCD algorithm with all the 3 rules can be viewed as the following procedure: in
each iteration based on a quadratic approximation of f(x) in (1), one minimizes a surrogate objective
function under the constraint that the direction vector used for update has at most 1 nonzero entry.
The resulted problems under the 3 rules are easy to solve but are nonconvex due to the cardinality
constraint of direction vector. While when using Nesterov’s acceleration scheme, convexity is needed
for the derivation of the optimal convergence rate O(

√
1/ε) [18]. Therefore, it is impossible to

accelerate GCD by the Nesterov’s acceleration scheme under the 3 existing rules.

In this paper, we propose a novel variant of Gauss-Southwell rule by using an `1-norm square
approximation of f(x) rather than quadratic approximation. The new rule involves an `1-regularized
`1-norm square approximation problem, which is nontrivial to solve but is convex. To exactly
solve the challenging problem, we propose an efficient SOft ThreshOlding PrOjection (SOTOPO)
algorithm. The SOTOPO algorithm has O(d+ |Q| log |Q|) cost, where it is often the case |Q| � d.
The complexity result O(d+ |Q| log |Q|) is better than O(d log d) of its counterpart SOPOPO [20],
which is an Euclidean projection method.

Then based on the new rule and SOTOPO, we accelerate GCD to attain the optimal convergence rate
O(
√
1/ε) by combing a delicately selected mirror descent step. Meanwhile, we show that it is not

necessary to compute full gradient beforehand: sampling one training example and computing a noisy
gradient rather than full gradient is enough to perform greedy selection. This stochastic optimization
technique reduces the iteration complexity of greedy selection by a factor of the sample size. The
final result is an accelerated stochastic greedy coordinate descent (ASGCD) algorithm.

Assume x∗ is an optimal solution of (1). Assume that each fj(x)(for all j ∈ [n]) is Lp-smooth w.r.t.
‖ · ‖p (p = 1, 2), i.e., for all x, y ∈ Rd,

‖∇fj(x)−∇fj(y)‖q ≤ Lp‖x− y‖p, (2)

where if p = 1, then q =∞; if p = 2, then q = 2.

In order to find an x that satisfies F (x)− F (x∗) ≤ ε, ASGCD needs O
(√

CL1‖x∗‖1√
ε

)
iterations (see

(16)), where C is a function of d that varies slowly over d and is upper bounded by log2(d). For
high-dimensional and dense problems with sparse solutions, ASGCD has better performance than the
state of the art. Experiments demonstrate the theoretical result.

Notations: Let [d] denote the set {1, 2, . . . , d}. Let R+ denote the set of nonnegative real number. For
x ∈ Rd, let ‖x‖p = (

∑d
i=1 |xi|p)

1
p (1 ≤ p < ∞) denote the `p-norm and ‖x‖∞ = maxi∈[d] |xi|

denote the `∞-norm of x. For a vector x, let dim(x) denote the dimension of x; let xi denote the i-th
element of x. For a gradient vector∇f(x), let ∇if(x) denote the i-th element of ∇f(x). For a set
S, let |S| denote the cardinality of S. Denote the simplex4d = {θ ∈ Rd+ :

∑d
i=1 θi = 1}.
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2 The SOTOPO algorithm

The proposed SOTOPO algorithm aims to solve the proposed new rule, i.e., minimize the following
`1-regularized `1-norm square approximation problem,

h̃
def
= argmin

g∈Rd

{
〈∇f(x), g〉+ 1

2η
‖g‖21 + λ‖x+ g‖1

}
, (3)

x̃
def
= x+ h̃, (4)

where x denotes the current iteration, η a step size, g the variable to optimize, h̃ the director vector for
update and x̃ the next iteration. The number of nonzero entries of h̃ denotes how many coordinates
will be updated in this iteration. Unlike the quadratic approximation used in GS-s, GS-r and GS-q
rules, in the new rule the coordinate(s) to update is implicitly selected by the sparsity-inducing
property of the `1-norm square ‖g‖21 rather than using the cardinality constraint ‖g‖0 ≤ 1 (i.e., g
has at most 1 nonzero element) [19, 24]. By [8, §9.4.2], when the nonsmooth term λ‖x+ g‖1 in (1)
does not exist, the minimizer of the `1-norm square approximation (i.e., `1-norm steepest descent)
is equivalent to GCD. When λ‖x+ g‖1 exists, generally, there may be one or more coordinates to
update in this new rule. Because of the sparsity-inducing property of ‖g‖21 and ‖x+ g‖1, both the
direction vector h̃ and the iterative solution x̃ are sparse. In addition, (3) is an unconstrained problem
and thus is feasible.

2.1 A variational reformulation and its properties

(3) involves the nonseparable, nonsmooth term ‖g‖21 and the nonsmooth term ‖x + g‖1. Because
there are two nonsmooth terms, it seems difficult to solve (3) directly. While by the variational
identity ‖g‖21 = infθ∈4d

∑d
i=1

g2i
θi

in [5] 2, in Lemma 1, it is shown that we can transform the
original nonseparable and nonsmooth problem into a separable and smooth optimization problem on
a simplex.

Lemma 1. By defining

J(g, θ)
def
= 〈∇f(x), g〉+ 1

2η

d∑
i=1

g2i
θi

+ λ‖x+ g‖1, (5)

g̃(θ)
def
= argming∈Rd J(g, θ), J(θ)

def
= J(g̃(θ), θ), (6)

θ̃
def
= arg infθ∈4d J(θ), (7)

where g̃(θ) is a vector function. Then the minimization problem to find h̃ in (3) is equivalent to the
problem (7) to find θ̃ with the relation h̃ = g̃(θ̃). Meanwhile, g̃(θ) and J(θ) in (6) are both coordinate
separable with the expressions

∀i ∈ [d], g̃i(θ) = g̃i(θi)
def
= sign(xi − θiη∇if(x)) ·max{0, |xi − θiη∇if(x)| − θiηλ} − xi, (8)

J(θ) =

d∑
i=1

Ji(θi), where Ji(θi)
def
= ∇if(x) · g̃i(θi) +

1

2η

d∑
i=1

g̃2i (θi)

θi
+ λ|xi + g̃i(θi)|. (9)

In Lemma 1, (8) is obtained by the iterative soft thresholding operator [7]. By Lemma 1, we can
reformulate (3) into the problem (5), which is about two parameters g and θ. Then by the joint
convexity, we swap the optimization order of g and θ. Fixing θ and optimizing with respect to (w.r.t.)
g, we can get a closed form of g̃(θ), which is a vector function about θ. Substituting g̃(θ) into J(g, θ),
we get the problem (7) about θ. Finally, the optimal solution h̃ in (3) can be obtained by h̃ = g̃(θ̃).

The explicit expression of each Ji(θi) can be given by substituting (8) into (9). Because θ ∈ 4d, we
have for all i ∈ [d], 0 ≤ θi ≤ 1. In the following Lemma 2, it is observed that the derivate J ′i(θi) can
be a constant or have a piecewise structure, which is the key to deduce the SOTOPO algorithm.

2The infima can be replaced by minimization if the convention “0/0 = 0” is used.
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Lemma 2. Assume that for all i ∈ [d], J ′i(0) and J ′i(1) have been computed. Denote ri1
def
=

|xi|√
−2ηJ′i(0)

and ri2
def
= |xi|√

−2ηJ′i(1)
, then J ′i(θi) belongs to one of the 4 cases,

(case a) : J ′i(θi) = 0, 0 ≤ θi ≤ 1, (case b) : J ′i(θi) = J ′i(0) < 0, 0 ≤ θi ≤ 1,

(case c) : J ′i(θi) =

{
J ′i(0), 0 ≤ θi ≤ ri1
− x2

i

2ηθ2i
, ri1 < θi ≤ 1

, (case d) : J ′i(θi) =


J ′i(0), 0 ≤ θi ≤ ri1
− x2

i

2ηθ2i
, ri1 < θi < ri2

J ′i(1), ri2 ≤ θi ≤ 1

.

Although the formulation of J ′i(θi) is complicated, by summarizing the property of the 4 cases in
Lemma 2, we have Corollary 1.
Corollary 1. For all i ∈ [d] and 0 ≤ θi ≤ 1, if the derivate J ′i(θi) is not always 0, then J ′i(θi) is a
non-decreasing, continuous function with value always less than 0.

Corollary 1 shows that except the trivial (case a), for all i ∈ [d], whichever J ′i(θi) belong to (case b),
(case c) or case (d), they all share the same group of properties, which makes a consistent iterative
procedure possible for all the cases. The different formulations in the four cases mainly have impact
about the stopping criteria of SOTOPO.

2.2 The property of the optimal solution

The Lagrangian of the problem (7) is

L(θ, γ, ζ) def
= J(θ) + γ

( d∑
i=1

θi − 1
)
− 〈ζ, θ〉, (10)

where γ ∈ R is a Lagrange multiplier and ζ ∈ Rd+ is a vector of non-negative Lagrange multipliers.
Due to the coordinate separable property of J(θ) in (9), it follows that ∂J(θ)∂θi

= J ′i(θi). Then the
KKT condition of (10) can be written as

∀i ∈ [d], J ′i(θi) + γ − ζi = 0, ζiθi = 0, and
d∑
i=1

θi = 1. (11)

By reformulating the KKT condition (11), we have Lemma 3.

Lemma 3. If (γ̃, θ̃, ζ̃) is a stationary point of (10), then θ̃ is an optimal solution of (7). Meanwhile,

denote S
def
= {i : θ̃i > 0} and T

def
= {j : θ̃j = 0}, then the KKT condition can be formulated as

∑
i∈S θ̃i = 1;

for all j ∈ T, θ̃j = 0;

for all i ∈ S, γ̃ = −J ′i(θ̃i) ≥ maxj∈T −J ′j(0).
(12)

By Lemma 3, if the set S in Lemma 3 is known beforehand, then we can compute θ̃ by simply
applying the equations in (12). Therefore finding the optimal solution θ̃ is equivalent to finding the
set of the nonzero elements of θ̃.

2.3 The soft thresholding projection algorithm

In Lemma 3, for each i ∈ [d] with θ̃i > 0, it is shown that the negative derivate −J ′i(θ̃i) is equal to a
single variable γ̃. Therefore, a much simpler problem can be obtained if we know the coordinates of
these positive elements. At first glance, it seems difficult to identify these coordinates, because the
number of potential subsets of coordinates is clearly exponential on the dimension d. However, the
property clarified by Lemma 2 enables an efficient procedure for identifying the nonzero elements of
θ̃. Lemma 4 is a key tool in deriving the procedure for identifying the non-zero elements of θ̃.

