
Learning the Morphology of Brain Signals Using
Alpha-Stable Convolutional Sparse Coding

SUPPLEMENTARY DOCUMENT

Mainak Jas
LTCI, Telecom ParisTech,
Université Paris-Saclay,

Paris, France
mainak.jas@

telecom-paristech.fr

Tom Dupré La Tour
LTCI, Telecom ParisTech,
Université Paris-Saclay,

Paris, France
tom.duprelatour@

telecom-paristech.fr

Umut Şimşekli
LTCI, Telecom ParisTech,
Université Paris-Saclay,

Paris, France
umut.simsekli@

telecom-paristech.fr

Alexandre Gramfort
INRIA,

Université Paris Saclay,
Saclay, France

alexandre.gramfort@inria.fr

1 Details of the E-Step

Computing the weights that are required in the M-step requires us to compute the expectation of 1
φn,t

under the posterior distribution p(φn,t|x, d, z), which is not analytically available.

Monte Carlo methods are numerical techniques that can be used to approximately compute the
expectations of the form:

E[f(φn,t)] =

∫
f(φn,t)π(φn,t)dφn,t ≈

1

J

J∑
j=1

f(φ
(j)
n,t) (S1)

where φ(j)n,t are some samples drawn from π(φn,t) , p(φn,t|x, d, z) and f(φ) = 1/φ in our case.
However, in our case, sampling directly from π(φn,t) is also unfortunately intractable.

MCMC methods generate samples from the target distribution π(φn,t) by forming a Markov chain,
whose stationary distribution is π(φn,t), so that π(φn,t) =

∫
T (φn,t|φ′n,t)p(φ′n,t)dφ′n,t, where T

denotes the transition kernel of the Markov chain.

In this study, we develop a Metropolis-Hastings (MH) algorithm, that implicitly forms a transition
kernel. The MH algorithm generates samples from a target distribution π(φn,t) in two steps. First,
it generates a random sample φ′n,t from a proposal distribution φ′n,t ∼ q(φ′n,t|φ

(j)
n,t), then computes

an acceptance probability acc(φ
(j)
n,t → φ′n,t) and draws a uniform random number u ∼ U([0, 1]). If

u < acc(φ
(j)
n,t → φ′n,t), it accepts the sample and sets φ(j+1)

n,t = φ′n,t; otherwise it rejects the sample

and sets φ(j+1)
n,t = φ

(j)
n,t. The acceptance probability is given as follows

acc(φn,t → φ′n,t) = min
{

1,
q(φn,t|φ′n,t)π(φ′n,t)

q(φ′n,t|φn,t)π(φn,t)

}
= min

{
1,
q(φn,t|φ′n,t)p(xn,t|φ′n,t, d, z)p(φ′n,t)
q(φ′n,t|φn,t)p(xn,t|φn,t, d, z)p(φn,t)

}
(S2)

where the last equality is obtained by applying the Bayes rule on π.

31st Conference on Neural Information Processing Systems (NIPS 2017), Long Beach, CA, USA.

The acceptance probability requires the prior distribution of φ to be evaluated. Unfortunately, this
is intractable in our case since this prior distribution is chosen to be a positive α-stable distribution
whose PDF does not have an analytical form. As a remedy, we choose the prior distribution of φn,t
as the proposal distribution, such q(φn,t|φ′n,t) = p(φn,t). This enables us to simplify the acceptance
probability. Accordingly, for each φn,t, we have the following acceptance probability:

acc(φ
(i,j)
n,t → φ′n,t) , min

{
1, exp(log φ

(i,j)
n,t − log φ′n,t)/2 + (xn,t − x̂(i)n,t)2(1/φ

(i,j)
n,t − 1/φ′n,t)

}
.

(S3)

Thanks to the simplification, this probability is tractable and can be easily computed.

2 Details of the M-Step

2.1 Solving for the activations

In the M-step, we optimize (10) to find the activations z(i)n of each trial n independently. To keep the
notation simple, we will drop the index for the iteration number i of the EM algorithm.

First, this equation can be rewritten by concatenating the Toeplitz matrices for the K atoms into a big
matrix D = [D1, D2, ..., DK] ∈ RT×KT and the activations for different atoms into a single vector
z̄n = [(z̄1n)>, (z̄2n)>, ..., (z̄Kn)>]> ∈ RKT+ where (·)> denotes the transposition operation. Recall
that z̄kn is a zero-padded version of zkn. This leads to a simpler formulation and the objective function
L(d, z):

L(d, z) =

N∑
n=1

1

2
‖
√
wn � (xn −Dz̄n)‖22 + λ1>z̄n , (S4)

where 1 ∈ RKT is a vector of ones.

