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Abstract

The increasing size and complexity of scientific data could dramatically enhance discovery and
prediction for basic scientific applications. Realizing this potential, however, requires novel
statistical analysis methods that are both interpretable and predictive. We introduce Union of
Intersections (UoI), a flexible, modular, and scalable framework for enhanced model selection
and estimation. Methods based on UoI perform model selection and model estimation through
intersection and union operations, respectively. We show that UoI-based methods achieve
low-variance and nearly unbiased estimation of a small number of interpretable features, while
maintaining high-quality prediction accuracy. We perform extensive numerical investigation to
evaluate a UoI algorithm (UoILasso) on synthetic and real data. In doing so, we demonstrate
the extraction of interpretable functional networks from human electrophysiology recordings as
well as accurate prediction of phenotypes from genotype-phenotype data with reduced features.
We also show (with the UoIL1Logistic and UoICUR variants of the basic framework) improved
prediction parsimony for classification and matrix factorization on several benchmark biomedical
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data sets. These results suggest that methods based on the UoI framework could improve
interpretation and prediction in data-driven discovery across scientific fields.

1 Introduction

A central goal of data-driven science is to identify a small number of features (i.e., predictor variables;
X in Fig. 1(a)) that generate a response variable of interest (y in Fig. 1(a)) and then to estimate
the relative contributions of these features as the parameters in the generative process relating the
predictor variables to the response variable (Fig. 1(a)). A common characteristic of many modern
massive data sets is that they have a large number of features (i.e., high-dimensional data), while
also exhibiting a high degree of sparsity and/or redundancy [3, 41, 21]. That is, while formally
high-dimensional, most of the useful information in the data features for tasks such as reconstruction,
regression, and classification can be restricted or compressed into a much smaller number of important
features. In regression and classification, it is common to employ sparsity-inducing regularization
to attempt to achieve simultaneously two related but quite different goals: to identify the features
important for prediction (i.e., model selection) and to estimate the associated model parameters (i.e.,
model estimation) [3, 41]. For example, the Lasso algorithm in linear regression uses L1-regularization
to penalize the total magnitude of model parameters, and this often results in feature compression by
setting some parameters exactly to zero [40] (See Fig. 1(a), pure white elements in right-hand vectors,
emphasized by ×). It is well known that this type of regularization implies a prior assumption
about the distribution of the parameter (e.g., L1-regularization implicitly assumes a Laplacian
prior distribution) [25]. However, strong sparsity-inducing regularization, which is common when
there are many more potential features than data samples (i.e., the so-called small n/p regime)
can severely hinder the interpretation of model parameters (Fig. 1(a), indicated by less saturated
colors between top and bottom vectors on right hand side). For example, while sparsity may be
achieved, incorrect features may be chosen and parameters estimates may be biased. In addition,
it can impede model selection and estimation when the true model distribution deviates from the
assumed distribution [3, 18]. This may not matter for prediction quality, but it clearly has negative
consequences for interpretability, an admittedly not completely-well-defined property of algorithms
that is crucial in many scientific applications [14]. In this context, interpretability reflects the degree
to which an algorithm returns a small number of physically meaningful features with unbiased and
low variance estimates of their contributions.

On the other hand, another common characteristic of many state of the art methods is to combine
several related models for a given task. In statistical data analysis, this is often formalized by so-called
ensemble methods, which improve prediction accuracy by combining parameter estimates [25]. In
particular, by combining several different models, ensemble methods often include more features
to predict the response variables, and thus the number of data features is expanded relative to the
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Figure 1: The basic UoI framework. (a) Schematic of regularization and ensemble methods for
regression. (b) Schematic of the Union of Intersections (UoI) framework. (c) A data-distributed
version of the UoILasso algorithm. (d) Dependence of false positive, false negatives, and estimation
variability on number of bootstraps in selection (B1) and estimation (B2) modules.

individuals in the ensemble. For example, estimating an ensemble of model parameters by randomly
resampling the data many times (e.g., bootstrapping) and then averaging the parameter estimates
(e.g., bagging) can yield improved prediction accuracy by reducing estimation variability [10, 25]
(See Fig. 1(a), bottom). However, by averaging estimates from a large ensemble, this process often
results in many non-zero parameters, which can hinder interpretability and the identification of
the true model support (compare top and bottom vectors on right hand side of Fig. 1(a)). Taken
together, these observations suggest that explicit and more precise control of feature compression
and expansion may result in an algorithm with improved interpretative and predictive properties.

In this paper, we introduce Union of Intersections (UoI), a flexible, modular, and scalable
framework to enhance both the identification of features (model selection) as well as the estimation
of the contributions of these features (model estimation). We have found that the UoI framework
permits us to explore the interpretability-predictivity trade-off space, without imposing an explicit
prior on the model distribution, and without formulating a non-convex problem, thereby often
leading to improved interpretability and prediction. Ideally, data analysis methods in many scientific
applications should be selective (only features that influence the response variable are selected),
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accurate (estimated parameters in the model are as close to the true value as possible), predictive
(allowing prediction of the response variable), stable (e.g., the variability of the estimated parameters
is small), and scalable (able to return an answer in a reasonable amount of time on very large data
sets) [38, 3, 32, 18]. We show empirically that UoI-based methods can simultaneously achieve these
goals, results supported by preliminary theory. We primarily demonstrate the power of UoI-based
methods in the context of sparse linear regression (UoILasso), as it is the canonical statistical/machine
learning problem, it is theoretically tractable, and it is widely used in virtually every field of scientific
inquiry. However, our framework is very general, and we demonstrate this by extending UoI to
classification (UoIL1Logistic) and matrix factorization (UoICUR) problems. While our main focus is
on neuroscience (broadly speaking) applications, our results also highlight the power of UoI across a
broad range of synthetic and real scientific data sets.

The conference version of this technical report has appeared in the Proceedings of the 2017 NIPS
Conference [5].

2 Union of Intersections (UoI)

For concreteness, we consider an application of UoI in the context of the linear regression. Specifically,
we consider the problem of estimating the parameters β ∈ Rp that map a p-dimensional vector of
predictor variables x ∈ Rp to the observation variable y ∈ R, when there are n paired samples of x
and y corrupted by i.i.d Gausian noise:

y = βTx+ ε, (1)

where ε iid∼ N(0, σ2) for each sample. When the true β is thought to be sparse (i.e., in the L0-norm
sense), then an estimate of β (call it β̂) can be found by solving a constrained optimization problem
of the form:

β̂ ∈ argminβ∈Rp
n∑
i=1

(yi − βxi)2 + λR(β). (2)

Here, R(β) is a regularization term that typically penalizes the overall magnitude of the parameter
vector β (e.g., R(β) = ‖β‖1 is the target of the Lasso algorithm).

The Basic UoI Framework. The key mathematical idea underlying UoI is to perform
model selection through intersection (compressive) operations and model estimation through union
(expansive) operations, in that order. This is schematized in Fig. 1(b), which plots a hypothetical
range of selected features (x1 : xp, abscissa) for different values of the regularization parameter (λ,
ordinate), and a more detailed description of this is provided in the Appendix. In particular, UoI
first performs feature compression (Fig. 1(b), Step 1) through intersection operations (intersection of
supports across bootstrap samples) to construct a family (S) of candidate model supports (Fig. 1(b),
e.g., Sj−1, opaque red region is intersection of abutting pink regions). UoI then performs feature
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expansion (Fig. 1(b), Step 2) through a union of (potentially) different model supports: for each
bootstrap sample, the best model estimates (across different supports) is chosen, and then a new
model is generated by averaging the estimates (i.e., taking the union) across bootstrap samples
(Fig. 1(b), dashed vertical black line indicates the union of features from Sj and Sj+1). Both
feature compression and expansion are performed across all regularization strengths. In UoI, feature
compression via intersections and feature expansion via unions are balanced to maximize prediction
accuracy of the sparsely estimated model parameters for the response variable y.

Innovations in Union of Intersections. UoI has three central innovations: (1) calculate
model supports (Sj) using an intersection operation for a range of regularization parameters (increases
in λ shrink all values β̂ towards 0), efficiently constructing a family of potential model supports
{S : Sj ∈ Sj−k, for k sufficiently large}; (2) use a novel form of model averaging in the union step
to directly optimize prediction accuracy (this can be thought of as a hybrid of bagging [10] and
boosting [37]); and (3) combine pure model selection using an intersection operation with model
selection/estimation using a union operation in that order (which controls both false negatives
and false positives in model selection). Together, these innovations often lead to better selection,
estimation and prediction accuracy. Importantly, this is done without explicitly imposing a prior on
the distribution of parameter values, and without formulating a non-convex optimization problem.

The UoILasso Algorithm. Since the basic UoI framework, as described in Fig. 1(c), has two
main computational modules—one for model selection, and one for model estimation—UoI is a
framework into which many existing algorithms can be inserted. Here, for simplicity, we primarily
demonstrate UoI in the context of linear regression in the UoILasso algorithm, although we also
apply it to classification with the UoIL1Logistic algorithm as well as matrix factorization with the
UoICUR algorithm. (See the Appendix for pseudo-code for the UoILasso algorithm.) UoILasso

expands on the BoLasso method for the model selection module [1], and it performs a novel model
averaging in the estimation module based on averaging ordinary least squares (OLS) estimates
with potentially different model supports. UoILasso (and UoI in general) has a high degree of
natural algorithmic parallelism that we have exploited in a distributed Python-MPI implementation.
(Fig. 1(c) schematizes a simplified distributed implementation of the algorithm, and see the Appendix
for more details.) This parallelized UoILasso algorithm uses distribution of bootstrap data samples
and regularization parameters (in Map) for independent computations involving convex optimizations
(Lasso and OLS, in Solve), and it then combines results (in Reduce) with intersection operations
(model selection module) and union operations (model estimation module). By solving independent
convex optimization problems (e.g., Lasso, OLS) with distributed data resampling, our UoILasso
algorithm efficiently constructs a family of model supports, and it then averages nearly unbiased model
estimates, potentially with different supports, to maximize prediction accuracy while minimizing the
number of features to aid interpretability.
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3 Results

We start with a discussion of the basic methodological setup. The main statistical properties are
discussed numerically in Section 3.2, the results of which are supported by preliminary theoretical
results in the Appendix. The rest of this section describes our extensive empirical evaluation on real
and synthetic data of several variants of the basic UoI framework.