Lemma 4 (Nonzero element identification). Let θ̃ be an optimal solution of (7). Let s and t be two
coordinates such that J ′s(0) < J ′t(0). If θ̃s = 0, then θ̃t must be 0 as well; equivalently, if θ̃t > 0,
then θ̃s must be greater than 0 as well.
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Lemma 4 shows that if we sort u def
= −∇J(0) such that ui1 ≥ ui2 ≥ · · · ≥ uid , where {i1, i2, . . . , id}

is a permutation of [d], then the set S in Lemma 3 is of the form {i1, i2, . . . , i%}, where 1 ≤ % ≤ d.
If % is obtained, then we can use the fact that for all j ∈ [%],

−J ′ij (θ̃ij ) = γ̃ and
%∑
j=1

θ̃ij = 1 (13)

to compute γ̃. Therefore, by Lemma 4, we can efficiently identify the nonzero elements of the optimal
solution θ̃ after a sort operation, which costs O(d log d). However based on Lemmas 2 and 3, the sort
cost O(d log d) can be further reduced by the following Lemma 5.

Lemma 5 (Efficient identification). Assume θ̃ and S are given in Lemma 3. Then for all i ∈ S,

−J ′i(0) ≥ max
j∈[d]
{−J ′j(1)}. (14)

By Lemma 5, before ordering u, we can filter out all the coordinates i’s that satisfy −J ′i(0) <
maxj∈[d]−J ′j(1). Based on Lemmas 4 and 5, we propose the SOft ThreshOlding PrOjection
(SOTOPO) algorithm in Alg. 1 to efficiently obtain an optimal solution θ̃. In the step 1, by Lemma 5,
we find the quantity vm, im and Q. In the step 2, by Lemma 4, we sort the elements {−J ′i(0)| i ∈ Q}.
In the step 3, because S in Lemma 3 is of the form {i1, i2, . . . , i%}, we search the quantity ρ from
1 to |Q|+ 1 until a stopping criteria is met. In Alg. 1, the number of nonzero elements of θ̃ is ρ or
ρ − 1. In the step 4, we compute the γ̃ in Lemma 3 according to the conditions. In the step 5, the
optimal θ̃ and the corresponding h̃, x̃ are given.

Algorithm 1 x̃ =SOTOPO(∇f(x), x, λ, η)
1. Find

(vm, im)
def
= (maxi∈[d]{−J ′i(1)}, argmaxi∈[d]{−J ′i(1)}), Q

def
= {i ∈ [d]| − J ′i(0) > vm}.

2. Sort {−J ′i(0)| i ∈ Q} such that −J ′i1(0) ≥ −J
′
i2
(0) ≥ · · · ≥ −J ′i|Q|(0), where

{i1, i2, . . . , i|Q|} is a permutation of the elements in Q. Denote

v
def
= (−J ′i1(0),−J

′
i2(0), . . . ,−J

′
i|Q|

(0), vm), and i|Q|+1
def
= im, v|Q|+1

def
= vm.

3. For j ∈ [|Q|+ 1], denote Rj = {ik|k ∈ [j]}. Search from 1 to |Q|+ 1 to find the quantity

ρ
def
= min

{
j ∈ [|Q|+ 1]| J ′ij (0) = J ′ij (1) or

∑
l∈Rj
|xl| ≥

√
2ηvj or j = |Q|+ 1

}
.

4. The γ̃ in Lemma 3 is given by

γ̃ =

{(∑
l∈Rρ−1

|xl|
)2
/(2η), if

∑
l∈Rρ−1

|xl| ≥
√
2ηvρ;

vρ, otherwise.

5. Then the θ̃ in Lemma 3 and its corresponding h̃, x̃ in (3) and (4) are obtained by

(θ̃l, h̃l, x̃l) =


( |xl|√

2ηγ̃
,−xl, 0

)
, if l ∈ Rρ\{iρ};(

1−
∑
k∈ Rρ\{iρ} θ̃k, g̃l(θ̃l), xl + g̃l(θ̃l)

)
, if l = iρ;

(0, 0, xl), if l ∈ [d]\Rρ.

In Theorem 1, we give the main result about the SOTOPO algorithm.

Theorem 1. The SOTOPO algorihtm in Alg. 1 can get the exact minimizer h̃, x̃ of the `1-regularized
`1-norm square approximation problem in (3) and (4).

The SOTOPO algorithm seems complicated but is indeed efficient. The dominant operations in Alg.
1 are steps 1 and 2 with the total cost O(d + |Q| log |Q|). To show the effect of the complexity
reduction by Lemma 5, we give the following fact.
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Proposition 1. For the optimization problem defined in (5)-(7), where λ is the regularization param-
eter of the original problem (1), we have that

0 ≤ max
i∈[d]

{√
−2J ′i(0)

η

}
−max
j∈[d]


√
−2J ′j(1)

η

 ≤ 2λ. (15)

Assume vm is defined in the step 1 of Alg. 1. By Proposition 1, for all i ∈ Q,√
−2J ′i(0)

η
≤ max

k∈[d]

{√
−2J ′k(0)

η

}
≤ max

j∈[d]


√
−2J ′j(1)

η

+ 2λ =

√
2vm
η

+ 2λ,

Therefore at least the coordinates j’s that satisfy
√
−2J′j(0)

η >
√

2vm
η + 2λ will be not contained in

Q. In practice, it can considerably reduce the sort complexity.
Remark 1. SOTOPO can be viewed as an extension of the SOPOPO algorithm [20] by changing the
objective function from Euclidean distance to a more general function J(θ) in (9). It should be noted
that Lemma 5 does not have a counterpart in the case that the objective function is Euclidean distance
[20]. In addition, some extension of randomized median finding algorithm [12] with linear time in
our setting is also deserved to research. Due to the limited space, it is left for further discussion.

3 The ASGCD algorithm

Now we can come back to our motivation, i.e., accelerating GCD to obtain the optimal convergence
rate O(1/

√
ε) by Nesterov’s acceleration and reducing the complexity of greedy selection by stochas-

tic optimization. The main idea is that although like any (block) coordinate descent algorithm, the
proposed new rule, i.e.,minimizing the problem in (3), performs update on one or several coordinates,
it is a generalized proximal gradient descent problem based on `1-norm. Therefore this rule can be
applied into the existing Nesterov’s acceleration and stochastic optimization framework “Katyusha”
[1] if it can be solved efficiently. The final result is the accelerated stochastic greedy coordinate
descent (ASGCD) algorithm, which is described in Alg. 2.

Algorithm 2 ASGCD

δ = log(d)− 1−
√
(log(d)− 1)2 − 1;

p = 1 + δ, q = p
p−1 , C = d

2δ
1+δ

δ ;
z0 = y0 = x̃0 = ϑ0 = 0;
τ2 = 1

2 ,m = dnb e, η = 1

(1+2 n−b
b(n−1) )L1

;

for s = 0, 1, 2, . . . , S − 1, do
1. τ1,s = 2

s+4 , αs =
η

τ1,sC
;

2. µs = ∇f(x̃s);
3. for l = 0, 1, . . . ,m− 1, do

(a) k = (sm) + l;
(b) randomly sample a mini batch B of size b from {1, 2, . . . , n} with equal probability;
(c) xk+1 = τ1,szk + τ2x̃s + (1− τ1,s − τ2)yk;

(d) ∇̃k+1 = µs +
1
b

∑
j∈B(∇fj(xk+1)−∇fj(x̃s));

(e) yk+1 =SOTOPO(∇̃k+1, xk+1, λ, η);
(f) (zk+1, ϑk+1) = pCOMID(∇̃k+1, ϑk, q, λ, αs);

end for
4. x̃s+1 = 1

m

∑m
l=1 ysm+l;

end for
Output: x̃S
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Algorithm 3 (x̃, ϑ̃) = pCOMID(g, ϑ, q, λ, α)

1. ∀i ∈ [d], ϑ̃i = sign(ϑi − αgi) ·max{0, |ϑi − αgi| − αλ};

2. ∀i ∈ [d], x̃i =
sign(ϑ̃i)|θ̃i|q−1

‖ϑ̃‖q−2
q

;

3. Output: x̃, ϑ̃.

In Alg. 2, the gradient descent step 3(e) is solved by the proposed SOTOPO algorithm, while the
mirror descent step 3(f) is solved by the COMID algorithm with p-norm divergence [13, Sec. 7.2].
We denote the mirror descent step as pCOMID in Alg. 3. All other parts are standard steps in the
Katyusha framework except some parameter settings. For example, instead of the custom setting
p = 1 + 1/log(d) [21, 13], a particular choice p = 1 + δ (δ is defined in Alg. 2) is used to minimize

the C = d
2δ

1+δ

δ . C varies slowly over d and is upper bounded by log2(d). Meanwhile, αk+1 depends
on the extra constant C. Furthermore, the step size η = 1

(1+2 n−b
b(n−1) )L1

is used, where L1 is defined

in (2). Finally, unlike [1, Alg. 2], we let the batch size b as an algorithm parameter to cover both the
stochastic case b < n and the deterministic case b = n. To the best of our knowledge, the existing
GCD algorithms are deterministic, therefore by setting b = n, we can compare with the existing
GCD algorithms better.

Based on the efficient SOTOPO algorithm, ASGCD has nearly the same iteration complexity with
the standard form [1, Alg. 2] of Katyusha. Meanwhile we have the following convergence rate.
Theorem 2. If each fj(x)(j ∈ [n]) is convex, L1-smooth in (2) and x∗ is an optimum of the
`1-regularized problem (1), then ASGCD satisfies

E[F (x̃S)]− F (x∗) ≤ 4

(S + 3)2

(
1 +

1 + 2β(b)

2m
C

)
L1‖x∗‖21 = O

(
CL1‖x∗‖21

S2

)
, (16)

where β(b) = n−b
b(n−1) , S, b, m and C are given in Alg. 2. In other words, ASGCD achieves an

ε-additive error (i.e., E[F (x̃S)]− F (x∗) ≤ ε ) using at most O
(√

CL1‖x∗‖1√
ε

)
iterations.

