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A Technical Lemmas
In this section we present several technical lemmas that facilitate the proofs of our main results.
We start with a lemma on the variance of the sample mean (without replacement).

Lemma A.1 Let x1, ..., 2y € R? be an arbitrary population of N vectors with

M
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Further let J be a uniform random subset of {1, ..., M } with size m. Then
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Proof Let W; = I(j € J), then it is easy to see that

EW? —EW, = ™ Ew,w, — m =L (1)
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Then the sample mean can be rewritten as
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This implies that
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Since the geometric random variable N; plays an important role in the analysis, we present the key
property as below.

Lemma A.2 Let N ~ Geom(7) for some B > 0. Then for any sequence Dgy, D1, . . .,
1
E(Dy — Dny1) = (’y — 1) (Dy —EDpy).

Proof By definition,

E(Dy — Dn11) = Z(Dn —Dpg1) -7"(1 =)
n>0

—(1=9) [Do= S Duty 1 =9 | =(1 =) %Do—an(’Y"_l—’Yn)

n>1 n>0

=(1-7) %Do - > Dyl | = (1 - 1) (Do — EDy).

n>0 v
|
Lemma A.3 Foranyn > 1 and z > 0, define g,(x) and x(z) as
1
1+ logx _1 (2 1 =1
i) = a = b (Zrogva) T
Then
gp(z) <z Vo> az(z).

Proof For any x > z(z), denote o = m/zf%. Then

9 1 \wT

aZ(log\/2> >1

n "z

and
1+loga+%log% 2(1 + log a) (%log%\/l)
gy(z) = Ty <z- o .
Taking the logarithm of both sides, we obtain that
2 1
log g,)(z) —log z < log(1 + log @) — nlog a + log ( log — Vv 2)
n Cz
2 1
<log (log \/2) —(n—1)loga
n z
<0.
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B One-Epoch Analysis

As in the standard analysis of stochastic gradient methods, We start by establishing a bound of
Ez, v} |? and Ex, | e;]|2.

Lemma B.1 Under Assumption Al,

. L2 . . .
Ez 11 < 3-lla” — a6 I + 219 ()] + 2lleg
J

Proof Using the fact that E|| Z||* = E||Z — EZ||? + ||[EZ||? (for any random variable Z), we have
Ez, v 17 = Bg, ) — Bz, v |2 + Bz, v
=E; IV fz, () = Vfz, (a§) = (V@) = VE@ DI+ V@) + e
<E;, |V fz, (@) = Vfz, (2§)) = (V) = V@) + 2V F )P + 20le; )12
By Lemma[A]]
Bz |V fz, () = Viz, (2§)) = (V) = V)2

sblj - ;; IV fitai?”) = Vhilas”) = (VF () = Vg )IP

=b1j - (i g IV £ied?) = Vhag )P = (V£ ) - Vf(wéj)))2>
<5 ;2_: 19 £:(a) = VAP

<5 Pl -1

where the last line uses Assumption A1l. Therefore,

. L2 . . ,
Ez 11 < 3-lla” — 261 + 219 ()] + 2lleg
J

Lemma B.2

B

J

Ez,lle;|* < “H

Proof Since Z;_ is independent of Z;, conditioning on Z;_; and applying Lemma we have

n—B; 1 — - -
Ez,lej]* = R 1)]3_ e S IV LilE-1) = VF@E-)?
J i=1
n— B; I(B; <n)
< 0 )y TN > ) gk
T (n—-1)B; s B; #

Based on Lemma[A.2] Lemma[B.T|and Lemma[B.2] we can derive bounds for primal and dual gaps
respectively.

Lemma B.3 Suppose n; L < 1, then under Assumption A1,
1 B(1 = L)E|V £ (2))|* + n; BjE(e;, V f(Z5))
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where E denotes the expectation with respect to all randomness.

<b;E(f(Z;-1) — f(%;)) +

Proof By (@) in the page [3|of the main text,
Ln?
Bz, f(@i}y) < Fai’) = nj(Bz, 00 V(@) + 2Bz, i
) . . Ln?
/@) = 19 S @) = nytes. V@) + B, ol
<f=)) - nj(l — D)V @12 = nites, V)

L
v ||x<” 2§12 + Ln?|lejl|*.  (LemmalB.I)

2b;
Let IE; denotes the expectation over To, Ih, .. ., given N;. Note that IE; is equivalent to the expectation
over Iy, 1y, ... as Nj is independent of them. Since Ikﬂ, Ik+27 ... are independent of acg ), the

above inequality implies that

(1 =, L)E; |V f ()2 +m (e, V(D)) 3)