3.1 Methods

All numerical results used 100 random sub-samplings with replacement of 80-10-10 cross-validation
to estimate model parameters (80%), choose optimal meta-parameters (e.g., λ, 10%), and determine
prediction quality (10%). Below, β denotes the values of the true model parameters, β̂ denotes the
estimated values of the model parameters from some algorithm (e.g., UoILasso), Sβ is the support of
the true model (i.e., the set of non-zero parameter indices), and Sβ̂ is the support of the estimated
model. We calculated several metrics of model selection, model estimation, and prediction accuracy.
(1) Selection accuracy (set overlap): 1−

|Sβ̂∆Sβ |
|Sβ̂ |0+|Sβ |0 , where, ∆ is the symmetric set difference operator.

This metric ranges in [0, 1], taking a value of 0 if Sβ and Sβ̂ have no elements in common, and

taking a value of 1 if and only if they are identical. (2) Estimation error (r.m.s):
√

1
p

∑
(βi − β̂i)

2
.

(3) Estimation variability (parameter variance): E[β̂2] − (E[β̂])2. (4) Prediction accuracy (R2):∑
(yi−ŷi)2∑

(yi−E[y])2
. (5) Prediction parsimony (BIC): n log( 1

n−1

∑n
i=1(yi − ŷi)

2) + ‖β̂‖0 log(n). For the

experimental data, as the true model size is unknown, the selection ratio (‖β̂‖0p ) is a measure of the
overall size of the estimated model relative to the total number of parameters. For the classification
task using UoIL1Logistic, BIC was calculated as: −2 log `+ Sβ̂ logN , where ` is the log-likelihood on
the validation set. For the matrix factorization task using UoICUR, reconstruction accuracy was
the Frobenius norm of the difference between the data matrix A and the low-rank approximation
matrix A′ constructed from A(:, c), the reduced column matrix of A: ‖A−A′‖F , where c is the set
of k selected columns.

3.2 Model Selection and Stability: Explicit Control of False Positives, False
Negatives, and Estimate Stability

Due to the form of the basic UoI framework, we can control both false negative and false positive
discoveries, as well as the stability of the estimates. For any regularized regression method like in
(2), a decrease in the penalization parameter (λ) tends to increase the number of false positives,
and an increase in λ tends to increase false negatives. Preliminary analysis of the UoI framework
shows that, for false positives, a large number of bootstrap resamples in the intersection step (B1)
produces an increase in the probability of getting no false positive discoveries, while an increase in
the number of bootstraps in the union step (B2) leads to a decrease in the probability of getting no
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false positives. Conversely, for false negatives, a large number of bootstrap resamples in the union
step (B2) produces an increase in the probability of no false negative discoveries, while an increase
in the number of bootstraps in the intersection step (B1) leads to a decrease in the probability of no
false negatives. Also, a large number of bootstrap samples in union step (B2) gives a more stable
estimate. These properties were confirmed numerically for UoILasso and are displayed in Fig. 1(d),
which plots the average normalized false negatives, false positives, and standard deviation of model
estimates from running UoILasso, with ranges of B1 and B2 on four different models. These results
are supported by preliminary theoretical analysis of a variant of UoILasso (see Appendix). Thus,
the relative values of B1 and B2 express the fundamental balance between the two basic operations
of intersection (which compresses the feature space) and union (which expands the feature space).
Model selection through intersection often excludes true parameters (i.e., false negatives), and,
conversely, model estimation using unions often includes erroneous parameters (i.e., false positives).
By using stochastic resampling, combined with model selection through intersections, followed by
model estimation through unions, UoI permits us to mitigate the feature inclusion/exclusion inherent
in either operation. Essentially, the limitations of selection by intersection are counteracted by the
union of estimates, and vice versa.

3.3 UoILasso has Superior Performance on Simulated Data Sets

To explore the performance of the UoILasso algorithm, we have performed extensive numerical
investigations on simulated data sets, where we can control key properties of the data. There are a
large number of algorithms available for linear regression, and we picked some of the most popular
algorithms (e.g., Lasso), as well as more uncommon, but more powerful algorithms (e.g., SCAD, a
non-convex method). Specifically, we compared UoILasso to five other model selection/estimation
methods: Ridge, Lasso, SCAD, BoATS, and debiased Lasso [25, 40, 18, 6, 4, 27]. Note that BoATS
and debiased Lasso are both two-stage methods. We examined performance of these algorithms
across a variety of underlying distributions of model parameters, degrees of sparsity, and noise levels.
Across all algorithms examined, we found that UoILasso (Fig. 2, black) generally resulted in very high
selection accuracy (Fig. 2(c), right) with parameter estimates with low error (Fig. 2(c), center-right),
leading to the best prediction accuracy (Fig. 2(c), center-left) and prediction parsimony (Fig. 2(c),
left). In addition, it was very robust to differences in underlying parameter distribution, degree of
sparsity, and magnitude of noise. (See the Appendix for more details.)
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Figure 2: Range of observed results, in comparison with existing algorithms. (a) True β
distribution (grey histograms) and estimated values (colored lines). (b) Scatter plot of true and
estimated values of observation variable on held-out samples. (c) Metrics of algorithm performance.

3.4 UoILasso in Neuroscience: Sparse Functional Networks from Human Neu-
ral Recordings and Parsimonious Prediction from Genetic and Phenotypic
Data

We sought to determine if the enhanced selection and estimation properties of UoILasso also improved
its utility as a tool for data-driven discovery in complex, diverse neuroscience data sets. Neurobiology
seeks to understand the brain across multiple spatio-temporal scales, from molecules-to-minds.
We first tackled the problem of graph formation from multi-electrode (p = 86 electrodes) neural
recordings taken directly from the surface of the human brain during speech production (n = 45 trials
each). See [8] for details. That is, the goal was to construct sparse neuroscientifically-meaningful
graphs for further downstream analysis. To estimate functional connectivity, we calculated partial
correlation graphs. The model was estimated independently for each electrode, and we compared
the results of graphs estimated by UoILasso to the graphs estimated by SCAD. In Fig. 3(a)-(b), we
display the networks derived from recordings during the production of /b/ while speaking /ba/. We
found that the UoILasso network (Fig. 3(a)) was much sparser than the SCAD network (Fig. 3(b)).
Furthermore, the network extracted by UoILasso contained electrodes in the lip (dorsal vSMC), jaw
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Figure 3: Application of UoI to neuroscience and genetics data. (a)-(f): Functional connec-
tivity networks from ECoG recordings during speech production. (g)-(h): Parsimonious prediction
of complex phenotypes form genotype and phenotype data.

(central vSMC), and larynx (ventral vSMC) regions, accurately reflecting the articulators engaged
in the production of /b/ (Fig. 3(c)) [8]. The SCAD network (Fig. 3(d)) did not have any of these
properties. This highlights the improved power of UoILasso to extract sparse graphs with functionally
meaningful features relative to even some non-convex methods.

We calculated connectivity graphs during the production of 9 consonant-vowel syllables. Fig. 3(e)
displays a summary of prediction accuracy for UoILasso networks (red) and SCAD networks (black)
as a function of time. The average relative prediction accuracy (compared to baseline times) for the
UoILasso network was generally greater during the time of peak phoneme encoding [T = -100:200]
compared to the SCAD network. Fig. 3(f) plots the time course of the parameter selection ratio
for the UoILasso network (red) and SCAD network (black). The UoILasso network was consistently
∼ 5× sparser than the SCAD network. These results demonstrate that UoILasso extracts sparser
graphs from noisy neural signals with a modest increase in prediction accuracy compared to SCAD.

We next investigated whether UoILasso would improve the identification of a small number of
highly predictive features from genotype-phenotype data. To do so, we analyzed data from n = 365

mice (173 female, 192 male) that are part of the genetically diverse Collaborative Cross cohort.
We analyzed single-nucleotide polymorphisms (SNPs) from across the entire genome of each mouse
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(p = 11, 563 SNPs). For each animal, we measured two continuous, quantitative phenotypes: weight
and behavioral performance on the rotorod task (see [31] for details). We focused on predicting these
phenotypes from a small number of geneotype-phenotype features. We found that UoILasso identified
and estimated a small number of features that were sufficient to explain large amounts of variability
in these complex behavioral and physiological phenotypes. Fig. 3(g) displays the non-zero values
estimated for the different features (e.g., location of loci on the genome) contributing to the weight
(black) and speed (red) phenotype. Here, non-opaque points correspond to the mean ± s.d. across
cross-validation samples, while the opaque points are the medians. Importantly, for both speed and
weight phenotypes, we confirmed that several identified predictor features had been reported in
the literature, though by different studies, e.g., genes coding for Kif1b, Rrm2b/Ubr5, and Dloc2.
(See the Appendix for more details.) Accurate prediction of phenotypic variability with a small
number of factors was a unique property of models found by UoILasso. For both weight and rotorod
performance, models fit by UoILasso had marginally increased prediction accuracy compared to other
methods (+1%), but they did so with far fewer parameters (lower selection ratios). This results in
prediction parsimony (BIC) that was several orders of magnitude better (Fig. 3(h)). Together, these
results demonstrate that UoILasso can identify a small number of genetic/physiological factors that
are highly predictive of complex physiological and behavioral phenotypes.

3.5 UoIL1Logistic and UoICUR: Application of UoI to Classification and Matrix
Decomposition

As noted, UoI is is a framework into which other methods can be inserted. While we have primarily
demonstrated UoI in the context of linear regression, it is much more general than that. To illustrate
this, we implemented a classification algorithm (UoIL1Logistic) and matrix decomposition algorithm
(UoICUR), and we compared them to the base methods on several data sets (see Appendix for
details). In classification, UoI resulted in either equal or improved prediction accuracy with 2x-10x
fewer parameters for a variety of biomedical classification tasks (Fig. 4(a)). For matrix decomposition
(in this case, column subset selection), for a given dimensionality, UoI resulted in reconstruction
errors that were consistently lower than the base method (BasicCUR), and quickly approached an
unscalable greedy algorithm (GreedyCUR) for two genetics data sets (Fig. 4(b)). In both cases, UoI
improved the prediction parsimony relative to the base (classification or decomposition) method.