In Table 1, we give the convergence rate of the existing algorithms and ASGCD to solve the `1-
regularized problem (1). In the first column, “Acc” and “Non-Acc” denote the corresponding
algorithms are Nesterov’s accelerated or not respectively, “Primal” and “Dual” denote the corre-
sponding algorithms solves the primal problem (1) and its regularized dual problem [22] respectively,
`2-norm and `1-norm denote the theoretical guarantee is based on `2-norm and `1-norm respectively.
In terms of `2-norm based guarantee, Katyusha and APPROX give the state of the art convergence rate
O
(√

L2‖x∗‖2√
ε

)
. In terms of `1-norm based guarantee, GCD gives the state of the art convergence rate

O(
L1‖x‖21

ε ), which is only applicable for the smooth case λ = 0 in (1). When λ > 0, the generalized
GS-r, GS-s and GS-q rules generally have worse theoretical guarantee than GCD [19]. While the
bound of ASGCD in this paper is O(

√
L1‖x‖1 log d√

ε
), which can be viewed as an accelerated version

of the `1-norm based guarantee O(
L1‖x‖21

ε ). Meanwhile, because the bound depends on ‖x∗‖1 rather
than ‖x∗‖2 and on L1 rather than L2 (L1 and L2 are defined in (2)), for the `1-ERM problem, if the
samples are high-dimensional, dense and the regularization parameter λ is relatively large, then it is
possible that L1 � L2 (in the extreme case, L2 = dL1 [11]) and ‖x∗‖1 ≈ ‖x∗‖2. In this case, the
`1-norm based guarantee O(

√
L1‖x‖1 log d√

ε
) of ASGCD is better than the `2-norm based guarantee

O
(√

L2‖x∗‖2√
ε

)
of Katyusha and APPROX. Finally, whether the log d factor in the bound of ASGCD

(which also appears in the COMID [13] analysis) is necessary deserves further research.
Remark 2. When the batch size b = n, ASGCD is a deterministic algorithm. In this case, we can use
a better smooth constant T1 that satisfies ‖∇f(x)−∇f(y)‖∞ ≤ T1‖x− y‖1 rather than L1 [1].
Remark 3. The necessity of computing the full gradient beforehand is the main bottleneck of GCD
in applications [19]. There exists some work [11] to avoid the computation of full gradient by
performing some approximate greedy selection. While the method in [11] needs preprocessing,
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Table 1: Convergence rate on `1-regularized empirical risk minimization problems. (For GCD, the
convergence rate is applied for λ = 0. )

ALGORITHM TYPE PAPER CONVERGENCE RATE

NON-ACC, PRIMAL, `2-NORM SAGA [10] O
(
L2‖x∗‖22

ε

)
ACC, PRIMAL, `2-NORM KATYUSHA [1] O

(√
L2‖x∗‖2√

ε

)
ACC, ACC-SDCA [23]

O
(√

L2‖x∗‖2√
ε

log( 1
ε
)
)DUAL, SPDC [26]

`2-NORM APCG [16]
APPROX [14]

NON-ACC, PRIMAL, `1-NORM GCD [3] O
(
L1‖x∗‖21

ε

)
ACC, PRIMAL, `1-NORM ASGCD (THIS PAPER) O

(√
L1‖x∗‖1 log d√

ε

)

incoherence condition for dataset and is somewhat complicated. Contrary to [11], the proposed
ASGCD algorithm reduces the complexity of greedy selection by a factor up to n in terms of the
amortized cost by simply applying the existing stochastic variance reduction framework.

4 Experiments

In this section, we use numerical experiments to demonstrate the theoretical results in Section 3
and show the empirical performance of ASGCD with batch size b = 1 and its deterministic version
with b = n (In Fig. 1 they are denoted as ASGCD (b = 1) and ASGCD (b = n) respectively). In
addition, following the claim to using data access rather than CPU time [21] and the recent SGD
and RCD literature [15, 16, 1], we use the data access, i.e., the number of times the algorithm
accesses the data matrix, to measure the algorithm performance. To show the effect of Nesterov’s
acceleration, we compare ASGCD (b = n) with the non-accelerated greedy coordinate descent
with GS-q rule, i.e., coordinate gradient descent (CGD) [24]. To show the effect of both Nesterov’s
acceleration and stochastic optimization strategies, we compare ASGCD (b = 1) with Katyusha
[1, Alg. 2]. To show the effect of the proposed new rule in Section 2, which is based on `1-norm
square approximation, we compare ASGCD (b = n) with the `2-norm based proximal accelerated
full gradient (AFG) implemented by the linear coupling framework [4]. Meanwhile, as a benchmark
of stochastic optimization for the problems with finite-sum structure, we also show the performance
of proximal stochastic variance reduced gradient (SVRG) [25]. In addition, based on [1] and our
experiments, we find that “Katyusha” [1, Alg. 2] has the best empirical performance in general for
the `1-regularized problem (1). Therefore other well-known state-of-art algorithms, such as APCG
[16] and accelerated SDCA [23], are not included in the experiments.

The datasets are obtained from LIBSVM data [9] and summarized in Table 2. All the algorithms are
used to solve the following lasso problem

min
x∈Rd
{f(x) + λ‖x‖1 =

1

2n
‖b−Ax‖22 + λ‖x‖1} (17)

on the 3 datasets, where A = (a1, a2, . . . , an)
T = (h1, h2, . . . , hd) ∈ Rn×d with each aj ∈ Rd

representing a sample vector and hi ∈ Rn representing a feature vector, b ∈ Rn is the prediction
vector.

Table 2: Characteristics of three real datasets.

DATASET NAME # SAMPLES n # FEATURES d
LEUKEMIA 38 7129
GISETTE 6000 5000
MNIST 60000 780

For ASGCD (b = 1) and Katyusha [1, Alg. 2], we can use the tight smooth constant L1 =
maxj∈[n],i∈[d] |a2j,i| and L2 = maxj∈[n] ‖aj‖22 respectively in their implementation. While for AS-
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Figure 1: Comparing AGCD (b = 1) and ASGCD (b = n) with CGD, SVRG, AFG and Katyusha on
Lasso.

GCD (b = n) and AFG, the better smooth constant T1 =
maxi∈[d] ‖hi‖22

n and T2 = ‖A‖2
n are used re-

spectively. The learning rate of CGD and SVRG are tuned in {10−6, 10−5, 10−4, 10−3, 10−2, 10−1}.

Table 3: Factor rates of for the 6 cases

λ LEU GISETTE MNIST

10−2 (0.85, 1.33) (0.88, 0.74) (5.85, 3.02)
10−6 (1.45, 2.27) (3.51, 2.94) (5.84, 3.02)

We use λ = 10−6 and λ = 10−2 in the experiments. In addition, for each case (Dataset, λ), AFG is
used to find an optimum x∗ with enough accuracy.

The performance of the 6 algorithms is plotted in Fig. 1. We use Log loss log(F (xk)−F (x∗)) in the
y-axis. x-axis denotes the number that the algorithm access the data matrix A. For example, ASGCD
(b = n) accesses A once in each iteration, while ASGCD (b = 1) accesses A twice in an entire outer
iteration. For each case (Dataset, λ), we compute the rate (r1, r2) =

(√
CL1‖x∗‖1√
L2‖x∗‖2

,
√
CT1‖x∗‖1√
T2‖x∗‖2

)
in Table 3. First, because of the acceleration effect, ASGCD (b = n) are always better than the
non-accelerated CGD algorithm; second, by comparing ASGCD(b = 1) with Katyusha and ASGCD
(b = n) with AFG, we find that for the cases (Leu, 10−2), (Leu, 10−6) and (Gisette, 10−2), ASGCD
(b = 1) dominates Katyusha [1, Alg.2] and ASGCD (b = n) dominates AFG. While the theoretical
analysis in Section 3 shows that if r1 is relatively small such as around 1, then ASGCD (b = 1)
will be better than [1, Alg.2]. For the other 3 cases, [1, Alg.2] and AFG are better. The consistency
between Table 3 and Fig. 1 demonstrates the theoretical analysis.
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A Proof of Lemma 1

Proof. By using the variational identity ‖g‖21 = infθ∈4d
∑d
i=1

g2i
θi

in [5] and the definition of J(g, θ)
in (3), it follows that (3) can be rewritten as

h̃ = argmin
g∈Rd

{ inf
θ∈4d

J(g, θ)}.

By the joint convexity of J(g, θ), we can find the minimizer h̃ by swapping the optimization order of
g and θ, which is to say based on the definition of g̃(θ), J(θ) and θ̃, we have

h̃ = g̃(θ̃).

Therefore, the minimization problem to find h̃ in (3) can be equivalently transformed to the problem
(7). Meanwhile, it is observed that J(g, θ) is coordinate separable, i.e.,

J(g, θ) =

d∑
i=1

Ji(gi, θi), where Ji(gi, θi)
def
= ∇if(x)gi +

1

2η

g2i
θi

+ λ|xi + gi|. (A.1)

By the definition of g̃(θ) in (6), g̃(θ) is also coordinate separable, i.e. for all i ∈ [d],

g̃i(θ) = g̃i(θi)
def
= argmin

gi∈R

{
∇if(x)gi +

1

2η

g2i
θi

+ λ|xi + gi|
}
.

By using the iterative soft thresholding (IST) operator [7], for all i ∈ [d],

g̃i(θi) = sign(xi − θiη∇if(x)) ·max{0, |xi − θiη∇if(x)| − θiηλ} − xi. (A.2)

Then it implies that J(θ) is also coordinate separable, i.e.,

J(θ) =

d∑
i=1

Ji(θi), where Ji(θi)
def
= Ji(g̃i(θi), θi). (A.3)

B Proofs of Lemma 2, Corollary 1 and Proposition 1

Proof of Lemma 2. For all i ∈ [d], due to θ ∈ 4d, we have 0 ≤ θi ≤ 1. By substituting (8) into (9),
we get the expression of Ji(θi). Taking the derivate of Ji(θi) and setting θi = 0, 1 respectively, then
we get the expressions of J ′i(0), J

′
i(1) as follows.