The derivative w.r.t. zn now reads:
∂L(d, z)

∂z̄n
= D>(wn � (xn −Dz̄n)) + λ1> . (S5)

In practice, this big matrix D is never assembled and all operations are carried out using convolutions.
Note also that we do not update the zeros from the padding in z̄kn. Now that we have the gradient, the
activations can be estimated using a efficient quasi-Newton solver such as L-BFGS-B, taking into
account the box posititivy constraint 0 ≤ zn ≤ ∞.

For each trial, one iteration costs O(LKT).

2.2 Solving for the atoms

In the M-step, we optimize (11) to find the atoms dk. As when solving for the activations zn,
we can remove the summation over the atoms by concatenating the delayed matrices into Zn =
[Z1
n, Z

2
n, . . . , Z

K
n] ∈ RT×KL and d = [(d1)>, (d2)>, ..., (dK)>]> ∈ RKL. This leads to the simpler

formulation:

min
d

N∑
n=1

1

2
‖
√
wn � (xn − Znd)‖22, s.t. ‖dk‖22 ≤ 1 . (S6)

The Lagrangian of this problem is given by:

g(d, β) =

N∑
n=1

1

2
‖
√
wn � (xn −

K∑
k=1

Zknd
k)‖22 +

∑
k

βk(‖dk‖22 − 1) s.t. βk ≥ 0 , (S7)

where β = (β1, β2, ..., βK) are the dual variables. Therefore, the dual problem is:

min
d
g(d, β) = g(d∗, β) (S8)

where d∗, the primal optimal, is given by:

d∗ = (

N∑
n=1

Z>n (wn � Zn) + β̄)−1
N∑
n=1

(wn � Zn)>xn (S9)

2

with β̄ = diag([1β1,1β2, ...,1βK]) ∈ RKL with 1 ∈ RL. The gradient for the dual variable βk is
given by:

∂g(d∗, β)

∂βk
= ‖d∗k‖22 − 1, (S10)

with d∗k computed from (S9). We can solve this iteratively using again L-BFGS-B taking into
account the positivity constraint βk ≥ 0 for all k. What we have described so far solves for all the
atoms simultaneously. However, it is also possible to estimate the atoms sequentially one at a time
using a block coordinate descent (BCD) approach, as in the work of [1]. In each iteration of the BCD
algorithm, a residual rkn is computed as given by:

rkn = xn −
∑
k′ 6=k

Zk
′

n d
k′ (S11)

and correspondingly subproblem S6 becomes:

min
dk

N∑
n=1

1

2
‖
√
wn � (rkn − Zkndk)‖22, s.t. ‖dk‖22 ≤ 1, . (S12)

which is solved in the same way as subproblem S6. Now, in the simultaneous case, we construct one
linear problem inO(L2K2TN) and one iteration costsO(L3K3). However, in the BCD strategy, we
construct K linear problems in O(L2TN) and one iteration costs only O(L3). Interestingly, when
the weights wn are all identical, we can use the fact that for one atom k, the matrix

∑N
i=1(Zki)TZki is

Toeplitz. In this case, we can construct K linear problems in only O(LTN) and one iteration costs
only O(L2).

For the benefit of the reader, we summarize the complexity of the M-step in Table 1. We note p and q
the number of iterations in the L-BFGS-B methods for the activations update and atoms update.

Method Complexity
Solving activations z pmin(L, log(T))KTN
Solving atoms d L2K2TN + qL3K3

Solving atoms d (sequential) LKTN + qL2K

Table 1: Complexity analysis of the M-step, where p and q are the number of iterations in the
L-BFGS-B solvers for the activations and atoms updates.

3 Additional Experiments: M-step speed benchmark

3.1 Comparison with state of the art

0 500 1000 1500
Time (s)

10 3

10 2

10 1

100

101

(o
bj

ec
tiv

e
- b

es
t)

/ b
es

t Heide et al (2015)
Wohlberg (2016)
M-step
M-step - 4 parallel

(a) K = 2, L = 32.