4 Discussion

UoI-based methods leverage stochastic data resampling and a range of sparsity-inducing regularization
parameters/dimensions to build families of potential features, and they then average nearly unbiased
parameter estimates of selected features to maximize predictive accuracy. Thus, UoI separates model
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Figure 4: Extension of UoI to classification and matrix decomposition. (a) UoI for classifi-
cation (UoIL1Logistic). (b) UoI for matrix decomposition (UoICUR); solid and dashed lines are for
PAH and dashed SORCH data sets, respectively.

selection with intersection operations from model estimation with union operations: the limitations
of selection by intersection are counteracted by the union of estimates, and vice versa. Stochastic
data resampling can be a viewed as a perturbation of the data, and UoI efficiently identifies and
robustly estimates features that are stable to these perturbations. A unique property of UoI-based
methods is the ability to control both false positives and false negatives. Initial theoretical work (see
Appendix) shows that increasing the number of bootstraps in the selection module (B1) increases the
amount of feature compression (primary controller of false positives), while increasing the number of
bootstraps in the estimation module (B2) increases feature expansion (primary controller of false
negatives), and we observe this empirically. Thus, neither should be too large, and their relative
values express the balance between feature compression and expansion. This tension is seen in many
places in machine learning and data analysis: local nearest neighbor methods vs. global latent
factor models; local spectral methods that tend to expand due to their diffusion-based properties vs.
flow-based methods that tend to contract; and sparse L1 vs. dense L2 penalties/priors more generally.
Interestingly, an analogous balance of compressive and expansive forces contributes to neural leaning
algorithms based on Hebbian synaptic plasticity [7]. Our results highlight how revisiting popular
methods in light of new data science demands can lead to still further-improved methods, and they
suggest several directions for theoretical and empirical work.
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A Additional Material

In this appendix section, we will provide additional information about the UoI method. We will start
in Section A.1 with an extended introduction for scientific data. Then, in Section A.2, we provide
pseudo-code for UoILasso; in Section A.3, we discuss scaling issues; in Section A.4, we describe
preliminary theoretical analysis of Union of Intersections; in Section A.5, we discuss expanded results
for the simulated data example; in Section A.6, we discuss simulated data across different parameter
distributions and levels of sparsity; in Section A.7, we discuss simulated data across different noise
magnitudes; in Section A.8, we discuss UoIL1Logistic for classification problems; and in Section A.9,
we discuss UoICUR for applying matrix decompositions to genetics data. We conclude in Section A.10
with a brief additional discussion and conclusion.

A.1 Extended Introduction for Scientific Examples

An important aspect of the use of machine learning and data analysis techniques in scientific
applications—as opposed to internet, social media, and related applications—is that scientific
researchers often implicitly or explicitly interpret the output of their data analysis tools as reflecting
the true state of nature. For example, in neuroscience, one often wants to understand how neural
activity (e.g., action potentials, calcium transients, cortical field potentials, etc.) is mapped to
features of the external world (e.g., sounds or movement), or to features of the brain itself (e.g., the
activity of other brain areas) [15]. A common approach to this is to formulate the mapping as a
parametric model and then estimate the model parameters from noisy data. In addition to providing
predictive capabilities, such model parameters can also provide insight into neural representations,
functional connectivity, and population dynamics [36, 39, 6]. Indeed, this insight into the underlying
neuroscience is typically at least as important as the predictive quality of the model. Likewise, in
molecular biology and medicine, recent advances have allowed for the proliferation of low-cost whole-
genome mapping, paving the way for large-scale genome wide association studies (GWAS) [42]. The
relationship between genetic variations and observed phenotypes can be estimated from a parametric
model [19, 12, 43]. Here, researchers may be interested in methods that allow for the identification
of low-penetrance genes that are present at high frequency in a population, as these are likely the
major genetic components associated with predisposition to disease risk and other physiological and
behavioral phenotypes [28, 24]. Because the molecules encoded by the genes are often used to guide
future experiments or drug development, identifying a small number of genetic factors that are highly
predictive is critical to accelerate basic discovery and targets for next generation therapeutics. These
and other examples [14] illustrate that the prediction-versus-interpretation data analysis needs of the
scientific community are not well aligned with the needs of the Internet and social media industries
that are forcing functions for the development of many machine learning and data analysis methods.
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A.2 Pseudo-code for the UoILasso Algorithm

Here, we provide pseudo-code for a UoILasso algorithm.

Algorithm: UoILasso Input: data (X,Y) ∈ Rn×(p+1);
vector of regularization parameters λ ∈ Rq;
number of bootstraps B1 and B2;

% Model Selection
for k=1 to B1 do

Generate bootstrap sample T k = (Xk
T , Y

k
T )

for λj ∈ λ do
Compute Lasso estimate j β̂k from T k

Compute support Skj = {i} s.t. j β̂ki 6= 0

end for
end for
for j=1 to q do

Compute BoLasso support for λj : Sj =

B1⋂
k=1

Skj

end for

% Model Estimation
for k=1 to B2 do

Generate bootstrap samples for cross-validation:
training T k = (Xk

T , Y
k
T )

evaluation Ek = (Xk
E , Y

k
E )

for j=1 to q do
Compute OLS estimate β̂kSj from T k

Compute loss on Ek : L(β̂kSj , E
k)

end for
Compute best model for each bootstrap sample:
β̂kS = argmin

β̂kSj

L(β̂kSj , E
k)

end for

Compute bagged model estimate β̂∗ = 1
B2

B2∑
k=1

β̂kS

Return: β̂∗
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As described in the main text, UoI is a framework that includes performing complementary
unions and intersections of a basic underlying method. When applied to L1-regularized L2 regression,
we obtain the UoILasso algorithm. This pseudo-code implements a serial version of the UoILasso
algorithm. The algorithm uses the BoLasso method for the model selection through the intersection
module, and bagged ordinary least squares regression for the the estimation through the union
module. This algorithm is described serially, but, as schematized in Fig. 1(c), this algorithm has
a great deal of natural parallelism, involving independent calculations across different bootstrap
samples (B1 and B2) and values of the regularization parameter (λ), which occur for both the
selection and estimation modules. Of course, further algorithmic parallelization can be achieved by
distributing the computations required for solving the Lasso and OLS convex-optimization steps,
using, e.g., the Alternating Directions Method of Multiplies (ADMM). Even for linear regression,
other methods could be used for the selection module (e.g., SCAD, stability selection, etc.), though
keeping the estimation module as an un-regularized method should be maintained. When other base
algorithms are used, e.g., a logistic classifier or a CUR matrix decomposition, then other variants of
the basic UoI framework, such as UoIL1Logistic and UoICUR (that are described below and in the
main text), are obtained.

A.3 Scaling of the UoILasso Algorithm

UoILasso (and UoI in general) has a high degree of natural algorithmic parallelism that we have
exploited in a distributed Python-MPI implementation. (See Section 3.1 also.) To assess the
scalability of the algorithm, we carried out a series of scaling computations with data sets of different
sizes; and, in Fig. 5, we present a summary of the performance between a serial and a distributed
implementation of UoILasso. We used the computational runtime and the input-output (IO) time
as performance indicators. We used artificially generated data sets with sizes that ranged from
400 bytes to 40 gigabytes, therefore spanning 5 orders of magnitude in size, and we performed
computations on a supercomputer (NERSC at LBNL), as described in Section 3.1. Fig. 5(a) shows
the computational runtime for the distributed and the serial program compared across data set sizes,
as indicated by the gray scale color and the legend. All data points in Fig 5(a) lie well above the
identity line shown as a diagonal gray dashed line, which indicates that runtime was in all cases
notably lower for the distributed version of UoILasso. This improvement in runtime increased with
the data set size: the best-fit line to the (log-log) data had a slope of 1.19 and y-intercept of 2.13.
This indicates a general improvement of approximately two-orders of magnitude (y-intercept), and
that improvements get better for larger data sets (slope greater than 1). The computational runtime
is also shown in Fig. 5(b) with pink and gray bars, and in addition this plot includes the IO time
shown with red and black bars for the parallel and serial versions of UoILasso, respectively. We found
that even though IO time was slightly larger in the parallel version for small data sets, IO operations
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Figure 5: Efficient and scalable implementation of UoILasso on distributed computing
systems. (a) Comparison of computational runtime between serial and distributed UoILasso, as
a function of the data set size. Gray-scale: size of the design matrix in bytes (legend). Circular
markers: computational runtime of serial UoILasso was estimated using a single iteration. Square
markers: actual data points. Red line: linear fit to the actual (log-log) data (squares). Grey dashed
line is unity. (b) Computational runtime and data IO time for serial (grey/black) and distributed
(pink/red) UoILasso as a function of data set size (x-axis). Hatched bars: estimated runtime time
using a single iteration.

benefited from the distributed implementation when large datasets were analyzed. Overall, these
results show a good scalability, in parallel settings, of the basic UoI framework, illustrating its
potential applicability to very large-scale data sets.

A.4 Theory

In section 3.2, we make certain statements regarding the control of false negative and false positive
discoveries in UoILasso method and the relationship of the control of false positive and false negative
discoveries in UoILasso method with the bootstrap parameters B1 and B2. The bootstrap parameter
B1 is used in the model selection or intersection step of the UoILasso algorithm. The model selection
step derives from the BoLasso algorithm [1]. As shown in Lemma 6 in section A.4.5, for correct
model selection with high probability, we should have B1 →∞ but at a rate slower than log n for
BoLasso. But for theoretical analysis of the model estimation step of UoILasso algorithm, we need
separate control on the false positives (regression coefficients falsely estimated as non-zero) and
false negatives (regression coefficients falsely estimated as zero) of the recovered support. In Lemma
6, the result gives a bound on total error in support recovery, but not separate control on false
positives and false negatives. For this reason, in the theoretical analysis of UoI methods, in stead of
using BoLasso in the model selection step, we use stability selection [33], as there are some better
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theoretical properties available for the stability selection method. We give the pesudo-code of the
modified algorithm, UoIstable

Lasso , in section A.4.1. Since, the bootstrap parameter for model selection
step of UoILasso, B1, is not a parameter of the algorithm UoIstable

Lasso , the main theoretical results
proved for UoIstable

Lasso establish relationships between the false positive and false negative control and
B2, the bootstrap parameter for the model estimation step.

Let us consider that we have data (Y1,X1), . . . , (Yn,Xn) with univariate response variable Yi
and p-dimensional predictor variable Xi for each sample, i ∈ {1, . . . , n}. The vectors (Yi,Xi) are
assumed independent with common distribution in Rp+1 for each i ∈ {1, . . . , n}. Consider the linear
regression model for the data

Y = Xβ + ε (3)

where, Y = (Y1, . . . , Yn), X is the n × p random design matrix of explanatory variables and
ε = (ε1, . . . , εn) are random noise terms with ε iid∼ N(0, σ2In) and Xi are orthogonal to εi for each
i ∈ {1, . . . , n}, that is, E(Xijεi) = 0 for j = 1, . . . , p. Also, the design matrix has the property∑n

i=1X
2
ij = 1 for all j = 1, . . . , p. Let S be the set of non-zero coefficients of β with |S| = s; N

be the set of zero coefficients of β with |N | = p− s. We consider that s is constant and p can be
function of n, the sample size.