For all i ∈ [d] and θi ≥ 0, denote

νi
def
= − (max{|∇if(x)| − λ, 0})2η

2
, χi(θi)

def
= − (sign(xi − θiη∇if(x))λ+∇if(x))2η

2
,

(B.1)
then the derivate J ′i(θi) at θi = 0, 1 are

J ′i(0) =

{
νi, xi = 0,

χi(0), xi 6= 0
, J ′i(1) =

{
−x

2
i

2η , |xi − η∇if(x)| ≤ ηλ
χi(1), |xi − η∇if(x)| > ηλ

. (B.2)

For all i ∈ [d], according to the values of xi and ∇if(x), by classified discussion, we can show
that J ′i(θi) belongs to one of the 4 cases in Lemma 2. Assume that ri1 and ri2 have been defined in
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Lemma 2. Firstly, we denote

O
def
= {i|0 ∈ ∇if(x) + λ∂|xi|}, (B.3)

U
def
= {i ∈ [d]|xi ≥ 0,∇if(x) < −λ}
∪{i ∈ [d]|xi ≤ 0,∇if(x) > λ}
∪{i ∈ [d]|xi > 0,∇if(x) > −λ, ri1 ≥ 1}
∪{i ∈ [d]|xi < 0,∇if(x) < λ, ri1 ≥ 1}, (B.4)

V
def
= {i ∈ [d]|xi > 0,−λ < ∇if(x) ≤ λ, ri1 < 1}
∪{i ∈ [d]|xi < 0,−λ ≤ ∇if(x) < λ, ri1 < 1}
∪{i ∈ [d]|xi > 0,∇if(x) > λ, ri2 ≥ 1}
∪{i ∈ [d]|xi < 0,∇if(x) < −λ, ri2 ≥ 1}, (B.5)

W
def
= {i ∈ [d]|xi > 0,∇if(x) > λ, ri2 < 1}
∪{i ∈ [d]|xi < 0,∇if(x) < −λ, ri2 < 1}. (B.6)

Then based on the expressions of Ji(θi) in (A.1), (A.1) and (A.3), we can summarize the results as
follows

• If i ∈ O, then J ′i(θi) belongs to the (case a) in Lemma 2.

• If i ∈ U , then J ′i(θi) belongs to the (case b) in Lemma 2.

• If i ∈ V , then J ′i(θi) belongs to the (case c) in Lemma 2.

• If i ∈W , then J ′i(θi) belongs to the (case d) in Lemma 2.

Proof of Corollary 1. Corollary 1 can be obtained by simply summarizing the 4 cases in Lemma
2.

Proof of Proposition 1. Assume that χi(θi) is defined in (B.1), O,U, V and W are defined in (B.3)-
(B.6).

Firstly, by checking i ∈ O,U, V or W orderly and using the expression of J ′i(0) and J ′i(1), it follows
that

• For i ∈ O ∪ U , J ′i(0) = J ′i(1). Therefore 0 ≤
√
−2J′i(0)

η −
√
−2J′i(1)

η ≤ 2λ.

• For i ∈ V , by the definition of V and Lemma 2, it follows that J ′i(0) = χi(0) and
J ′i(1) = −

x2
i

2η .

– If −λ ≤ ∇if(x) ≤ λ, then√
−2J ′i(0)

η
−

√
−2J ′i(1)

η
≤

√
−2J ′i(0)

η
= |sign(xi)λ+∇if(x)| ≤ λ+ |∇if(x)| ≤ 2λ.

– If∇if(x) > λ, then analyzing the expressions of Ji(θi) in this case, there exists θ̂i > 1

such that J ′i(θ̂i) = χi(θ̂i). By the non-decreasing property of J ′i(θi) in Corollary 1
(which can be extended to θi > 1 trivially), J ′i(1) ≤ J ′i(θ̂i). Then

2



√
−2J ′i(0)

η
−

√
−2J ′i(1)

η
≤

√
−2J ′i(0)

η
−

√
−2J ′i(θ̂i)

η

= |sign(xi)λ+∇if(x)| − |sign(xi − θ̂iη∇if(x))λ+∇if(x)|
1©
= (sign(xi)λ+∇if(x))− (sign(xi − θ̂iη∇if(x))λ+∇if(x))
= (sign(xi)− sign(xi − θ̂iη∇if(x)))λ
≤ 2λ,

where 1© is by the fact that∇if(x) ≥ λ.
– If∇if(x) < −λ, we can give a similar analysis as the case∇if(x) > λ.

• If i ∈ W , by the definition of W and Lemma 2, it follows that J ′i(0) = χi(0) and
J ′i(1) = χi(1). Because if i ∈W , then |∇if(x)| ≥ λ, we can give a similar analysis as the
case in i ∈ V .

By the above analysis, it follows that

max
i∈[d]

{√
−2J ′i(0)

η

}
−max
j∈[d]


√
−2J ′j(1)

η

 ≤ max
i∈[d]

{√
−2J ′i(0)

η
−

√
−2J ′i(1)

η

}
≤ 2λ.

In addition, by Corollary 1,

0 ≤ max
i∈[d]

{√
−2J ′i(0)

η

}
−max
j∈[d]


√
−2J ′j(1)

η

 .

Proposition 1 is proved.

C Proof of Lemma 3

The Lagrangian of the problem (7) is (10). By the property of KKT condition, if (γ̃, θ̃, ζ̃) is a
stationary point of the problem (10), then θ̃ is an optimal solution of (7). Based on the value of θ̃, one
can divide [d] into two disjoint parts S and T , where

S = {i : θ̃i > 0} and T = {j : θ̃j = 0}.

Then ∀i ∈ S, by the complementary slackness ζ̃iθ̃i = 0, one has ζ̃i = 0 and γ̃ = −J ′i(θ̃i) ≥ 0;
∀j ∈ T , similarly, one has ζ̃j ≥ 0 and γ̃ ≥ −J ′j(θ̃j) ≥ 0. Thus the KKT condition can be
equivalently written as (12).

D Proof of Lemma 4

Proof of Lemma 4. By Lemma 2, it follows that J ′t(0) ≤ 0. Combing with the condition J ′s(0) <
J ′t(0), we have J ′s(0) < 0 and thus J ′s(θs) belongs to (case b), (case c) or (case d). Denote

rs =

{
1, J ′s(θs) belongs to (case b);
rs1, J ′s(θs) belongs to (case c) or (case d),

(D.1)

where by the definition of ri1 in Lemma 2, rs1 = |xs|√
−2ηJ′s(0)

.

Assume by contradiction that θ̃s = 0 yet θ̃t > 0. Let θ̂ be a vector of which the elements are equal to
the elements of θ̃ except that

θ̂s = min{θ̃t, rs}; (D.2)

θ̂t = max{0, θ̃s − rs}. (D.3)
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By the definition of θ̂s, θ̂t in (D.2) and (D.3), it follows that

∀θs ∈ [θ̃s, θ̂s], J ′s(θs) = J ′s(0) (D.4)

∀θt ∈ [θ̂t, θ̃t], J ′t(θt) ≥ J ′t(0). (D.5)
Then

J(θ̃)− J(θ̂) = Js(0) +

∫ θ̃s

0

J ′s(θs)dθs + Jt(0) +

∫ θ̃t

0

J ′t(θt)dθt

−Js(0)−
∫ θ̂s

0

J ′s(θs)dθs − Jt(0)−
∫ θ̂t

0

J ′t(θt)dθt

=

∫ θ̃s

θ̂s

J ′s(θs)dθs +

∫ θ̃t

θ̂t

J ′t(θt)dθt

≥
∫ θ̃s

θ̂s

J ′s(0)dθs +

∫ θ̃t

θ̂t

J ′t(0)dθt

≥ J ′s(0)(θ̃s − θ̂s) + J ′t(0)(θ̃t − θ̂t)

Then by the expressions of θ̂s, θ̂t in (D.2) and (D.3),

J(θ̃)− J(θ̂) =
{
(J ′t(0)− J ′s(0)) · θ̃t, θ̃t < rs
(J ′t(0)− J ′s(0)) · rs, θ̃t ≥ rs

. (D.6)

By the assumption J ′s(0) < J ′t(0), J(θ̃)− J(θ̂) > 0, which contradicts the fact that θ̃ is the optimal
solution.

E Proof of Lemma 5

Proof of Lemma 5. By the KKT condition (12) in Lemma 3, it follows that for all i ∈ S, −J ′i(θ̃i) ≥
maxj∈T −J ′j(0); meanwhile by Corollary 1, for all i ∈ [d], −J ′i(θ̃i) is a non-increasing function.
Therefore combing the KKT condition (12), we have

∀i ∈ S, −J ′i(0) ≥ −J ′i(θ̃i) ≥ max
j∈T
{−J ′j(0)} ≥ max

j∈T
{−J ′j(1)}. (E.1)

In addition, by the KKT condition (12), for all i1 ∈ S, i2 ∈ S, −J ′i1(θ̃i1) = −J
′
i2
(θ̃i2). Because by

Corollary 1, for all i ∈ [d], −J ′i(θ̃i) is a non-increasing function, therefore

∀i1 ∈ S, i2 ∈ S, −J ′i1(0) ≥ −J
′
i1(θ̃i1) = −J

′
i2(θ̃i2) ≥ −J

′
i2(1).

Therefore it follows that
∀i ∈ S, −J ′i(0) ≥ max

j∈S
−J ′j(1). (E.2)

By combing (E.1) and (E.2), we get
−J ′i(0) ≥ max

j∈[d]
−J ′j(1). (E.3)

F Proof of Theorem 1

Proof. To prove Theorem 1, by Lemma 1, we only need to show θ̃ in Alg. 1 is the optimal solution
of the problem (7). By Lemma 3, to prove the optimality of θ̃ in Alg. 1, we only need to show the
γ̃, θ̃ in Alg. 1 satisfy the KKT condition in Lemma 3. Equivalently, we rewrite the KKT condition as
follows, 

∑
i∈[d]

θ̃i = 1, (F.1a)

for all i ∈ [d], θ̃i ≥ 0, (F.1b)

for all i ∈ S, γ̃ = −J ′i(θ̃i) ≥ max
j∈T
−J ′j(0), (F.1c)
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where as in Lemma 3, S = {i ∈ [d]|θ̃i > 0}, T = {i ∈ [d]|θ̃i = 0}.
By checking the step 5 in Alg. 1, it is found that (F.1a) is already satisfied. Meanwhile, for
i ∈ Rρ\{iρ} and i ∈ [d]\Rρ, θ̃i ≥ 0. So the remaining work is to show that the two conditions
θ̃iρ ≥ 0 and (F.1c) can be satisfied, which is given in Lemmas 6, 7 and 8.

Lemma 6. Assume γ̃ is defined in the step 4 of Alg. 1, then γ̃ ≥ maxj∈[d]−J ′j(0).

Lemma 7. As in the step 5 of Alg. 1, for all l ∈ Rρ\{iρ}, by setting θ̃l =
|xl|√
2ηγ̃

, it follows that

γ̃ = −J ′l (θ̃l).