<E;f(z) — B f(z))) + 9912 + L2 les % @)

Let k = N, in (@). By taking expectation with respect to NV, and using Fubini’s theorem, we arrive at

ni(1 =y DEN, ||V f ()| + nJENJ i, V(@)

<Ex; (E;f(@§) —Eif(a8),1)) + T?ENJ-EJ-EH:E%: — "I + L} le;
b; ; L3n? .
= (16— BiEx, @) + 5 LB ) — a1 + Ll . (emma5D) (3)
J

(J)( (J))

The lemma is then proved by substituting x by £;(Z;_1), and taking expectation over all

past randomness. [ ]

Lemma B.4 Suppose n; L2B < 62 then under Assumption A1,

b~ B s a P o BEeF
iy 1Z; — &j-1lI” + 2n; B;E(e;, &; — T;-1)

J

=20 BE(V f(&5), &5 — Tj-1) + 20 BiE|V f(25)|1 + 20 BiE|le5]|*. (6)

Proof Since xEjj_l = x,(j) ur V,(Cj), we have

Ez [z}, — 2|2

:Hxl(ej) - IE)] % — 27]]‘<]Eikul(€]),:r,(~C 7) (J)> + WJEIk ||V(J)H2
2 — 282 — 2,V F), &) — 25) — 2y (e, 2 — a6} + 2By [0

(1 + Jb ) i — a1 = 20y (V (), = af) = 2my(eg, ) — )
J

+ 201V £ ()17 + 20} lle; . (Lemma[BT)
Using the same notation E; as in the proof of Lemma we have

277jEj<Vf(x,(€])), xg) (J)> +2,E; <€j’ II(CJ) (()])>
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Let k = Nj in (7). By taking expectation with respect to /N; and using Fubini’s theorem, we arrive at

20, En, By (VI@R), 2y) — ai)) + 20,5 {es, o) — )

212
s<1+ - )EN,-Ejnx%j—xé”n?—ENjEjnx%jH—xé”||2+2nJEN IV £ @EDIP + 203 ley
J

=(—+ g )ENjEj|x§$j—xé”||2+2n]EN IV F@RDI? + 207 lle; . (Lemma[A2)
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The lemma is then proved by substituting z{ )( G )) by Z;(Z;—1) and taking expectation further on
the past randomness. u
Lemma B.5
bjEle;, &j — Tj-1) = —1;B;E(e;, Vf(Z;)) — 1;B;E| e;]|*. 9

Proof Let M,gj) = (ej, x,(ﬁj) — xéj)>. By definition, we have
Ew, (ej, & — &-1) = En, M-

Since N; is independent of (x(()J ), e;), this implies that

E<6j,.’ﬁj — .’ﬁj,1> = EMJ(\z])
Also we have Méj ) = 0. On the other hand,
Ez, (Mlijﬁl M(J)) Ez, <e],x,(j_al - xl(cj)> 771<617Ezk’/(J)>

= —nyle; VI @) = mylles
Using the same notation E; as in the proof of Lemma [B.3]and Lemma[B.4] we have

By (ME) = MP) = —n5(e;, By V £ (@) = mylles|1°. (10)

Let k = Nj in (I0). By taking an expectation with respect to N; and using Lemma[A.2} we obtain
that b
B En, MY = (e Ex, BV £ (@R))) — eI
j

The lemma is then proved by substituting xg\,)( G )) by #,;(Z;_1) and taking a further expectation

with respect to the past randomness. [ ]

Proof [Theorem Multiplying equation (2) by 2,
obtain that

b, ) b} — L2, B; — 1} L?B?
2n;Bj(1 —n; L — B*Jj)E||Vf(3€j)||2 + -1 b1, B; L E|&; — &
+2n;BjE(e;, Vf(Z;)) + 2b;E(e;, T — Tj-1)

< — 2, B(V (%), &5 — &j-1) + 2bE(f (F5-1) — f(F;)) + (2L B; + 2n;b;) Elle; >, (11)

By Lemma [B23] the second row can be simplified as

21; BjE(e;, V(%)) + 2b;E(e;, T — 1) = —2n;B;Elle; .