Consider the lasso regression problem with regularization parameter λ > 0, as minimizing the
following optimization function with respect to β,

L(β, λ) = ||Y −Xβ||22 + λ||β||1 (4)

A.4.1 UoILasso Algorithm with Stability Selection

Here we present a preliminary theoretical analysis of Union of Intersections for Lasso based regression.
The UoILasso algorithm is presented in section A.2. The algorithm analyzed in this section differs
slightly from the UoILasso algorithm in that it uses the stability selection method of Meinshausen
and Buhlmann (2010) [33] instead of BoLasso in the model selection step. This was for tractability,
as the current analytical results for stability selection are more amenable to theoretical analysis in
the UoI framework. A brief review of the results on BoLasso is given in section A.4.5. As noted
in [33], there is a great deal of similarity between stability selection and BoLasso. The stability
selection method proposed in [33] has two hyperparameters, α ∈ R+ (where, R+ = {x ∈ R|x > 0})
and πthr ∈ [0, 1] (for details, see [33]). As mentioned in [33], the stability selection algorithm is
similar to the BoLasso algorithm for πthr = 1.

Here, we provide pseudo-code for UoIstable
Lasso algorithm.

Algorithm: UoIstable
Lasso Input: data (X,Y) ∈ Rn×(p+1);

vector of regularization parameters λ ∈ Rq+;
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Stability selection hyperparameters α ∈ R+ and πthr ∈ (0, 1);
number of bootstraps B2;

% Model Selection
for j=1 to q do

Compute stability selection support for λj : Sj , by running the stability selection algorithm
from [33] with hyperparameters (α, πthr, λj) on data (Y ,X).

end for

% Model Estimation
for k=1 to B2 do

Generate bootstrap samples for cross-validation:
training T k = ((Xk

T )n1×p, (Y
k
T )n1×1)

evaluation Ek = ((Xk
E)n2×p, (Y

k
E )n2×1)

for j=1 to q do
Compute OLS estimate β̂kSj from T k

Compute loss on Ek : L(β̂kSj , λj)

end for
Compute best model for each bootstrap sample:
β̂kS = argmin

β̂kSj
:j=1,...p

L(β̂kSj , λj)

end for

Compute bagged model estimate β̂stableUoI = 1
B2

B2∑
k=1

β̂kS

Return: β̂stableUoI

Based on the estimate β̂stableUoI , we define the support of the coefficient estimate as the set of
non-zero coefficients of β̂stableUoI . We call the support set to be ŜUoIB2

≡ {j ∈ {1, . . . , p}|(βstableUoI )j 6= 0}.
The UoIstable

Lasso algorithm works in two parts. In the first part, that is the model selection step, a
support set for the coefficients is obtained for each λ ∈ λ (where, λ is the set of regularization
parameters) based on stability selection algorithm. In the second part, that is the model estimation
step, a least squares estimate is obtained using the support set obtained from model selection step
for B2 bootstrap samples of the data and for each λ ∈ λ. For each bootstrap sample, the best
coefficient estimate corresponding to the regularization parameter λ with minimum prediction error
is recorded. A new estimate of the regression coefficients is obtained by taking the average of the
best estimates obtained for each bootstrap sample. Thus the support of the regression coefficient
estimate ultimately obtained is found after the union of the support of several stability selection
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based estimates.
Another set of notations is needed for theoretical analysis of the UoIstable

Lasso algorithm. For any
A ⊆ {1, . . . , p}, define the sub-design and sub-Gram matrices as

XA ≡ (Xj , j ∈ A)n×|A|, ΣA = XT
AXA (5)

where, Xj is the j-th column of design matrix or the observations corresponding to j-th predictor
variable.

We consider several assumptions on the set-up to prove the theoretical results for the UoIstable
Lasso

algorithm. The assumptions (A1)-(A2) are required for properly defining the linear model. The
assumption (A1) states the condition on the random design matrix set up. It states the assumption
of independence of data and independence between explanatory variables and error variables. It
also gives condition on the distribution of the response and explanatory variables. The assumption
(A2) specifies the linear model and homoscedasticity assumptions. Assumption (A3) gives condition
on the covariance matrix of the design or explanatory variables. The bound on the ratio of largest
and smallest eigenvalues of sub-matrices of covariance matrix of explanatory variables given in (A3)
is required in proving the results on model selection as well as model estimation step. Lastly, the
assumption (A4) states the restriction on the size of the bootstrap training and validation samples
in the model estimation step. The condition (A4) is needed so that both estimation of parameters
using training sample and estimation of regularization parameters using validation sample have nice
large sample properties.

Assumption:

(A1) The vectors (Y i,Xi) are assumed independent with common (unknown) distribution in Rp+1.
The cumulant generating functions E(exp(z||X||22)) and E(exp(zY 2)) are finite for some z > 0.
Also, Yi − Xiβ is orthogonal to Xi, that is, E(Xijεi) = 0 for i = 1, . . . , n and j = 1, . . . , p,
where, εi = Yi −Xiβ.

(A2) E(Y |X) = XTw and Var(Y |X) = σ2 a.s. for some w ∈ Rp and σ ∈ R+.

(A3) We consider the sparse Reisz condition (SRC) as given in [33]. Let us consider that there exists
functions cmin : {1, . . . , p} → R+ and cmax : {1, . . . , p} → R+, such that for d ∈ Z, d > 0, we
have,

cmin(d) ≤ min
|A|≤d

φmin(ΣA) ≤ max
|A|≤d

φmax(ΣA) ≤ cmax(d) (6)

where, φmin(M) and φmax(M) are the minimum and maximum eigenvalues of a matrix M . In
that case, we assume that there exists some constant C > 1 and some constant κ ≥ 9, such
that,

cmax(Cs2)

c
3/2
min(Cs2)

<
√
Cκ
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with probability, ps, where, ps → 1, as n, p→∞.

(A4) The number of training and validation samples in the model selection step, n1 and n2 should
follow the relation that n1 = c1n and n2 = c2n, where, 0 < c1, c2 < 1 are constants (not
dependent on p).

Under the assumptions (A1)-(A4) on the linear model setup, we prove the following result on
model selection and model estimation accuracy of the UoI procedure. Note that, we denote,
(a ∧ b) := min{a, b}.

Theorem 1. Consider the model in (3) and the assumptions (A1)-(A4) is satisfied.

(a) Model selection step: Consider α given by α2 = νcmin(m)/m, for any ν ∈ ((7/κ)2, 1/
√

2),
and m = Cs2, for some constant C > 1. Let an be a sequence with an → ∞ for n → ∞.
Let λmin = 2σ(

√
2Cs + 1)

√
log(p ∧ an)/n and assume that p > 10 and s ≥ 7. Then, there

exists some δ = δs ∈ (0, 1) such that for all πthr ≥ 1− δ, there exists a set Ω1 with P(Ω1) ≥
ps(1− 5/(p ∧ an)), such that for data set (Yi,Xi)

n
i=1 arising from such a set,

N ∩ Ŝstableλ = ∅, (7)

where Ŝstableλ = support selected by stability selection with λ ≥ λmin. On the same set Ω1,

(S\Ssmall;λ) ⊆ Ŝstableλ (8)

where Ssmall;λ = {k : |βk| ≤ 0.3(Cs)3/2λ}.

(b) Model estimation step: For a set Ω such that P(Ω) ≥ min
{

1− (1− pW )B2 , (pW )B2
}
,

where, pW = p2
s(1− 5/(p ∧ an)) and for data (Y i,Xi)

n
i=1 as element of the set Ω, we have,

N ∩ ŜUoIB2
= ∅ (9)

where ŜUoIB2
= support selected after model estimation step. On the same set Ω,

(S\Ssmall;λmin) ⊆ ŜUoIB2
(10)

where, Ssmall;λmin = {k : |βk| ≤ 0.3(Cs)3/2λmin}.

(c) Estimation Accuracy: On the same set Ω as in (b), for data (Y i,Xi)
n
i=1 as element of the

set Ω, we have, ∣∣∣∣∣∣X(β̂stableUoI − β)
∣∣∣∣∣∣2 ≤ C1σ

2 log p

n
(11)

for some constant C1 > 0.
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Comments: The following observations can be made from the above Theorem 1.

(a) Explanation. In part (a) and (b) of the Theorem, equations (7) and (9), the results imply
that no noise variables are selected. In equation (8) and (10), the results imply that all variables
with sufficiently large regression coefficient are selected.

(a) Control of false positive discoveries. The control of false positive discoveries is achieved
both in the model selection and model estimation steps. The probability of having no false
positives in the model selection step, ps

(
1− 5

p∧an

)
, which tends to one as p, n→∞. Although

it is not explicitly stated in the Theorem, it becomes apparent from the proof that the union
step that the probability of having no false positives to pB2

W , where, pW = p2
s (1− 5/(p ∧ an)),

which tend to one as n, p→∞. Note that, the probability of having no false positives decreases
in the model estimation step to pB2

W from ps

(
1− 5

p∧an

)
in model selection step for B2 ≥ 1.

Also, pB2
W → 1 if B2 →∞ slow enough.

(b) Control of false negative discoveries. The control of false negative discoveries is also
achieved both in the model selection and model estimation steps. The maximum size of
false negatives in the model selection step is Ssmall;λ = {k : |βk| ≤ 0.3(Cs)3/2λ} for each
λ ∈ λ and such false negatives occur with probability ps

(
1− 5

p∧an

)
, which tends to one

as p, n → ∞. Although it is not explicitly stated in the Theorem, the model estimation
step both decreases the probability of having false negatives as well as reduces the size of
the false negatives. The maximum size of false negatives in the model estimation step is
Ssmall;λmin = {k : |βk| ≤ 0.3(Cs)3/2λmin} and such false negatives occur with probability
(1 − (1 − pW )B2). So, the maximum size of false negatives after the model estimation step,
Ssmall;λmin , becomes smaller than the size Ssmall;λ obtained after model selection step for
λ ≥ λmin. The number of non-zero parameter values estimated as zero becomes small with
probability (1− (1− pW )B2), where, pW = p2

s(1− 5/(p∧ an)), which tends to one as n, p→∞.
Thus, a large number of bootstrap resamples in the model estimation step (B2) produce an
increase in the probability of having small false negative discoveries. Also, the probability
increases in the model estimation step to (1−(1−pW )B2) from ps

(
1− 5

p∧an

)
in model selection

step for large enough B2. Thus the UoIstable
Lasso algorithm improves upon the stability selection

results.

(c) Model selection in the whole UoI operation. After the model estimation step, we
have correct model selection with high probability for the entire UoI procedure if both the
probabilities (1− (1− pW )B2) and pB2

W are large.