Lemma 8. As in the step 5 of Alg. 1, by setting θ̃iρ = 1 −
∑
k∈Rρ\{iρ} θ̃k, then it follows that

θ̃iρ ≥ 0 always hold. Meanwhile, if θ̃iρ > 0, then γ̃ = −J ′iρ(θ̃iρ).

By Lemma 8, θ̃iρ ≥ 0. To show (F.1c) can be satisfied, we give the following discussion.

• If θ̃iρ = 0, let S = Rρ\{iρ} and T = [d]\(Rρ\{iρ}), then by Lemmas 6, 7 and 8, (F.1c) is
satisfied.

• If θ̃iρ > 0, let S = Rρ and T = [d]\Rρ, then by Lemmas 6, 7 and 8, (F.1c) is satisfied.

Therefore Theorem 1 is proved.

G Technical Lemmas and Proofs of Lemmas 6, 7 and 8

The main difficulty in the proof of Lemmas 7 and 8 comes from the fact that by Lemma 2, for all
i ∈ [d] and 0 ≤ θi ≤ 1, the expression of J ′i(θi) has 4 different cases. Here we give Lemma 9 to
show an equivalence relation between the expression of J ′i(θi) and the relation of J ′i(0) and J ′i(1).
Lemma 9. For all i ∈ [d] and 0 ≤ θi ≤ 1, J ′i(θi) belongs to the (case a) or (case b) in Lemma 2
if and only if J ′i(0) = J ′i(1); J

′
i(θi) belongs to the (case c) or (case d) in Lemma 2 if and only if

J ′i(0) 6= J ′i(1).

Proof of Lemma 9. For all i ∈ [d] and 0 ≤ θi ≤ 1, by observing the (case a), (case b), (case c) and
(case d) of J ′i(θi) in Lemma 2, it follows that J ′i(θi) belongs to the (case a) or (case b) if and only if
it is a constant function, which implies J ′i(0) = J ′i(1). J

′
i(θi) belongs to the (case c) or (case d) if

and only if it is a piecewise function, which implies J ′i(0) 6= J ′i(1).

By Lemma 9, the condition J ′ij (0) = J ′ij (1) in the step 3 of Alg. 1 is used to identify which case
J ′ij (θij ) belongs to. Lemma 10 introduces an implied result of the conditions in the step 3 of Alg.
1. (In the following lemmas, we assume that ri1, ri2 (i ∈ [d]) have been defined in Lemma 2 and
im, vm, Q, v, ρ, γ̃, ij , Rj(j ∈ [|Q|+ 1]) have been defined in Alg. 1.)
Lemma 10. For all j ∈ [ρ− 1], it follows that all the following conditions

J ′ij (0) 6= J ′ij (1), (G.1a)∑
l∈Rj

|xl| <
√

2ηvj , (G.1b)

j < |Q|+ 1, (G.1c)
must be satisfied.

Proof of Lemma 10. By the step 3 in Alg. 1, ρ is the minimal index that can satisfy one of the 3
following conditions 

J ′ij (0) = J ′ij (1),∑
l∈Rρ

|xl| ≥
√

2ηvρ,

ρ = |Q|+ 1,
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which implies that for all j ∈ [ρ− 1], j satisfies all the 3 conditions in Lemma 10.

By Lemma 10, j ∈ [ρ− 1] shares the 3 common properties in (G.1a)-(G.1c), which is important for
the proof of the subsequent lemmas about j ∈ [ρ− 1]. In Lemma 11, we can find useful inequalities.
Lemma 11. For all j ∈ [ρ− 1], vj ≥ γ̃ ≥ vρ ≥ vm ≥ −J ′ij (1).

Proof of Lemma 11. By the step 4 in Alg. 1, γ̃ has two possible values.

If γ̃ = (
∑
k∈Rρ−1

|xk|)2/(2η), it follows that

• In Lemma 10, let j = ρ− 1, we have
∑
k∈Rρ−1

|xk| <
√

2ηvρ−1. Then vρ−1 ≥ γ̃. Then
by the definition of v, v1 ≥ v2 ≥ · · · ≥ vρ−1. Thus for all j ∈ [ρ− 1], we have vj ≥ γ̃.

• In the step 4, when γ̃ = (
∑
k∈Rρ−1

|xk|)2/(2η), by the condition
∑
k∈Rρ−1

|xk| ≥
√
2ηvρ,

we have γ̃ ≥ vρ.

If γ̃ = vρ, by the definition of v, v1 ≥ v2 ≥ · · · ≥ vρ. Then it follows that for all j ∈ [ρ − 1],
vj ≥ γ̃ ≥ vρ.

By the definition of v, v1 ≥ v2 ≥ · · · ≥ vρ ≥ · · · ≥ vm. By the definition of vm, for all j ∈ [ρ− 1],
vm = maxi∈[d]−J ′i(1) ≥ −J ′ij (1). Therefore vρ ≥ vm ≥ −J ′ij (1).

Combining the above analysis, Lemma 11 is proved.

Lemma 11 gives γ̃ both lower and upper bounds, which then further bounds the range of θ̃l =
|xl|√
2ηγ̃

.

Before continue, we show the relation between Rρ−1 and Rρ\{iρ}.
Lemma 12. If ρ < |Q| + 1, then Rρ−1 = Rρ\{iρ}; if v|Q|+1 = −J ′i|Q|+1

(1), then R|Q| =

R|Q|+1\{i|Q|+1}; if v|Q|+1 6= −J ′i|Q|+1
(1), then R|Q| = R|Q|+1.

Proof of Lemma 12.

• If ρ < |Q|+ 1, then by the step 2 in Alg. 1, i1, i2, . . . , i|Q| are different coordinates. Thus
Rρ−1 = Rρ\{iρ}.

• If v|Q|+1 = −J ′i|Q|+1
(1), by the definition of Q in the step 1 of Alg. 1, i|Q|+1 /∈ Q.

Therefore R|Q| = R|Q|+1\{i|Q|+1}.

• If v|Q|+1 6= −J ′i|Q|+1
(1), then by Lemma 9, J ′i|Q|+1

(θi|Q|+1
) belongs to (case c) or (case d).

It follows that −J ′i|Q|+1
(0) > −J ′i|Q|+1

(1) = vm. Then by the definition of |Q| in the step 1
of Alg. 1, i|Q|+1 ∈ Q. Therefore R|Q| = R|Q|+1.

Based on the above technical lemmas, we can prove Lemmas 6, 7 and 8.

G.1 Proofs of Lemma 6, 7 and 8

Proof of Lemma 6. By the step 4 of Alg. 1, if
∑
l∈Rρ−1

|xl| ≥
√
2ηvρ, then γ̃ =

(
∑
k∈Rρ−1

|xk|)2/(2η) which means γ̃ ≥ vρ; otherwise, γ̃ = vρ.

In addition by the definition of v, it follows that v1 ≥ v2 ≥ · · · ≥ vρ ≥ · · · ≥ vm =
maxj∈[d]−J ′j(0).

Therefore γ̃ ≥ vρ ≥ maxj∈[d]−J ′j(0). Lemma 6 is proved.
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Proof of Lemma 7. By Lemma 12, Rρ\{iρ} ⊂ Rρ−1. Then by Lemma 10, for all l ∈ Rρ\{iρ},
J ′l (0) 6= J ′l (1). Then by Lemma 9, for all l ∈ Rρ\{iρ} and 0 ≤ θl ≤ 1, J ′l (θl) belongs to (case c) or
(case d) in Lemma 2.

Assume that for i ∈ [d], ri1 = |xi|√
−2ηJ′i(0)

and ri2 = |xi|√
−2ηJ′i(1)

have been defined in Lemma 2. By

Lemma 11, we have −J ′ij (0) = vj ≥ γ̃ ≥ −J ′ij (1). Then ri1 ≤ θ̃l = |xi|√
2ηγ̃
≤ ri2.

In addition, if γ̃ = (
∑
k∈Rρ−1

|xk|)2/(2η), when θ̃l =
|xl|∑

k∈Rρ−1
|xk| ≤ 1; if γ̃ = vρ, by the step 4 in

Alg. 1, the condition
∑
k∈Rρ−1

|xk| ≤
√

2ηvρ holds. Then θ̃l =
|xk|√
2ηγ̃

= |xk|√
2ηvρ

≤ 1.

Therefore ri1 ≤ θ̃l ≤ min{ri2, 1}. By the form of (case c) and (case d) in Lemma 2, we can find that
for all l ∈ Rρ\{iρ}, J ′l (θ̃l) = −

|xl|2
2ηθ2l

= −γ̃.

To prove the KKT condition (F.1c), besides Lemma 7 for the case j ∈ [ρ− 1], we also need Lemma
8 for the case j = ρ.

Proof of Lemma 8. By the step 4 in Alg. 1, γ̃ has two possible values.

If γ̃ = (
∑
k∈Rρ−1

|xk|)2/(2η), by analyzing the following 3 cases, we can show that θ̃iρ ≥ 0 always

holds and if θ̃iρ > 0, then J ′iρ(θ̃iρ) = −γ̃.

• If ρ < |Q| + 1, then by Lemma 10, Rρ\{iρ} = Rρ−1. By the step 5 in Alg. 1 and
γ̃ = (

∑
k∈Rρ−1

|xk|)2/(2η), for all l ∈ Rρ\{iρ}, θ̃l = |xl|√
2ηγ̃

= |xl|∑
k∈Rρ−1

|xk| . Then∑
l∈Rρ\{iρ} θ̃l =

∑
l∈Rρ−1

θ̃l = 1. Therefore θ̃iρ = 1−
∑
k∈Rρ\{iρ} θ̃k = 0.

• If ρ = |Q|+ 1 and J ′iρ(0) = J ′iρ(1), then by Lemma 10, it follows that Rρ\{iρ} = Rρ−1.
Therefore, by the same analysis in the case ρ < |Q|+ 1, θ̃iρ = 1−

∑
k∈Rρ\{iρ} θ̃k = 0.