0 500 1000 1500 2000 2500
Time (s)

10 3

10 2

10 1

100

101

(o
bj

ec
tiv

e
- b

es
t)

/ b
es

t Heide et al (2015)
Wohlberg (2016)
M-step
M-step - 4 parallel

(b) K = 2, L = 128.

0 2000 4000
Time (s)

10 3

10 2

10 1

100

101

(o
bj

ec
tiv

e
- b

es
t)

/ b
es

t Heide et al (2015)
Wohlberg (2016)
M-step
M-step - 4 parallel

(c) K = 10, L = 32.

Figure S1: Convergence speed of the relative objective function. The y-axis shows the objective
function relative to the obtained minimum for each run: (f(x)− f(x∗))/f(x∗). Each curve is the
geometrical mean over 24 different random initializations.

Here, we compare convergence plots of our algorithm against a number of state-of-art methods. The
details of the experimental setup are described in Section 4. Fig. S1 demonstrates on a variety of

3

setups the computational advantage of our quasi-Newton approach to solve the M-step. Note that
Fig. 2b is in fact a summary of Fig. S1. Indeed, we can verify that ADMM methods converge quickly
to a modest accuracy, but take much longer to converge to a high accuracy.[2]

Next, in Fig. S2, we show more traditional convergence plots. In contrast to Fig. 2 or S1 where the
relative objective function is shown, here we plot the absolute value of the objective function. We can
now verify that each of the methods have indeed converged to their respective local minimum. Of
course, owing to the non-convex nature of the problem, they do not necessarily converge to the same
local minimum.

0 50 100 150
Time (s)

0.2

0.4

0.6

0.8

1.0

ob
je

ct
iv

e

1e5
Heide et al (2015)
Wohlberg (2016)
M-step
M-step - 4 parallel

(a) K = 2, L = 32.

0 100 200 300
Time (s)

0.2

0.4

0.6

0.8

1.0

ob
je

ct
iv

e

1e5
Heide et al (2015)
Wohlberg (2016)
M-step
M-step - 4 parallel

(b) K = 2, L = 128.

0 200 400 600 800
Time (s)

0.2

0.4

0.6

0.8

1.0

ob
je

ct
iv

e

1e5
Heide et al (2015)
Wohlberg (2016)
M-step
M-step - 4 parallel

(c) K = 10, L = 32.

Figure S2: Convergence of the objective function as a function of time. The y-axis shows the absolute
objective function f(x). Each curve is the mean over 24 different random initializations.

3.2 Comparison of solver for the activations subproblem

Finally, we compare convergence plots of our algorithm using different solvers for the z-update:
ISTA, FISTA, and L-BFGS-B. The rationale for choosing a quasi-Newton solver for the z-update
becomes clear in Fig. S3 as the L-BFGS-B solver turns out to be computationally advantageous on a
variety of setups.

0 500 1000 1500
Time (s)

10 3

10 2

10 1

100

101

(o
bj

ec
tiv

e
- b

es
t)

/ b
es

t ISTA
FISTA
L-BFGS-B

(a) K = 2, L = 32.

0 2000 4000 6000 8000
Time (s)

10 3

10 2

10 1

100

101

(o
bj

ec
tiv

e
- b

es
t)

/ b
es

t ISTA
FISTA
L-BFGS-B

(b) K = 2, L = 128.

0 2000 4000 6000 8000 10000
Time (s)

10 3

10 2

10 1

100

101

(o
bj

ec
tiv

e
- b

es
t)

/ b
es

t ISTA
FISTA
L-BFGS-B

(c) K = 10, L = 32.

Figure S3: Convergence speed of the relative objective function. The y-axis shows the objective
function relative to the obtained minimum for each run: (f(x)− f(x∗))/f(x∗). Each curve is the
geometrical mean over 24 different random initializations.

References
[1] J. Mairal, F. Bach, J. Ponce, and G. Sapiro. Online learning for matrix factorization and sparse

coding. Journal of Machine Learning Research, 11(Jan):19–60, 2010.

[2] S. Boyd, N. Parikh, E. Chu, B. Peleato, and J. Eckstein. Distributed optimization and statistical
learning via the alternating direction method of multipliers. Foundations and Trends R© in
Machine Learning, 3(1):1–122, 2011.

4

	Details of the E-Step
	Details of the M-Step
	Solving for the activations
	Solving for the atoms

	Additional Experiments: M-step speed benchmark
	Comparison with state of the art
	Comparison of solver for the activations subproblem