(d) Estimation Accuracy. The estimation accuracy of the UoIstable
Lasso estimators occurs at the

same rate as Lasso but with probability as min
{

1− (1− pW )B2 , (pW )B2
}
.
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A.4.2 Proof of Theorem 1

For the sake of clarity, we redefine several notations. Let us consider the estimated coefficient
parameter and the set of selected variables from stability selection (or model selection step) for
any regularization parameter λ ∈ R+ to be β̂λ and Ŝλ respectively. So, we can see that by the
notation in the algorithm UoIstable

Lasso , Sj ≡ Ŝλj , where, λj was one of the penalization parameters used
as input in algorithm UoIstable

Lasso . Let us also consider that for any penalization parameter λ ∈ R+,
sλ := |Ŝλ ∩ S| and nλ := |Ŝλ ∩ SC |. In the rest of the section, we also change some of the notations
from UoIstable

Lasso algorithm. In the kth (k = 1, . . . , B2) iteration of model estimation step in UoIstable
Lasso ,

we redefine the training data based on bootstrap to be (Zn1×1,W n1×p) (which was denoted as
(Y k

T ,X
k
T ) in the UoIstable

Lasso algorithm) and we redefine the validation data based on bootstrap to
be ((Z0)n2×1, (W 0)n2×p) (which was denoted as (Y k

E ,X
k
E) in the UoIstable

Lasso algorithm). Note that,
the training and the validation data set does not have any common data points. We find the OLS
estimator β̂

k

λ based on the training data (Z,W ) and support Ŝλ (which was denoted by β̂kSj for
λ = λj in the UoIstable

Lasso algorithm). For the kth iteration, the best λ ∈ λ is chosen by minimizing the
prediction error for new validation data set (Z0,W 0),

λ̂bestk = argminλ∈λ||Z0 −W 0β̂
k

λ||22

So, the estimator for the kth iteration, β̂kS is redefined as β̂k
λ̂bestk

. After B2 number of bootstraps, the
UoI selected variables set can be represented as

ŜUoIB2
= ∪B2

k=1Ŝλ̂bestk
(12)

where, Ŝλ̂bestk
is the set of predictors selected at the Intersection step for the best penalization

parameter λ̂bestk for bootstrap iteration k for Bagging.
For each resample, we have W as the the new design matrix. We normalize the columns so that,∑m
i=1W

2
ij = 1 for j = 1, . . . , p. In order to simplify the proof, we consider that the random variables

X and ε have compact supports. Since, both ||X||22 and ε2 are defined on separable Euclidean
spaces, any probability measure on such space is tight. So, for any ε, there exists a compact set
Kε such that ||X||22 and ε2 has at least 1− ε probability on the compact support. So, without loss
of generality, we can assume ||X||22 and ε2 have compact supports and ||X||22 and ε2 have finite
moment generating functions (i.e., assumption (A1)).

The proof of the Theorem can be divided into three main lemma: Lemma 1, Lemma 2 and
Lemma 3. The Lemma 1 deals with the model selection step. This Lemma is actually on the stability
selection step. Lemma 1 follows directly from Theorem 2 presented in [33] on stability selection.

Lemma 1. (Meinshausen and Bühlmann (2010) [33]) Consider the model in (3). Consider α given
by α2 = νcmin(m)/m, for any ν ∈ ((7/κ)2, 1/

√
2), and m = Cs2. Let an be a sequence with an →∞
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for n → ∞. Let λmin = 2σ(
√

2Cs + 1)
√

log(p ∧ an)/n. Assume that p > 10 and s ≥ 7 and that
the assumptions (A1)-(A3) is satisfied. Then there exists some δ = δs ∈ (0, 1) such that for all
πthr ≥ 1 − δ and data (Y i,Xi)

n
i=1 belonging to the set ΩA with P(ΩA) ≥ ps (1− 5/(p ∧ an)), no

noise variables are selected,
N ∩ Ŝstableλ = ∅,

where Ŝstableλ = support selected by stability selection with λ ≥ λmin. For data (Y i,Xi)
n
i=1 belonging

to the same set ΩA,
(S\Ssmall;λ) ⊆ Ŝstableλ

where Ssmall;λ = {k : |βk| ≤ 0.3(Cs)3/2λ}. This implies that all variables with sufficiently large
regression coefficient are selected.

The proof of Lemma 1 is in Meinshausen and Bühlmann (2010) [33]. The proof of part (a) of
Theorem 1 follows directly from Lemma 1.

The Lemma 2 deals with the model estimation step. This lemma uses the results from Lemma 1
to give a bound on the false positives and false negatives after the model estimation step.

Lemma 2. Consider the model in (3) and assumptions (A1)-(A4). Let an be a sequence with
an → ∞ for n → ∞. Let λmin = 2σ(

√
2Cs + 1)

√
log(p ∧ an)/n, for some constant C > 1. For a

set Ω such that P(Ω) ≥ min
{

1− (1− pW )B2 , (pW )B2
}
, where, pW = p2

s(1 − 5/(p ∧ an)) and data
(Y i,Xi)

n
i=1 as element of the set Ω, we have,

N ∩ ŜUoIB2
= ∅

and

(S\Ssmall;λmin) ⊆ ŜUoIB2

where, Ssmall;λmin = {k : |βk| ≤ 0.3(Cs)3/2λmin}.

The proof of Lemma 2 is given in Section A.4.3. The proof of Lemma 2 goes in two steps, first
the properties of the best selected regularization parameter λ̂best is provided (Lemma 4) and second
the bounds of Type I error (False Positives) and Type II error (False Negatives) are provided for the
ordinary least squares (OLS) coefficient estimate, β̂λ̂best based on the best regularization parameter
λ̂best.

The Lemma 3 deals with the estimation accuracy of the regression coefficient estimates obtained
from the UoIstable

Lasso algorithm. This Lemma proves part (c) of Theorem 1. The proof of this Lemma
also depends on Lemma 2.

Lemma 3. Consider the model in (3) and assumptions (A1)-(A4). Let an be a sequence with
an → ∞ for n → ∞. Let λmin = 2σ(

√
2Cs + 1)

√
log(p ∧ an)/n, for some constant C > 1. For a
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set Ω such that P(Ω) ≥ min
{

1− (1− pW )B2 , (pW )B2
}
, where, pW = p2

s(1 − 5/(p ∧ an)) and data
(Y i,Xi)

n
i=1 as element of the set Ω, we have,∣∣∣∣∣∣X(β̂stableUoI − β)

∣∣∣∣∣∣2 ≤ C1σ
2 log p

n
(13)

for some constant C1 > 0.

The proof of Lemma 3 is given in Section A.4.4. The proof of Lemma 3 makes use of Lemma 2.

A.4.3 Proof of Lemma 2

The proof of Lemma 2 uses Lemma 4. Let β̂
stable

UoI be the UoI-estimate of the coefficient parameter β
after the intersection step using stability selection and union step as in the UoI algorithm with B2

bootstrap samples.
From the Lemma 4, we get that, for λ > λmin,

E
(
||W 0λβ̂λ −W 0λβλ||22

)
≤ (qλ + c1/

√
n) + 0.3C3(c2 + c3/

√
n)ns6λ2

with probability pW := p2
s(1− 5/(p ∧ an)) for some constants C, c1, c2 and c3. Now, for λ > λmin,

qλ ≤ s. So, the upper bound is minimized for λ̂best = Cλmin.
Now, we already have that, with high probability (from Lemma 1), for λ > λmin,

(S\Ssmall;λ) ⊆ Ŝstableλ

where Ssmall;λ = {k : |βk| ≤ 0.3(Cs)3/2λ}. Now, repeating the resampling procedure of Union step
for B2 times, even if the selected λ̂best = O(λmin) for one case, we have the support corresponding
to Ŝstableλmin

.
So, we have with probability, (1− (1− pW )B2),

(S\Ssmall;λmin) ⊆ ŜUoIB2

where Ssmall;λmin = {k : |βk| ≤ 0.3(Cs)3/2λmin}.
Also, from the Lemma 1, we get that for selected variables from stability selection for λ > 0,

Ŝstableλ , we have with high probability,

N ∩ Ŝstableλ = ∅,

λ ≥ λmin. Now, after the Union step with B2 resamples, we have the same property, if λ̂best ≥ λmin for
each of the iterations. For each iteration, the event happens with probability pW = p2

s(1−5/(p∧an)).
So, we have that with probability, pB2

W ,

N ∩ ŜUoIB2
= ∅.

Lastly, we go into Lemma 4.
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Lemma 4. Consider the model in (3) and assumptions (A1)-(A4). Let an be a sequence with
an →∞ for n→∞. Let λmin = 2σ(

√
2Cs+ 1)

√
log(p ∧ an)/n, for some constant C > 1. Consider

the bootstrap resample (Z,W ) from (Y ,X) and the estimated coefficient β̂λ (for any λ ∈ λ, where,
λ is a set of regulization parameters) from model selection step, under the assumptions of Theorem
1. Then, the best λ, denoted by λ̂best selected by minimizing prediction error, ||Z0 −W 0β̂λ||2, for
the validation data set (Z0,W 0) has the property that λ̂best ≥ λmin with probability greater than or
equal to p2

s(1− 5/(p ∧ an)).

Proof. We have (Z,W ) as the bootstrap training sample from (Y ,X) and (Z0,W 0) as the bootstrap
validation sample from (Y ,X). Let us define, Ŝλ := {j : β̂λ 6= 0} for any λ ∈ λ. Let, β̂

0

λ be β̂λ
restricted to Ŝλ, βλ be β restricted to Ŝλ and βr is the set {βj |j /∈ Ŝλ}. Also, W λ is W restricted
to the columns corresponding to Ŝλ, W 0λ is W 0 restricted to the columns corresponding to Ŝλ
and W r is W restricted to the columns corresponding to S\Ŝλ. So, β̂

0

λ = (W T
λW λ)−1W T

λZ and
sλ := |Ŝλ ∩ S|, nλ := |Ŝλ ∩ SC | and qλ := sλ + nλ. Recall that, S = {j|βj 6= 0}. At first, we shall
consider, λ ≥ λmin, such that, qλ < n and qλ < s from the model selection step.

The prediction error for validation data set (Z0,W 0) is ||W 0β̂
0

λ −W 0βλ||22. Now, conditional
on W ,

β̂
0

λ = (W T
λW λ)−1W T

λZ

= (W T
λW λ)−1W T

λ (Wβλ + ε)

= (W T
λW λ)−1W T

λ (W λβλ +W rβr + ε)

= βλ + (W T
λW λ)−1W T

λW rβr + (W T
λW λ)−1W T

λε.