• If ρ = |Q|+ 1 and J ′iρ(0) 6= J ′iρ(1), then by Lemma 10, Rρ−1 = Rρ = (Rρ\{iρ}) ∪ {iρ}.
Therefore 0 ≤ θ̃iρ = 1−

∑
k∈Rρ\{iρ} θ̃k =

|xiρ |∑
k∈Rρ−1

|xk| ≤ 1. Meanwhile, by Lemma 9,

J ′iρ(θ̃iρ) belongs to (case c) or (case d) in Lemma 2. Due to γ̃ = (
∑
k∈Rρ−1

|xk|)2/(2η),
then the condition

∑
k∈Rρ−1

|xk| ≥
√
2ηvρ holds. Thus

θ̃iρ ≤
|xiρ |√
2ηvρ

=
|xiρ |√
2ηv|Q|+1

=
|xiρ |√
−2ηJ ′iρ(1)

= riρ2,

where riρ2 is defined in Lemma 2. Meanwhile, in Lemma 10, let j = ρ − 1, then∑
k∈Rρ−1

|xk| <
√
2ηvρ−1. Thus θ̃iρ >

|xiρ |√
2ηvρ−1

=
|xiρ |√
2ηv|Q|

. In addition, due to iρ ∈ Q,

we have viρ ≥ v|Q|. Thus

θ̃iρ >
|xiρ |√
2ηviρ

=
|xiρ |√
−2ηJ ′iρ(0)

= riρ1,

where riρ1 is defined in Lemma 2. Combing the above analyses, we have

0 < riρ1 < θ̃iρ ≤ min{1, riρ2}.

Therefore by the form of (case c) and (case d) in Lemma 2, J ′iρ(θ̃iρ) = −
x2
iρ

2ηθ̃iρ
= −γ̃.
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If γ̃ = vρ, according to the condition in the step 4 of Alg. 1,
∑
l∈Rρ−1

|xl| <
√
2ηvρ. Mean-

while by Lemma 12, we have Riρ\{iρ} ⊂ Riρ−1 . Then
∑
l∈Riρ\{iρ}

θ̃l =
∑
l∈Riρ\{iρ}

|xl|√
2ηγ̃
≤∑

l∈Riρ−1

|xl|√
2ηγ̃

< 1. Therefore θ̃iρ = 1 −
∑
l∈Riρ\{iρ}

θ̃l > 0. We can give the analyses by
discussing the following 3 cases.

• If vρ = −J ′iρ(1), then by Lemma 9, Jiρ(θiρ) belongs to (case a) or (case b). Therefore
J ′iρ(θ̃iρ) = J ′iρ(0) = −vρ = −γ̃.

• If vρ 6= −J ′iρ(1) and
∑
l∈Rρ |xl| ≥

√
2ηvρ, then by Lemma 9, J ′iρ(θiρ) belongs to (case c)

or (case d) in Lemma 2. Meanwhile for l ∈ Rρ\{iρ}, by θ̃l =
|xl|√
2ηγ̃

= |xl|√
2ηvρ

, we have

θ̃iρ = 1−
∑

l∈Rρ\{iρ}

θ̃l = 1−
∑

l∈Rρ\{iρ}

|xl|√
2ηvρ

≤
|xiρ |√
2ηvρ

= riρ1,

where riρ1 is defined in Lemma 2 and the last inequality is due to the condition
∑
l∈Rρ |xl| ≥√

2ηvρ. Therefore by the form of (case c) and (case d) in Lemma 2, it follows that
J ′iρ(θ̃iρ) = J ′iρ(0) = −vρ = −γ̃.

• If vρ 6= −J ′iρ(1),
∑
l∈Rρ |xl| <

√
2ηvρ and ρ = |Q| + 1, then by vρ 6= −J ′iρ(1) and

Lemma 9, J ′iρ(θiρ) belongs to (case c) or (case d) in Lemma 2. By
∑
l∈Rρ |xl| <

√
2ηvρ,

we have that the riρ2 in Lemma 2 satisfies

riρ2 =
|xiρ |√
−2ηJ ′iρ(1)

=
|xiρ |√
2ηv|Q|+1

=
|xiρ |√
2ηvρ

<

∑
l∈Rρ |xl|√
2ηvρ

< 1,

therefore J ′iρ(θiρ) belongs to the (case d) in Lemma 2. For all l ∈ Rρ\{iρ}, by θ̃l =
|xl|√
2ηγ̃

= |xl|√
2ηvρ

and
∑
l∈Rρ |xl| <

√
2ηvρ, we have

θ̃iρ = 1−
∑

k∈Rρ\{iρ}

θ̃k ≥
|xiρ |√
2ηvρ

= riρ2. (G.3)

Therefore, by the form of the (case d) in Lemma 2, J ′iρ(θ̃iρ) = J ′iρ(1) = −vρ = −γ̃.

Summarizing the above analyses, we prove Lemma 8.

H Proof of Theorem 2

H.1 Some necessary Lemmas and Definitions

For 1 < p < ∞ and the `p-norm ‖ · ‖p, we denote its dual norm as ‖x‖q = max‖y‖p≤1 x
T y =

(
∑d
i=1 |xi|q)

1
q , where 1

p + 1
q = 1. For p = 1, by the definition of dual norm, the dual norm of

`1-norm is `∞-norm. In Lemma 13 and 14, some classical results are described.
Lemma 13. ([8, §3.1.9]) If ∀x, y ∈ Rd, 1 ≤ p ≤ ∞, 1p + 1

q = 1, and η > 0, then |〈x, y〉| ≤
‖x‖q‖y‖p ≤ 1

2η‖x‖
2
q +

η
2‖y‖

2
p.

Lemma 14. If ∀x ∈ Rd, 1 ≤ p ≤ ∞, then ‖x‖p ≤ ‖x‖1 ≤ n1−
1
p ‖x‖p.

For a continuous differentiable function f(x), we give the following definitions.

Definition 1. f(x) is Lp-smooth (1 ≤ p ≤ ∞) w.r.t. ‖ · ‖p if ∀x, y ∈ Rd and 1
p +

1
q = 1, ‖∇f(x)−

∇f(y)‖q ≤ Lp‖x− y‖p.
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By Definition 1, we have Lemma 15.
Lemma 15. If f(x) is Lp-smooth (1 ≤ p ≤ ∞) w.r.t ‖ · ‖p and 1

p +
1
q = 1, then

1

2Lp
‖∇f(x)−∇f(y)‖2q ≤ f(y)− f(x)− 〈∇f(x), y − x〉 ≤

Lp
2
‖x− y‖2p. (H.1)

Proof. Firstly it is showed that f(x) being Lp-smooth w.r.t. ‖ · ‖p implies that ∀x, y ∈ Rd

f(y) ≤ f(x) + 〈∇f(x), y − x〉+ Lp
2
‖y − x‖2p.

Consider the function g(τ) = f(x+ τ(y − x)) with τ ∈ R. Then

f(y)− f(x)− 〈∇f(x), y − x〉 = g(1)− g(0)− 〈∇f(x), y − x〉

=

∫ 1

0

(
dg(τ)

dτ
− 〈∇f(x), y − x〉

)
dτ

=

∫ 1

0

(〈∇f(x+ τ(y − x)), y − x〉 − 〈∇f(x), y − x〉) dτ

=

∫ 1

0

〈∇f(x+ τ(y − x))−∇f(x), y − x〉 dτ

≤
∫ 1

0

‖∇f(x+ τ(y − x))−∇f(x)‖q‖y − x‖p dτ

≤
∫ 1

0

Lpτ‖y − x‖2p dτ

=
Lp
2
τ2‖y − x‖2p

∣∣∣∣1
0

=
Lp
2
‖y − x‖2p.

To subsequently show 1
2Lp
‖∇f(x)−∇f(y)‖2q ≤ f(y)− f(x)− 〈∇f(x), y − x〉, fix x ∈ Rd and

consider the function
φ(y) = f(y)− 〈∇f(x), y〉,

which is convex on Rd and also has an Lp-Lipschitz continuous gradient w.r.t. ‖ · ‖p, as

‖φ′(y)− φ′(x)‖q = ‖(∇f(y)−∇f(x))− (∇f(x)−∇f(x))‖q
= ‖∇f(y)−∇f(x)‖q
≤ Lp‖y − x‖p.

As the minimizer of φ is x (i.e., φ′(x) = 0), for any y ∈ Rd, we have

φ(x) = min
v
φ(v) ≤ min

v

{
φ(y) + 〈φ′(y), v − y〉+ Lp

2
‖v − y‖2p

}
= φ(y)− sup

v
{〈−φ′(y), v − y〉 − Lp

2
‖v − y‖2p}

= φ(y)− 1

2Lp
‖φ′(y)‖2q.

Substituting in the definition of φ, we have

f(x)− 〈∇f(x), x〉 ≤ f(y)− 〈∇f(x), y〉 − 1

2Lp
‖∇f(y)−∇f(x)‖2q

⇐⇒ 1

2Lp
‖∇f(y)−∇f(x)‖2q ≤ f(y)− f(x)− 〈∇f(x), y − x〉.
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Definition 2. f(x) is σp-strongly convex (1 ≤ p ≤ ∞) w.r.t. ‖ · ‖p if ∀x, y ∈ Rd and 1
p + 1

q =

1, f(y)− f(x)− 〈∇f(x), y − x〉 ≥ σp
2 ‖x− y‖

2
p.

Taking 1
2‖x‖

2
p (1 < p ≤ 2) as an example. It is known that 1

2‖x‖
2
p is (p− 1)-strongly convex w.r.t.

‖ · ‖p [6]. Based on 1
2‖x‖

2
p (1 < p ≤ 2), one can define p-Bregman divergence

Bp(y, x) =
1

2
‖y‖2p −

1

2
‖x‖2p − 〈∇

1

2
‖x‖2p, y − x〉. (H.2)

Lemma 16 ([6, 2]). For x, y ∈ Rd, 1 < p ≤ 2, Bp(y, x) = 1
2‖y‖

2
p − 1

2‖x‖
2
p − 〈∇ 1

2‖x‖
2
p, y − x〉

satisfies the 3 properties.

• Bp(y, x) ≥ p−1
2 ‖y − x‖

2
p;

• Bp(y, x) = 0 if and only if y = x;

• Bp(x, y) +Bp(y, z) = Bp(x, z) + 〈 12∇‖z‖
2
p − 1

2∇‖y‖
2
p, x− y〉.

H.2 Proof of Theorem 2

Theorem 2 is proved by following the steps of the proof in [1]. First, in Section H.2.1, ASGCD is
analyzed for the fixed k-th iteration. In the one-iteration analysis, yk, zk and xk+1 are assumed to be
fixed and thus the selection of the mini batch B in the k-th iteration is the only source of randomness.
For simplicity, let x̃ = x̃s, τ1 = τ1,s, α = αs where s = b kmc is the epoch corresponding to k. Let

β(b)
def
= n−b

b(n−1) and denote σ2
k+1

def
= ‖∇f(xk+1)−∇̃k+1‖2∞. Then E[σ2

k+1] is the variance measured

by ‖ · ‖∞ of the gradient estimator ∇̃k+1 in this iteration. Second, in Section H.2.2, Theorem 2 is
proven by combing the one-iteration analysis in Section H.2.1 into the outer-iteration analysis in
Section H.2.2.