Using the fact that 2{(a, b) < S||al|® + %||b||2 for any 8 > 0, we have

= 20,BE(Vf(Z;), &5 — Zj1)
b;n;B; . b3 —n?L%b;B; — 3 L3 B?
< J1=g . bQE 12 J J J IR _ 2
*b? —7]]2»L2bij _U?LBBJZ J IV f(z;)]" + b1, B; |Z; — ;1]

Putting the pieces together, we conclude that

3
1;B; 2b; b3 .
o\ 2o il E||V £(&;
b; ( B; J b3_n]2L2bij_n]3_L3Bj2_ IVf(Z;)ll

<EE(f(a51) — @) + 255 (1 mL o+ g ) Bl (12)

Since T]]L = 0]' = ’}/(bj/BJ)% and bj Z I,Bj Z 81)3 Z 8,
3 2 3p2 _ 13 2 -3 p-3 3 -1 3 2 3
b — 2L, B; — P L3 B _b( ~bj3Bj377~bj)ij(lfy/ny).
Then (12) can be simplified as

1
B;\* 2, b 1 i
- 2L 9y P I 3|I12
() ( 5 (B) e )IWﬂ%W
2
<2LE(f(#j_1) — ( )( ) Elle;|?
2
5 b; \ I(B;
<2LE(f(Zj-1) — + 2 1By <n) <n) -H* (By Lemma|[B.2)).
B] b3B3
(13)
Since B; > 8b;,7 < 3, we have
2
2, bi\? 1 1~ 1
2-2 29 ZL) - ———>2->— - — —_>0.482
B;j 7<Bj> 1=92/2=9% """ 4 2 1—72/2—73_08
and )
b; \® b v 1
1 = L <1+ -+ = <1.209.
+7<Bj> tg Sltgtgs120
Thus, (T3) implies that
1
B;\* 5L i . 6I(Bj<n) .,
B B1vs@)E < 2 B - ren+ TP e s
b; 2l b2 B3
J )
|

C Convergence Analysis for Smooth Objectives

Proof [Theorem Since Z7 is a random element from (:ij)le with

we have

E|V/(#5)|? < 2
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Proof [Corollary 3.3] By Theorem 3.2]
. 30A; +6TB3I(B<n)-H* 30A; 6H*-I(B<n
|V ()| < 22 B W0y S MB<n)

Let T'(€) be the minimum number of epochs such that

30Af €

<2

T(e)Bs — 2
Then under the setting of the corollary, for any T > T (e),

- 6H*-I(B<n) ¢
E | LA G VA S
2
By definition, we know that T'(¢) < T'(¢). Noticing that
- A A
ro=o([2])-0(1+21)

eB3s eB3

we conclude that
- A .
ECeomp(€) = O(T(€)B) = O(T(€)B) = O (B + =1, B§> .
€

The corollary is then proved by substituting for B. [ ]

Proof [Corollary 3.4] By Theorem 3.2]
T I(Bj<n %
30Af +63]_, 1By
T 1, 1
Zj:l(] > Ans)

Let T, = |n? |. First we prove that W (T') is strictly decreasing.

E|Vf(@7)[* < 2 W(T).

1. When T' > T, the numerator is a constant and the denominator is strictly increasing. Thus,
W (T) is strictly decreasing on [T, 00);

2. WhenT < T.,let a;; = %% and ag; = 53 . Further let
304

Yy ay
UT) = ——t— V(1) = =212
o Yoy az; " D1 02j
then
W (T) = U(T) + V(T).

It is obvious that U (T') is strictly decreasing. Noticing that 214 = 674

3
azj j2

is strictly decreasing,

we also conclude that V' (T) is stricly decreasing. Therefore, W (T) is strictly decreasing on
[1,T.].

In summary, W (T) is stricly decreasing. Now we show that for any 7' > T'(e¢),
W(T) <,
which implies that E||V f (27)]|? < e.

To do so, we distinguish two cases to analyze W (7).



1. f T <T,,then

Jj=13j
W( - T 1
Zj:lj§
Since 1 is decreasing, we have
T T T
Zle-i-ZfSl“r/ — =1+logT.
=17 =2/ 1
Jj= j=
Similarly, since j% is increasing, we have
T T 9 .
Zj% 2/ a:%dx = gT%.
j=1 0
Therefore,
45A 9(1 + log T)YH*
W(T) < ft ( :’ 0og ) _
Tz
2. If T > T, then
3007 +6 (X, 1) A T. 3
W) = = — =W(Ty) =% .123:117 : (15)
Zj;1.7§+n§(T—T*) Zj;1]§+n§(T_T*)
Similar to the first case, we have
T. T.-1 T. 9 2
1 1 1
Z]§ = Z Jjr+ T2 g/ Vadr +n3 =-n+ns — =
. 1 3 3
j=1 Jj=1
Si
tee L2 n—1 1 n
n: —o = 1 +5< 5,
3 ns +n3s +1 3 3