So,
W 0λβ̂

0

λ = W 0λβλ +W 0λ(W T
λW λ)−1W T

λW rβr +W 0λ(W T
λW λ)−1W T

λε

So,

E
(
W 0λβ̂

0

λ −W 0λβλ

∣∣∣W ) = W 0λ(W T
λW λ)−1W T

λW rβr = µ0 (say)

Var
(
W 0λβ̂

0

λ −W 0λβλ

∣∣∣W ) = σ2W 0λ(W T
λW λ)−1W T

λW λ(W T
λW λ)−1W T

0λ

= σ2W 0λ(W T
λW λ)−1W T

0λ

So, using results on expectation of quadratic forms of Gaussian random variables,

E
(
||W 0λβ̂

0

λ −W 0λβλ||22
∣∣∣W ) = tr

(
W 0λ(W T

λW λ)−1W T
0λ

)
σ2 + µT0 µ0

Now, by matrix Hoeffding inequality on the covariance matrix as shown in [1], tr
(
(W T

λW λ)−1W T
0λW 0λ

)
can be replaced by tr(Σ−1

λ Σλ) = qλ at cost O(n−1/2) with high probability, that is,

P
(√
n
∣∣tr ((W T

λW λ)−1W T
0λW 0λ

)
− qλ

∣∣ < c
)
≥ 1− k1 exp(−k2c

2)
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for constants k1 and k2. So, for some constant c1 > 0, with probability at least (1− k1 exp(−k2c
2)),

tr
(
W 0λ(W T

λW λ)−W T
0λ

)
≤ qλ + c/

√
n

Now, for the second term,

||µ0||22 = ||W 0λ(W T
λW λ)−1W T

λW rβr||22

≤ φmax(W T
λW λ)

φ2
min,+(W T

λW λ)
φmax(W T

0λW 0λ)φmax(W T
rW r)||βr||2

≤ φmax(W T
λW λ)

φ2
min,+(W T

λW λ)
φmax(W T

0λW 0λ)φmax(W T
rW r)||βr||1

Again, by matrix Hoeffding inequality on the covariance matrix as shown in [1] and the assumption
(A3) on the covariance matrix of the explanatory variables, we have with probability at least
ps(1− k3 exp(−k4c

2)) (for some constants k1 and k2),

φmax(W T
λW λ)

φ2
min,+(W T

λW λ)
φmax(W T

0λW 0λ) ≤ φ2
max(Σλ)

φ2
min(Σλ)

+ c/
√
n

φmax(W T
rW r) ≤ ns2 using the property

∑m
i=1W

2
ij = 1. So, for some constants c2, c3 > 0

||µ0||22 ≤ (c2 + c3/
√
n)ns2||βr||21

and using Lemma 1,

E
(
||W 0λβ̂λ −W 0λβλ||22

)
≤ (qλ + c1/

√
n) + 0.3C3(c2 + c3/

√
n)ns6λ2

We can observe that for λ ≥ λmin, qλ = s and N ∩ Ŝλ = ∅ and (S\Ssmall;λ ⊆ Ŝλ) with high
probability from Lemma 1. So, for constants c4 and c5, λ ≥ λmin with probability greater than
p2
s(1− 5/(p ∧ an)),

E(||W 0λβ̂λ −W 0λβλ||22) ≤ (c4 + c5/
√
n)ns6λ2

For λ < λmin, from [1], we get that, qλ = O(p). So, β̂
0

λ = (W T
λW λ)−W T

λZ, where, A− is the
generalized Moore-Penrose inverse of a matrix. Now, conditional on W ,

β̂
0

λ = (W T
λW λ)−W T

λZ

= (W T
λW λ)−W T

λ (Wβλ + ε)

= (W T
λW λ)−W T

λ (W λβλ +W rβr + ε)

= Uβλ + (W T
λW λ)−W T

λW rβr + (W T
λW λ)−W T

λε.

where, U =
∑

j:µj 6=0 µjuju
T
j , {µj} and {uj} are eigenvalues and eigenvectors of (XTX). So,

W 0λβ̂
0

λ = W 0λ(U − I)βλ +W 0λ(W T
λW λ)−1W T

λW rβr +W 0λ(W T
λW λ)−1W T

λε
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So,

E
(
W 0λβ̂

0

λ −W 0λβλ

∣∣∣W ) = W 0λ(U − I)βλ +W 0λ(W T
λW λ)−1W T

λW rβr = µ1 + µ0 (say)

Var
(
W 0λβ̂

0

λ −W 0λβλ

∣∣∣W ) = σ2W 0λ(W T
λW λ)−1W T

λW λ(W T
λW λ)−1W T

0

= σ2W 0λ(W T
λW λ)−1W T

0λ

So,

E
(
||W 0λβ̂

0

λ −W 0λβλ||22
∣∣∣W ) = tr

(
W 0λ(W T

λW λ)−1W T
0λ

)
σ2 + (µ1 + µ0)T (µ1 + µ0)

Now again, tr
(
(W T

λW λ)−1W T
0λW 0λ

)
is of the order O(n) with high probability and (µ1 +µ0)T (µ1 +

µ0) ≥ 0. So, for some constant C3 > 0,

E(||W 0λβ̂λ −W 0λβλ||22) ≥ C3n

So, for λ1 < λmin and λ2 ≥ λmin, we have, with high probability, for large n,

E(||W 0λ1β̂λ1 −W 0λ1βλ1 ||
2
2) ≥ C3n > (c4 + c5/

√
n)ns6λ2

2 ≥ E(||W 0λ2β̂λ2 −W 0λ2βλ2 ||
2
2)

So, for suitably chosen c4, c5 and C3, the best selected λ will have the property, λ ≥ λmin with
probability greater than p2

s(1− 5/(p ∧ an)).

A.4.4 Proof of Lemma 3

The proof mostly follows from Lemma 2. Note that from Lemma 2, we get that,

N ∩ ŜUoIB2
= ∅ and (S\Ssmall;λmin) ⊆ ŜUoIB2

where, Ssmall;λmin = {k : |βk| ≤ 0.3(Cs)3/2λmin}, for some constant C > 1 with probability
min

{
1− (1− pW )B2 , (pW )B2

}
. So, for S = {1, . . . , p} and

||β̂stableUoI − β||1 = ||(β̂stableUoI )ŜUoIB2

− βŜUoIB2

||1 + ||(β̂stableUoI )S\ŜUoIB2

− βS\ŜUoIB2

||1

= ||(β̂stableUoI )ŜUoIB2

− βŜUoIB2

||1 + ||(β̂stableUoI )S\SUoIB2

− βSsmall;λmin\ŜUoIB2

||1

≤ c1σ
s√
n

+ c2σ

√
s7 log p

n

for some constants c1, c2 > 0. So, by norm inequality, we get that,

||β̂stableUoI − β||22 ≤ c3σ
2s7 log p

n

From which, if we are considering s is constant, by matrix norm inequalities and bound on ||X||22
due to compact support, we can state that,

||X(β̂stableUoI − β)||22 ≤ C1σ
2 log p

n

for some constant C1 > 0, where, C1 depend on s, the constant C and the cumulant generating
function of ||X||22.
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A.4.5 BoLasso Algorithm

In the section A.2, we propose the UoILasso algorithm. In the UoILasso algorithm, two main parts are
model selection and model estimation. The model selection in the UoILasso algorithm is performed
using BoLasso algorithm [1]. Bach (2008) [1] provide the result on model consistency of the support
selected by the BoLasso algorithm. The assumptions considered in [1] were

(B1) The cumulant generating functions E(exp(s||X||22) and E(exp(sY 2) are finite for some s > 0.

(B2) The joint matrix of second order moments Q = E(XXT ) ∈ Rp×p is invertible.

(B3) E(Y |X) = XTw and Var(Y |X) = σ2 a.s. for some w ∈ Rp and σ ∈ R+, where, R+ = {x ∈
R|x > 0}.

Let us consider that for regularization parameter, λ ∈ R+, support recovered by BoLasso, that
is the number of non-zero regression coefficients for BoLasso, is ŜBoLassoλ . Like in section A.2,
the BoLasso support for λj is Sj ≡ ŜBoLassoλj

. If we consider the model selection step of UoILasso
algorithm with B1 bootstrap resamples, Bach (2008) [1] demonstrated the dependence of probability
of correct model selection on B1. The result as established in [1] is

Lemma 6. (Bach (2008)) Consider model in (3) and assumptions (B1)-(B3). Then, for λn =

Cn−1/2, C > 0, the probability that the BoLasso does not exactly select the correct model, i.e., for
all B1 > 0, P(ŜBoLassoλ 6= S) has the following upper bound:

P(ŜBoLassoλ ) ≤ B1A1e
−A2n +A3

log n

n1/2
+A4

logB1

B1
, (14)

where A1, A2, A3, A4 are strictly positive constants.

As, we can see from the Lemma 6, that for correct model selection with high probability, we
should have B1 →∞ but at a rate slower than log n for BoLasso.

However, for theoretical analysis of the model estimation step of UoILasso algorithm, we need
separate control on the false positives and false negatives of the recovered support. In Lemma 6, the
result gives a bound on total error in support recovery, but not separate control on false positives
and false negatives. For this reason, in the theoretical analysis of UoI methods, in stead of using
BoLasso in the model selection step, we use stability selection [33].

Note that, we conjecture that in BoLasso, increase in B1 increases the probability of no false
positives but increase of B1 at fast rate also decreases the probability of false negative selection.
One of our future works would be to explicitly show such behavior exists for BoLasso and then use
those results to theoretically analyze UoILasso method starting with BoLasso in stead of stability
selection method.
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A.5 UoILasso Outperforms Other Methods: Expanded Results for Simulated
Data

Here, we extend the results from the example simulation that were presented in Fig. 2 in the main
text. To remind the reader, we compared UoILasso (black) to five other model estimation methods:
Ridge (purple), Lasso (green), SCAD (red), BoATS (blue), and debiased Lasso (pink). We quantified
several metrics of both model recovery (i.e., selection accuracy and estimation error) and prediction
quality (accuracy: R2; parsimony: Bayesian Information Criterion). The expanded results presented
in Fig. 6 are for a simulated data set generated from a model with parameters distributed as the
grey histogram in Fig. 6(b). In particular, there were n = 1200 examples with observation variables
(y) generated from Eqn. (1), with p = 300 total parameters (n/p = 4), k = 100 non-zero parameters
(sparsity: 1−k/p = 0.66) that were symmetrically distributed with exponentially increasing frequency
as a function of parameter magnitude, and noise magnitude of σ2 = 0.2×

∑
j |βj |. We took statistics

of the metrics across 100 randomized cross-validation samples of the data.
Fig. 6(a) shows scatter plots of predicted vs. actual values of the observation variable on held-out

data samples. Fig. 6(b) displays histograms of final model parameters (colors) overlaid on actual
model parameters (grey). Fig. 6(c) plots the mean ± s.d. of the estimate (colors) for each model
parameter, ordered by the actual value of that parameter (actual values shown in grey). Fig. 6(d)
shows the variability of the estimated values as a function of their magnitude. Fig. 6(e) quantifies
a variety of properties of the results of each algorithm. Below, we summarize the results for each
method, and we provide some intuition as to why these results are observed. This provides insight
into the general superiority of the UoILasso algorithm.