There are 3 differences from the analysis in [1]. First, the analysis is used for the specific ASGCD
algorithm that combines SOTOPO and pCOMID and thus the value of the parameter αs is different
from the setting in [1]. Second, the analysis is given under the mini batch selection setting and ‖ · ‖∞
rather than one sample selection setting and ‖ · ‖2. Third, we use a different way to represent the
convergence result for `1-regularized problems (1).

H.2.1 One-iteration analysis

Lemma 17 (SOTOPO). If

yk+1 = SOTOPO(∇̃k+1, xk+1, λ, η), and

Prog(xk+1) = − min
y∈Rd

{
(1 + 2β(b))L1

2
‖y − xk+1‖21 + 〈∇̃k+1, y − xk+1〉+ λ‖y‖1 − λ‖xk+1‖1

}
≥ 0,

it follows that if b < n (where the expectation is only over the randomness of ∇̃k+1), then

F (xk+1)− E[F (yk+1)] ≥ E[Prog(xk+1)]−
1

4β(b)L1
E[σ2

k+1]; (H.3)

if b = n (no randomness exists), then

F (xk+1)− E[F (yk+1)] ≥ E[Prog(xk+1)]. (H.4)
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Proof. If b < n, it follows that

Prog(xk+1) = − min
y∈Rd

{ (1 + 2β(b))L1

2
‖y − xk+1‖21 + 〈∇̃k+1, y − xk+1〉+ λ‖y‖1 − λ‖xk+1‖1

}
1©
= −

(
(1 + 2β(b))L1

2
‖yk+1 − xk+1‖21 + 〈∇̃k+1, yk+1 − xk+1〉+ λ‖yk+1‖1 − λ‖xk+1‖1

)
= −

(
L1

2
‖yk+1 − xk+1‖21 + 〈∇f(xk+1), yk+1 − xk+1〉+ λ‖yk+1‖1 − λ‖xk+1‖1

)
+
(
〈∇f(xk+1)− ∇̃k+1, yk+1 − xk+1〉 − β(b)L1‖yk+1 − xk+1‖21

)
2©
≤ −(f(yk+1)− f(xk+1) + λ‖yk+1‖1 − λ‖xk+1‖1) +

1

4β(b)L1
‖∇f(xk+1)− ∇̃k+1‖2∞,

where 1© is by Theorem 1, 2© is by the smoothness assumption (2), Lemma 13 and 15. Taking
expectation on both sides, (H.3) is obtained.

If b = n, then β(b) = 0. By using a similar analysis as the case b < n, (H.4) is obtained.

Lemma 18. (variance upper bound). If b < n, then

E[‖∇̃k+1 −∇f(xk+1)‖2∞] ≤ 2β(b)L1(f(x̃)− f(xk+1)− 〈∇f(xk+1), x̃− xk+1〉). (H.5)

Proof. Before the proof, it should be noted that the variance upper bound measured by ‖ · ‖2 of
mini-batch selection has been proved in [27]. The variance in our case is measured by ‖·‖∞. Because
some properties of ‖ · ‖2 such as E[‖x−E[x]‖22] = E[‖x‖22]−‖E[x]‖22 and ‖

∑
i xi‖22 =

∑
i,j x

T
i xj

can’t be generalized to ‖ · ‖∞ directly, the proof is slightly different from the proof in [27].

Let φj = (∇fj(xk+1)−∇fj(x̃))− (∇f(xk+1)−∇f(x̃)) and φij = (∇ifj(xk+1)−∇ifj(x̃))−
(∇if(xk+1)−∇if(x̃)). Denote imax = argmaxi |∇if(xk+1)− ∇̃k+1,i|. It follows that

E


∥∥∥∥∥∥1b
∑
j∈B

φimax
j

∥∥∥∥∥∥
2

∞

 =
1

b2
E

 ∑
j1,j2∈B

φimax
j1

φimax
j2


=

1

b2
E

 ∑
j1 6=j2∈B

φimax
j1

φimax
j2

+
1

b
E
[
(φimax
j )2

]
=

b− 1

bn(n− 1)

∑
j1 6=j2∈[n]

φimax
j1

φimax
j2

+
1

b
E
[
(φimax
j )2

]
=

b− 1

bn(n− 1)

∑
j1,j2∈[n]

φimax
j1

φimax
j2
− b− 1

b(n− 1)
E
[
(φimax
j )2

]
+

1

b
E
[
(φimax
j )2

]
=

b− 1

bn(n− 1)

∑
j1,j2∈[n]

φimax
j1

φimax
j2
− β(b)E

[
(φimax
j )2

]
1©
= β(b)E

[
(φimax
j )2

]
2©
≤ β(b)E

[
‖φj‖2∞

]
, (H.6)
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where 1© is using the fact
∑n
j=1 φ

imax
j = 0, 2© is by definition of ‖ · ‖∞. Denote ijmax =

argmaxi |φij |. Hence

E
[∥∥∥∇f(xk+1)− ∇̃k+1

∥∥∥2
∞

]
= E

[∥∥∥1
b

∑
j∈B

(∇fj(xk+1)−∇fj(x̃))− (∇f(xk+1)−∇f(x̃))
∥∥∥2
∞

]
1©
≤ β(b)E

[
‖∇fj(xk+1)−∇fj(x̃))− (∇f(xk+1)−∇f(x̃)‖2∞

]
2©
= β(b)E

[(
∇ijmax

fj(xk+1)−∇ijmax
fj(x̃))−∇ijmax

f(xk+1)−∇ijmax
f(x̃)

)2]
= β(b)E

[(
∇ijmax

fj(xk+1)−∇ijmax
fj(x̃)

)2 − (∇ijmax
f(xk+1)−∇ijmax

f(x̃)
)2]

≤ β(b)E
[(
∇ijmax

fj(xk+1)−∇ijmax
fj(x̃)

)2]
3©
≤ β(b)E

[
‖∇fj(xk+1)−∇fj(x̃)‖2∞

]
≤ 2β(b)L1E [fj(x̃)− fj(xk+1)− 〈∇fj(xk+1), x̃− xk+1〉]
4©
= 2β(b)L1(f(x̃)− f(xk+1)− 〈∇f(xk+1), x̃− xk+1〉),

where 1© is by (H.6), 2© is using the fact E[(x− E[x])2] = E[x2]− (E[x])2, 4© is by the definition
of ‖ · ‖∞, 3© is by Lemma 15.

Lemma 19 (pCOMID). Fixing ∇̃k+1 and letting

(zk+1, θk+1) = pCOMID(∇̃k+1, θk, q, λ, α), (H.7)

it satisfies for all u ∈ Rd,

α〈∇̃k+1, zk+1 − u〉+ αλ‖zk+1‖1 − αλ‖u‖1 ≤ −Bp(zk+1, zk) +Bp(u, zk)−Bp(u, zk+1).(H.8)

Proof. From [13], we known that pCOMID exactly solves the following mirror descent problem,

zk+1 = argmin
z
{〈∇̃k+1, z − zk〉+

1

α
Bp(z, zk) + λ‖z‖1}. (H.9)

By the optimality condition of zk+1, it follows that

∇1

2
‖zk+1‖2p −∇

1

2
‖zk‖2p + α∇̃k+1 + αg = 0,

where g ∈ ∂λ‖zk+1‖1. Then the equality

〈∇1

2
‖zk+1‖2p −∇

1

2
‖zk‖2p + α∇̃k+1 + αg, zk+1 − u〉 = 0

holds. In addition by Lemma 16, it follows that 〈∇ 1
2‖zk+1‖2p − ∇ 1

2‖zk‖
2
p, zk+1 − u〉 =

Bp(zk+1, zk)−Bp(u, zk)+Bp(u, zk+1). By the convexity of λ‖z‖1, 〈g, zk+1− u〉 ≥ λ‖zk+1‖1−
λ‖u‖1. Therefore, we can write

α〈∇̃k+1, zk+1 − u〉+ αλ‖zk+1‖1 − αλ‖u‖1

= −〈∇1

2
‖zk+1‖2p −∇

1

2
‖zk‖2p, zk+1 − u〉 − 〈αg, zk+1 − u〉+ αλ‖zk+1‖1 − αλ‖u‖1

≤ −Bp(zk+1, zk) +Bp(u, zk)−Bp(u, zk+1).

12



Lemma 20 (Couping step 1). If xk+1 = τ1zk + τ2x̃+ (1− τ1 − τ1)yk, where τ1 ≤ 1
(1+2β(b))αL1

and τ2 = 1
2 ,
α〈∇f(xk+1), zk − u〉 − αλ‖u‖1

≤ α

τ1
(F (xk+1)− E[F (yk+1)] + τ2F (x̃)− τ2E[F (xk+1)]− τ2〈∇f(xk+1), x̃− xk+1〉)

+Bp(u, zk)− E[Bp(u, zk+1)] +
α(1− τ1 − τ2)

τ1
λ‖yk‖1 −

α

τ1
λ‖xk+1‖1.

Proof. It follows taht

α〈∇̃k+1, zk − u〉+ αλ‖zk+1‖1 − αλ‖u‖1
= α〈∇̃k+1, zk − zk+1〉+ α〈∇̃k+1, zk+1 − u〉+ αλ‖zk+1‖1 − αλ‖u‖1
1©
≤ α〈∇̃k+1, zk − zk+1〉 −Bp(zk+1, zk) +Bp(u, zk)−Bp(u, zk+1)

2©
≤ α〈∇̃k+1, zk − zk+1〉 −

p− 1

2
‖zk+1 − zk‖2p +Bp(u, zk)−Bp(u, zk+1)

3©
≤ α〈∇̃k+1, zk − zk+1〉 −

p− 1

2
d−(1−

1
p )‖zk+1 − zk‖21 +Bp(u, zk)−Bp(u, zk+1),

4©
= α〈∇̃k+1, zk − zk+1〉 −

1

2C
‖zk+1 − zk‖21 +Bp(u, zk)−Bp(u, zk+1), (H.10)

where 1© is by Lemma 19, 2© is by Lemma 16, 3© is by Lemma 14 and 4© is by the setting C = d
2δ

1+δ

δ
and p = 1 + δ in Alg. 2.