Putting the pieces together, we obtain that
4587 +9(1 +logT)H* A WA(T) (T <T.)
3 - > L x
W(T) < W . (16)
_2( 73 EWo(T) (T >T.)
1+n 5(T-1T)

It is easy to see that both W1 (T') and W5(T) are strictly decreasing and limp_,oo W1 (T) =
limyp_, oo Wa(T) = 0. Let

Ti(e) =min{T : Wi(T) <€}, Ta(e) =min{T > T, : Wo(T) < €}.
Recall that W (T) is also strictly decreasing, we have

Ti(e) (W(T) <e)
T(e) = { To(e) (W(T.) > e)

More concisely,
T(e) <Ti(e) NTx + (Ta(e) — Ty). 17)



To derive a bound for T} (), let T} (€) be the minimum 7" such that
45A ¢ 9H* (1 +1logT) <€
T3 T: -2

<

b

DN o

Then by Lemmal[A.3] we have

Ti(e) <Ti(e) = O ((Aeff + (rﬂe)g -log? (i)) .

On the other hand, it is straightforward to derive a bound for T5(¢) as

Tg(e)—T*§<n§-W(ﬂ‘)_e>+§n§~W(m:0<

1

1
€ € €Ens Ens

A H*logn
Ar g) .
Therefore, we conclude that

T(e) =0 (Inin {12 {AE + (1*)3 log? (}iﬂ né} LAy itlogn log"> . s

€3 en

wl=

Finally, to obtain the bound for the computation complexity, we notice that
T
3 5
> i =0(17).
j=1

Let z denote the positive part of z, i.e., z4 = max{z, 0}. Therefore,
T(e) .
ECeomp(€) = O [ 3 Bj | =0 ((T(e) AT} + n(T(e) - 1))
j=1

~0 ((Tl(e) AT)3 +n(To(e) — T*))

1 5 5 * 5 %
=0 (min{5 [A]% + (H*)5 log® <H )] ,n?»} + 2. (Ay +’H*logn)> )
3 €

5 (1 S4p (1 ; —
Reamark ISThe log-factor log (g) can be reduced to log2 ™" (E) for any pn > 0 by setting B; =
[72(logj)2TH An]. In this case,

30A; + 6 (Zf_l %) H*

j(log j)

W(T) =
o Z?le%(logj)%+%
For any pn > 0,
T
1(B; e 1
3 By <m) 1+/ 1
2 j(log )+ ¥ 1 a(logz)+¥
On the other hand, as proved above,
T
> jilog)itE >N g~ TR
j=1 j=1
Thus,
A *
wr)~o (2
2

Using similar arguments and treating A ¢, H* = O(1) for simplicity, we can obtain that

1
T(e):O(e_g/\ng—l— 1).
ens




If Br(ey <, then

(SIS

T(e)
ECeomp(€) = O | Y- j¥(log )4+ | =0 (T(e)
=1

- (log T(e))%+”) =0 (;3 log® T+ (l)) .

If Bp(ey > n, we obtain the same bound as in Corollary

D Convergence Analysis for P-L Objectives

Proof [Theorem By equation (14) in the proof of Theorem 3.2](see p[6) and the P-L condition,

o () s - < (B) miwse e

5L ol
ST 'E(f(i’j—l) - f(ij)) + 6bj SBJ‘ SI(BJ' < n) “H"
For brevity, we write F; for E(f(Z;) — f*). Then
(wyBj +5Lb;) ) Fy < 5Lb) Fyy +6yB, T 1(B; <n) - 1. (19)
By definition of ), this can be reformulated as
I(B; < n)
4yB; +5Lb3 BY

Fj < /\ij—l + 6’77‘[* .

Apply the above inequality iteratively for 7 =T1,7T — 1,...,1, we prove the result. |

Proof [Corollary When B; = B,b; =landy = é, (19) in the proof of Theoremcan be
reformulated as

*I(B *I(B
(IWB% +3OL> (Fj _ M) < 30L (Fj—l _ 6”H(<n)> .
' uB ' uB
This implies that

T
L *I(B
FTS( 130 ) Af+67-L (B <n)
uBs + 30L uB
Under the setting of this problem,
6H*I(B < n) <€
uB -2
By definition of T'(¢), we have

T(e)glogﬂ log L =0 1ogﬂ 1+ Ll .
€ uB3s +30L € uB3s

Asa consequence,

]Eccomp(f) =0 (T(E)B) =0 <<B + Lf§> log Af) .

€

Plugging into B, we end up with

ECcomp(€) = O ({(H An) 4L (H An> }mg Af)
He o\ pe €
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