Ridge regression (purple) gave very weak model selection (i.e., few parameters equal to 0) and
parameter estimates that were highly biased towards smaller values. This resulted in poor selection,
estimation, and prediction accuracy, and the worst prediction parsimony (i.e., prediction accuracy
relative to number of non-zero model parameters). This is to be expected, as the L2 norm used by
the algorithm is not a sparsity-inducing regularizer. Because the actual model in this case is quite
sparse (only one-in-three parameters are non-zero), the relatively large value of the regularization
parameter “shrinks” the values of all parameters towards zero, resulting in large bias.

The least angle shrinkage and selection operator (Lasso, green) is the industry standard method
for regularized estimation of parameters in sparse models. It gave results that were much better
than ridge regression for many metrics. However, it did only modestly well compared to the other
algorithms tested here. This is to be expected, as the L1 norm used by Lasso is a sparsity inducing
regularizer (i.e., unlike ridge, Lasso “shrinks” the values of all parameters towards zero to induce
sparsity), but it imposes a Laplacian prior over the distribution of parameters (which in this example
is known to be far from correct). That is, because the actual model in this example is both highly
sparse and has many parameters with large magnitudes (counter to the Laplacian prior), Lasso
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Figure 6: Expanded range of observed results, in comparison with existing algorithms.
UoILasso outperforms other methods.

resulted in only modest estimation error and prediction accuracy.
The Smoothly Clipped Absolute Deviation estimator (SCAD, red) is widely considered to be the

state-of-the-art for regularized linear regression: for a given regularization strength, the magnitude
of estimation shrinkage is larger for small values than for large values. This should result in both
model selection and reduced bias in the estimation of large parameters. We found that SCAD
had good data prediction accuracy, but intermediary selection accuracy and estimation error, and
very low variability. It is worth noting here that SCAD has two main computational disadvantages
compared to the rest of the algorithms presented here: it has a two-dimensional hyper-parameter
space (though in practice, one of them is held constant), and (more seriously) it requires solving a
non-convex optimization problem, making stability of solutions and scaling to large data sets less
straightforward.
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The Bootstrapped Adaptive Threshold Selection (BoATS) algorithm (blue) takes a very simple
approach to model selection and estimation. First, it gets an initial estimate of all parameter values;
then it sets all parameters below a threshold to zero and re-estimates the remaining parameters
with bagged OLS; and then it optimizes the parameter threshold to maximize prediction accuracy
(Fig. 6(a)). This has the attractive properties of setting many parameters exactly to zero so as to
optimize prediction accuracy, and it gives nearly unbiased and accurate estimates of the remaining
values (Fig. 6(c)). However, because of the hard thresholding combined with process noise, its
estimates around the threshold are highly variable (Fig. 6(d)).

In a somewhat similar approach to BoATS, a recently proposed method to de-bias Lasso estimates
and then use statistical tests (i.e., thresholds based on p-values) for model selection (debiased Lasso,
pink) was overly aggressive, setting more values to zero than should be. This resulted in the
worst data prediction accuracy, although it achieved good selection accuracy, estimation error and
prediction parsimony. This can be understood because the selection of unbiased parameter estimates
according to an a priori arbitrary statistical criterion is done outside the context of optimizing
prediction accuracy, and it sets many parameters exactly to zero.

UoILasso is designed to maximize prediction accuracy (Fig. 6(a), black) by first selecting the
correct variables (Fig. 6(b), black), and then estimating their values with high accuracy (Fig. 6(c),
black) and low variance (Fig. 6(d), black) with bagged OLS, which is nearly unbiased. It therefore
offers the benefits of the strong selection algorithms (BoATS and debiased Lasso), but with the
low variability of the structured regularizers (Lasso, SCAD), while simultaneously having accurate
and nearly unbiased estimates. It also involves only calculations for convex optimizations, and so it
scales very well.

To summarize these results, across all the algorithms we examined, we found that UoILasso (black)
generally resulted in the highest selection accuracy (Fig. 6(e), right), with parameter estimates with
lowest error (Fig. 6(e), right-center) and competitive variance (Fig. 6(e), center-right). In addition, it
led to the best prediction accuracy (Fig. 6(e), center-left), with a small number of model parameters
(Fig. 6(e), left-center), giving best prediction parsimony (Fig. 6(e), left).

A.6 UoILasso Outperforms Other Methods: Simulated Data with Different Pa-
rameter Distributions and Sparsity Levels

We further examined the generality of the superior performance of UoILasso compared to other
algorithms by simulating data generated by models with different underlying distributions. We
varied both the distribution of the non-zero parameters (Fig. 7(a), black histograms) and the over-all
sparsity of the model (Fig. 7(a), grey bar at zero). We kept constant: the number of non-zero
parameters (k = 100 for all); the noise (σ2 = 0.2×

∑
j |βj |); and the number of samples (n) relative to

the total number of model parameters (p) (n/p = 3). We simulated data generated from four different
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Figure 7: Simulations across different parameter distributions and levels of sparsity.
UoILasso outperforms other known methods. See the text for details and discussion.

35



distributions: exponentially decaying as a function of magnitude: roughly Laplacian (left); uniform
(center left); exponentially increasing as a function of magnitude (center right); and clustered-positive
(right). We varied the sparsity from 0 (p = 100 parameters total) to 0.9 (p = 1000 parameters total).
Note that the number of samples in these simulations was different than for the example presented
in Fig 2 and Fig. 6.

Generally speaking, across all distributions and levels of sparsity, UoILasso generally had lowest
estimation error (Fig. 7(b), black), highest prediction accuracy (Fig. 7(c), black), and lowest
estimation variability (Fig. 7(e), black). The hard-thresholding procedures (BoATS and debiased
Lasso) generally had the highest variability (Fig. 7(e), pink and blue). Across distributions, ridge
regression (purple) and debiased Lasso (pink) had the strongest dependencies on sparsity. However,
for all distributions, all methods except for UoILasso exhibited systematic dependencies of selection
accuracy on the degree of sparsity (Fig. 7(d)), while UoILasso was nearly independent. Thus, for
fixed B1 and B2, the selection properties of UoILasso depend only on the shape of the underlying
non-zero parameter distribution and the amount of noise in the process, and not the overall degree
of sparsity. This was a unique property of UoILasso. The superior performance of UoILasso on model
estimation error and prediction accuracy despite reduced selection accuracies at low sparsities is due
to the fact that the parameters that are getting set to zero are those that have very low magnitude
and cannot be reliably estimated, given the amount of noise in the generating process.

A.7 UoILasso Outperforms Other Methods: Simulated Data with Different Noise
Magnitudes

To determine the robustness of UoILasso to the magnitude of process noise, we examined the
performance of the different methods as the magnitude of the process noise increased. Specifically,
we varied the standard deviation of the additive Gaussian noise as a multiple of the summed weight
magnitude (σ2 = m×

∑
j |βj |). The plots of Fig. 8(a)-(d) show results for data generated from the

clustered model distribution (e.g., Fig. 7(a) right, sparsity: 1 − k/p = 0.66), for six values of the
multiplicative factor m ∈ ([0 : 0.6]).

As expected, all algorithms performed very well when there was no noise, and most generally
performed worse with increasing noise levels: estimation error and variability increased, prediction
accuracy and support overlap decreased. Importantly, though, UoILasso (black) generally performed
as well as or better than the other algorithms, as the noise magnitude increased.

A.8 UoIL1Logistic for Classification: Identifying Fewer Features without Loss of
Prediction Accuracy

We have primarily demonstrated the power of the UoI method in the context of linear regression
with the UoILasso algorithm. However, the base UoI framework is much more general, and it
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Figure 8: Simulations across different noise magnitudes. UoILasso outperforms all other
known methods. See the text for details and discussion.
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can be applied to other regression problems, as well as other machine learning problems such as
classification. To demonstrate this, we implemented a classification algorithm using logistic regression
(UoIL1Logistic), and we compared it to L1-Logistic regression on three diverse biomedical data sets
from the UCI data repository. In the Dorothea data set, the goal is to find a small number of features
that are predictive of whether a pharmaceutical compound is active (binds to target receptor) or
inactive (is non-binding); in the Arcene data set, the problem of feature detection for prediction
of cancer is presented, where mass spectrometry data indicating protein levels is used to separate
healthy individual from those with cancer; and in the Parkinson’s Disease data set, the goal is
to predict the stage of disease progression (a numerical score assigned by a clinician) from audio
recordings of the patients speech. See Tables 1, 2, and 3 for a summary of our results. On all
three of these data sets, in agreement with the results presented above on genetics, neuroscience,
and synthetic data, we found that UoIL1Logistic performed well with respect to both prediction
and parsimony. In particular, it gave equivalent or better prediction accuracy, with many fewer
parameters (3, 5, and 10 respectively), resulting in the best prediction parsimony.

Table 1:

Dorothea Prediction Accuracy Selection Ratio (PSR) Parsimony (BIC)

L1-Logistic 93% 53× 10−5 456

UoIL1Logistic 93% 3× 10−5 174

Table 2:

Arcene Prediction Accuracy Selection Ratio (PSR) Parsimony (BIC)

L1-Logistic 66% 59× 10−4 437

UoIL1Logistic 66% 5× 10−4 280

Table 3:

Parkinson’s Prediction Accuracy Selection Ratio (PSR) Parsimony (BIC)

L1-Logistic 65% 0.69 533

UoIL1Logistic 68% 0.31 478
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A.9 UoICUR for Matrix Decomposition

One of the popular dimensionality reduction methods used in many applications is the column subset
selection problem (CSSP) [9], a variant of which is the so-called CUR matrix decomposition [17, 30].
Given a large data matrix A ∈ Rm×n, whose columns we wish to select, suppose Vk is the matrix
consisting of the top k right singular vectors of A. Then, the leverage score of the ith column of A is
given by

`i =
1

k
‖Vk(i, :)‖22, (15)

i.e., by the norm of the ith row of Vk. In leverage score sampling, the columns of A are sampled
using the probability distribution pi = min{1, `i}, where `i is given by Eqn. (15). Many popular
methods for CSSP/CUR involve the use of this leverage score distribution as the importance sampling
distribution with respect to which to sample columns [17, 9, 30]. (Importantly, while a naïve version
of this algorithm is expensive, due to the computation of the SVD, the leverage scores of A can be
well-approximated in the time it takes to perform a random projection on the matrix A [29, 16], and
the leverage score method has been applied to very large data sets [29, 23].) In this work, we show
how the UoI framework can be adapted to the CSSP/CUR matrix decomposition problem.