By defining v
def
= τ1zk+1+ τ2x̃+(1− τ1− τ2)yk, we have xk+1− v = τ1(zk− zk+1) and therefore

E[α〈∇̃k+1, zk − zk+1〉 −
1

2C
‖zk+1 − zk‖21] = E[

α

τ1
〈∇̃k+1, xk+1 − v〉 −

1

2Cτ21
‖xk+1 − v‖21]

= E

[
α

τ1

(
〈∇̃k+1, xk+1 − v〉 −

1

2Cατ1
‖xk+1 − v‖21 − λ‖v‖1 + λ‖xk+1‖1

)

+
α

τ1
(λ‖v‖1 − λ‖xk+1‖1)

]
1©
= E

[
α

τ1

(
〈∇̃k+1, xk+1 − v〉 −

(1 + 2β(b))L1

2
‖xk+1 − v‖21 − λ‖v‖1 + λ‖xk+1‖1

)

+
α

τ1
(λ‖v‖1 − λ‖xk+1‖1)

]
2©
≤ E

[
α

τ1
(F (xk+1)− F (yk+1) +

1

4β(b)L1
σ2
k+1) +

α

τ1
(λ‖v‖1 − λ‖xk+1‖1)

]
3©
≤ E

[ α
τ1

(
F (xk+1)− F (yk+1) +

1

2
(f(x̃)− f(xk+1)− 〈∇f(xk+1, x̃− xk+1〉)

)
+
α

τ1
(τ1λ‖zk+1‖1 + τ2λ‖x̃‖1 + (1− τ1 − τ2)λ‖yk‖1 − λ‖xk+1‖1)

]
, (H.11)

where 1© is by the setting ατ1 = 1
(1+2β(b))CL1

, 2© is by Lemma 17, 3© is by Lemma 18 and the
convexity ‖v‖1 = ‖τ1zk+1+ τ2x̃+(1− τ1− τ2)yk‖1 ≤ τ1‖zk+1‖1+ τ2‖x̃‖1+(1− τ1− τ2)‖yk‖1.
Then, it is showed that E[〈∇̃k+1, zk − u〉] = 〈∇f(xk+1, zk − u〉 and τ2 = 1

2 . Combing (H.10) and
(H.11), Lemma 20 is obtained.

Lemma 21 (Coupling step 2). Under the same choices of τ1, τ2 as in Lemma 20, one has

0 ≤ α(1− τ1 − τ2)
τ1

(F (yk)− F (x∗))−
α

τ1
(E[F (yk+1)]− F (x∗)) +

ατ2
τ1

(F (x̃)− F (x∗))

+Bp(x
∗, zk)− E[Bp(x∗, zk+1)].
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Proof. It follows that

α(f(xk+1)− f(u))
1©
≤ α〈∇f(xk+1), xk+1 − u〉

= α〈∇f(xk+1), xk+1 − zk〉+ α〈∇f(xk+1), zk − u〉
2©
=

ατ2
τ1
〈∇f(xk+1), x̃− xk+1〉+

α(1− τ1 − τ2)
τ1

〈∇f(xk+1), yk − xk+1〉+ α〈∇f(xk+1), zk − u〉

3©
≤ ατ2

τ1
〈∇f(xk+1), x̃− xk+1〉+

α(1− τ1 − τ2)
τ1

(f(yk)− f(xk+1)) + α〈f(xk+1), zk − u〉,(H.12)

where 1© is by the convexity of f(x), 2© is by the convex combination xk+1 = τ1zk + τ2x̃+ (1−
τ1 − τ2)yk, 3© is again by the convexity of f(x). Applying Lemma 20 to (H.12), it follows that

α(f(xk+1)− F (u)) ≤
α(1− τ1 − τ2)

τ1
(F (yk)− f(xk+1))

+
α

τ1
(F (xk+1)− E[F (yk+1)] + τ2F (x̃)− τ2f(xk+1)) +Bp(u, zk)− E[Bp(u, zk+1)]−

α

τ1
λ‖xk+1‖1,

which implies

α(F (xk+1)− F (u)) ≤
α(1− τ1 − τ2)

τ1
(F (yk)− F (xk+1))

+
α

τ1
(F (xk+1)− E[F (yk+1)] + τ2F (x̃)− τ2F (xk+1)) +Bp(u, zk)− E[Bp(u, zk+1)].

After arrangement and setting u to some minimizer x∗, Lemma 21 is obtained.

H.2.2 Proof of Theorem 2

Proof. Assume the parameter τ1,s and αs satisfies the assumption τ1,sαs = 1
(1+2β(b))CL1

in Lemma

20. Let Dk
def
= F (yk)− F (x∗) and D̃s def= F (x̃s)− F (x∗), Lemma 21 can be rewritten as

0 ≤ αs(1− τ1,s − τ2)
τ1,s

Dk −
αs
τ1,s

E [Dk+1] +
αsτ2
τ1,s

D̃s +Bp(x
∗, zk)− E [Bp(x

∗, zk+1)] .

In the s-th epoch, summing up the above inequality for all the iterations k = sm, sm+ 1, . . . , sm+
m− 1, it follows that

E

[
αs

1− τ1,s − τ2
τ1,s

D(s+1)m + αs
τ1,s + τ2
τ1,s

m∑
l=1

Dsm+l

]

≤ αs
1− τ1,s − τ2

τ1,s
Dsm + αs

τ2
τ1,s

mD̃s +Bp(x
∗, zsm)− E[Bp(x∗, z(s+1)m)]. (H.13)

It should be noted that in (H.13), we fix all the randomness in the first s − 1 epochs and take
expectation on the current epoch s.

By the definition x̃s = 1
m

∑m
l=1 y(s−1)m+l in Alg. 2 and the convexity of F (x), we have mD̃s ≤∑m

l=1D(s−1)m+l. Then for each s ≥ 1, by (H.13), it follows that

E

[
1

τ21,s
D(s+1)m +

τ1,s + τ2
τ21,s

m−1∑
l=1

Dsm+l

]

≤ 1− τ1,s
τ21,s

Dsm +
τ2
τ21,s

m−1∑
l=1

D(s−1)m+l + (1 + 2β(b))CLBp(x
∗, zsm)− (1 + 2β(b))CLE[Bp(x∗, z(s+1)m)].

For s = 0, (H.13) can be written as

E

[
1

τ21,0
Dm +

τ1,0 + τ2
τ21,0

m−1∑
l=1

Dl

]

≤ 1− τ1,0 − τ2
τ21,0

D0 +
τ2m

τ21,0
D̃0 + (1 + 2β(b))CL1Bp(x

∗, z0)

− (1 + 2β(b))CL1E[Bp(x∗, zm)]. (H.14)
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Choose τ1,s = 2
s+4 ≤

1
2 which satisfies

1

τ21,s
≥ 1− τ1,s+1

τ21,s+1

and
τ1,s + τ2
τ21,s

≥ τ2
τ21,s+1

. (H.15)

Then it follows that

E

[
m

τ21,S−1
D̃S + (1 + 2β(b))CL1Bp(x

∗, zSm)

]
1©
≤ E

[
1

τ21,S−1
DSm +

τ1,S−1
τ21,S−1

m−1∑
l=1

D(S−1)m+l + (1 + 2β(b))CL1Bp(x
∗, zSm)

]
2©
≤ E

[
1

τ21,S−1
DSm +

τ2
τ21,S

m−1∑
l=1

D(S−1)m+l + (1 + 2β(b))CL1Bp(x
∗, zSm)

]
3©
≤ 1− τ1,0 − τ2

τ21,0
D0 +

τ2m

τ21,0
D̃0 + (1 + 2β(b))CL1Bp(x

∗, z0)

4©
=

τ2m

τ21,0
D̃0 + (1 + 2β(b))CL1Bp(x

∗, z0),

where 1© is by mD̃s ≤
∑m
l=1D(s−1)m+l, 2© is by τ2 ≥ τ1,S−1 ≥ τ1,S , 3© uses (H.15) to telescope

(H.13) and (H.14) for all s = 0, 1, . . . , S − 1 and 4© is by τ1,0 = τ2 = 1
2 .

E[F (x̃S)− F (x∗)]

= E[D̃S ] ≤
τ21,S−1
m

·

(
τ2m

τ21,0
D̃0 + (1 + 2β(b))CL1Bp(x

∗, z0)

)

=
4

m(S + 3)2

(
2m(F (x̃0)− F (x∗)) + (1 + 2β(b))CL1Bp(x

∗, z0)
)
. (H.16)

Meanwhile, by setting x̃0 = z0 = 0, using the optimality condition 0 ∈ ∇f(x∗) + ∂λ‖x∗‖1 we have
F (x̃0)− F (x∗) = f(0)− f(x∗)− λ‖x∗‖1

1©
≤ 〈∇f(x∗), 0− x∗〉+ L1

2
‖x∗‖21 − λ‖x∗‖1

2©
= 〈−∂λ‖x∗‖1,−x∗〉+

L1

2
‖x∗‖21 − λ‖x∗‖1

3©
≤ ‖∂λ‖x∗‖1‖∞‖x∗‖1 +

L1

2
‖x∗‖21 − λ‖x∗‖1

4©
≤ λ‖x∗‖1 +

L1

2
‖x∗‖21 − λ‖x∗‖1

=
L1

2
‖x∗‖21, (H.17)

where 1© is by the smoothness assumption of f(x), 2© is by selecting the subgradient of λ‖x∗‖1 with
−∂λ‖x∗‖1 = ∇f(x∗), 3© is by lemma 13, 4© is by using the property of subgradient ‖∂λ‖x∗‖1‖∞ ≤
λ. In addition, for 1 < p ≤ 2,

Bp(x
∗, z0) = Bp(x

∗, 0) =
1

2
‖x∗‖2p −

1

2
‖0‖2p − 〈∇

1

2
‖0‖2p, x∗ − 0〉

=
1

2
‖x∗‖2p ≤

1

2
‖x∗‖21. (H.18)

Furthermore, minimizing C = d
2δ

1+δ

δ w.r.t δ, we get δ = log(d) − 1 −
√

(log(d)− 1)2 − 1 and
p = 1 + δ = log(d)−

√
(log(d)− 1)2 − 1 ∈ (1, 2],

Then combing (H.16), (H.17) and (H.18), we get the final result.

E[F (x̃S)− F (x∗)] ≤ 4

(S + 3)2

(
1 +

1 + 2β(b)

2m
C

)
L1‖x‖21. (H.19)
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