The basic UoICUR algorithm is as follows. We consider the bootstrap resampling approach.
We compute the different subsets of columns (and rows) Ci for the different bootstrap samples
i = 1, . . . , B1, and for different ranks k using leverage score sampling.

• Intersection Step: We then intersect the support (indices) of the subsets of columns (and
rows) Ci over the bootstraps to obtain a smaller intersected subset Ĉ(k) (for different ranks k).
This intersection operation reduces the variance in sampling.

• Union Step: We then obtain a larger union set of columns by taking union of the intersected
subsets Ĉ(k) over different ranks k.

As an illustration of the UoICUR algorithm, we have applied it to the analysis of genetics data.
Analysis of gene expression DNA microarray data has become popular for studying a variety of
biological processes [35]. In the microarray data, we have m genes (from m individuals, possibly
from different populations) and a series of n arrays probe the genome-wide expression levels in
n different samples, possibly under n different experimental conditions. Hence, the data from
microarray experiments can be naturally represented as a matrix A ∈ Rm×n, where Aij indicates
whether the jth expression level exists for the ith gene. Typically, the matrix could have entries
{−1, 0, 1}, indicating whether the expression exists (±1) or not (0), with the sign indicating the
order of the sequence.

Article [35] used the CUR decomposition with a greedy column selection algorithm to select a
subset of gene expressions or single nucleotide polymorphisms (SNPs) from a table of SNPs from
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Table 4: TaggingSNP: UoICUR, BasicCUR and GreedyCUR. See the text for details.

Data Size c UoICUR BasicCUR GreedyCUR

Yaledataset/SORCS3 1966× 53 30 0.0096 0.0323 0.0062
Yaledataset/PAH 1979× 32 20 0.0165 0.0308 0.0165
Yaledataset/HOXB 1953× 96 36 0.0690 0.1369 0.0272
Yaledataset/17q25 1962× 63 35 0.0507 0.0895 0.0197

HapMap/SORCS3 268× 307 83 0.0023 0.0624 0.0023
HapMap/PAH 266× 88 42 0.0087 0.0130 0.0053
HapMap/HOXB 269× 571 57 0.0840 0.1696 0.0211
HapMap/17q25 265× 370 80 0.0421 0.1819 0.0162

different populations that capture the spectral information (or variations) of population. The subset
of SNPs is called tagging SNPs (tSNPs). Here, we show how the UoICUR method can be applied
in this application to select columns (and thus tSNPs from the table of SNPs) which characterize
the extent to which major patterns of variation of the intrapopulation data are captured by a small
number of tSNPs.

We use the same two datasets used in [35], namely the Yale dataset and the Hapmap datset.
The Yale dataset1 [34] contains a total of 248 SNPs from around 2000 unrelated individuals from 38
populations each (from around the world). We consider four genomic regions (SORCS3,PAH,HOXB,
and 17q25 ). The HapMap project2 [22] (phase I) has released a public database of 1,000,000 SNP
typed in different populations. From this database, we consider the data for the same four regions.
Using the SNP table, an encoding matrix A is formed with entries {−1, 0, 1} indicating whether
the expression exists (±1) or not (0), with the sign indicating the order of the sequence. See
supplementary material of [35] for details on this encoding. We obtained such encoded matrices
from http://www.asifj.org/, as made available online by the authors of [35].

Table 4 lists the errors obtained from the three different methods, namely, UoICUR, BasicCUR
and GreedyCUR [35] for different populations. The error reported is given by nnz(Â−A)/nnz(A),
where A is the input encoding matrix, C is the sampled/coarsened matrix, Â = CC†A, is the
projection of A onto C and nnz(A) is the number of elements in A. The GreedyCUR algorithm
considers each column of the matrix sequentially, projects the remaining columns onto the considered
column, and chooses the column that gave least error (where error is defined above). The algorithm
then repeats the procedure to select the next column, and so on. This algorithm is very expensive,
but it performs very well in practice. We observe that the UoICUR algorithm performs better than

1http://alfred.med.yale.edu/
2https://www.ncbi.nlm.nih.gov/variation/news/NCBI_retiring_HapMap/
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BasicCUR, and the performance is comparable with the unscalable GreedyCUR algorithm in many
cases.

A.10 Additional Discussion

It is common in many machine learning and data analysis methods to have either an implicit or
explicit tradeoff between interpretability and prediction accuracy [2]. For example, in the context of
unsupervised dimensionality reduction, CUR decompositions are low-rank approximations that are
expressed in terms of a small number of actual rows and columns of the data matrix (i.e., actual data
elements). It is known that they are provably only slightly worse in terms of variance reconstruction
than the eigenvectors provided by PCA, but since they correspond to actual data elements, they are
more easily interpretable in terms of the biological processes generating the data [30]. In a similar
manner, in the context of supervised learning, UoI selects features and estimates parameters to
optimize prediction accuracy while maintaining parsimony, resulting in interpretable models without
substantially sacrificing prediction accuracy. Looking forward, the basic UoI framework can be
applied to other algorithms to explore this trade-off more generally.

From a statistical perspective, we have illustrated four key properties of UoILasso: control of
false positive and false negative selection errors, and improved model selection consistency and data
prediction accuracy. On both real and synthetic data, we observed generally improved prediction
accuracy on held-out data, despite fewer parameters, a phenomenon we attribute to better up-front
model selection reducing over-fitting on the training data. Importantly, when the feature space
is dense, UoILasso has no systemic disadvantage relative to other methods (nor does it offer any
advantage). It is common in many scientific fields to calculate a “score” (such as False Discovery
Rate, FDR), independently for each feature, and then select features that exceed a (statistical)
threshold, e.g., a p-value. This approach has several potential disadvantages. In particular, because
of the independent (i.e., pair-wise) nature of some of these analysis, it is not possible to disambiguate
features that uniquely contribute to a response, as opposed to simply co-vary with the causal features.
Dependence between features can severely challenge most existing methods. Furthermore, even if
estimation is done across all features simultaneously, selection is often done after estimation, and
not in the context of response prediction (e.g., debiased Lasso). Additionally, the selection of a
threshold (e.g., p < 0.05, multiple comparisons corrected) is often a priori arbitrary with respect to
response prediction. Likewise, in the generation of genetic and brain networks, the underlying graphs
need to be estimated from data. In practice, experimenters often apply a post hoc threshold to the
distribution of edge weights (often, marginal correlation) outside the context of optimizing prediction
accuracy (the objective function). These ad hoc processes challenge rigorous mathematical analysis;
they can dramatically alter the structure of empirical results; and they are likely a major source of
error in downstream scientific conclusions. In contrast, using the UoI approach for model selection
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and model estimation to optimize prediction suggests a potentially general, normative framework for
overcoming these and other related algorithmic-statistical issues in a scalable way.

From an algorithmic perspective, UoILasso efficiently constructs a family of model supports by
combining randomized data resampling with a range of regularization hyperparameters, imbuing
UoILasso with a high degree of parallelization, making it a natural fit for modern distributed
computing platforms. We provide open-source implementations of UoILasso in Matlab, R, and
Python to make it as broadly and easily accessible as possible. Additionally, we provide versions of
UoILasso in Python that use either OpenMP or Spark for efficient implementation on a variety of
distributed computing platforms [20]. The current computing bottleneck in UoILasso for application
to massive data sets is the calculations involved in solving the core Lasso/OLS problem, suggesting
that recent work in distributed convex optimization or sampling-based techniques from randomized
linear algebra may lead to still further benefits.

From the perspective of scalable, interpretable, scientific data analysis, the modular structure of
UoI is particularly powerful, as it allows for a diversity of methods to be used, making it both general
and flexible. In the context of linear regression, use of BoLasso for model selection and ordinary
least squares (OLS) for model estimation resulted in the UoILasso algorithm primarily studied
here; but the UoI framework can accommodate other base methods such as stability selection [33],
SCAD [18], debiased Lasso [27], or other specialized, problem specific methods. Alternatively, in
the context of classification, support vector machines or other classifiers could have been used [13].
More generally, we see no reason why the UoI framework could not be extended to more complex
statistical models, such as random forests [11], auto-regressive models, and canonical correlation
analysis [26]. Relatedly, while data analysis methods in science are often heavily tailored to a specific
domain, the UoI method is a modality-agnostic data analytic method, and the problems for which
we have demonstrated its utility (regression and classification) are ubiquitous across data domains
in science and industry, e.g., material science and climate science, in addition to neuroscience and
genetics. Therefore, there is every reason to believe that UoI and related methods could enhance
interpretable scientific machine learning in other scientific fields in gigabyte, terabyte, and petabyte
sized data sets that are increasingly common.

42


	Introduction
	Union of Intersections (UoI)
	Results
	Methods
	Model Selection and Stability: Explicit Control of False Positives, False Negatives, and Estimate Stability
	UoILasso has Superior Performance on Simulated Data Sets
	UoILasso in Neuroscience: Sparse Functional Networks from Human Neural Recordings and Parsimonious Prediction from Genetic and Phenotypic Data
	UoIL1Logistic and UoICUR: Application of UoI to Classification and Matrix Decomposition

	Discussion
	Additional Material
	Extended Introduction for Scientific Examples
	Pseudo-code for the UoILasso Algorithm
	Scaling of the UoILasso Algorithm
	Theory
	UoILasso Algorithm with Stability Selection
	Proof of Theorem 1
	Proof of Lemma 2
	Proof of Lemma 3
	BoLasso Algorithm

	UoILasso Outperforms Other Methods: Expanded Results for Simulated Data
	UoILasso Outperforms Other Methods: Simulated Data with Different Parameter Distributions and Sparsity Levels
	UoILasso Outperforms Other Methods: Simulated Data with Different Noise Magnitudes
	UoIL1Logistic for Classification: Identifying Fewer Features without Loss of Prediction Accuracy
	UoICUR for Matrix Decomposition
	Additional Discussion


