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In this supplementary material, we give the detailed proofs for some lemmas, theorems and properties.

A Proof of Property 1:

Property 1. The loss function f(·) is defined in (9) with the inner product in (10), then
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k log(Y

−1/2
k XkY

−1/2
k )Y
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3.
〈
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In the main paper, we proved the result (1) in Property 1. In the following, we will give the proofs for
the results (2)-(4) in Property 1.

Proof. Using the derivation in [2], we have
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Using the results (1) and (2) and the definition of the inner product, we have〈
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This completes the proof.

B Proofs of Lemmas 1 and 2:

Before proving Lemma 1, we first give the following property [4].

Property 2. Let Γyx : TxM→ TyM be the parallel transport, and the exponential map Expx has an
inverse Exp−1x : X → TxM. For any x, y ∈ X , and w, z ∈ TxM, we have the following properties:

〈w, z〉x = 〈Γyxw, Γyxz〉y ,

‖w‖2x = ‖Γyxw‖2y,
‖Exp−1y (x)‖2y = ‖Exp−1x (y)‖2x = d2(x, y).

Lemma 1 (Strongly G-convex). If f : X → R is geodesically µ-strongly convex and G-L-smooth,
and {yk} satisfies the equation (4), and zk is defined as

zk =

(
1−

√
µ

L

)
Exp−1yk (xk) ∈ TykM.

Then the following results hold:

Γyk−1
yk

(zk − βgradf(yk)) =

(
1−

√
µ

L

) 1
2

zk−1,

and

−〈gradf(yk), zk〉yk +
β

2
‖gradf(yk)‖2yk =

1

2β

(
1−

√
µ

L

)
‖zk−1‖2yk−1

− 1

2β
‖zk‖2yk .

Proof. We recall the equation (4) in Algorithm 1,
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We define zk for any k = 0, · · · ,K − 1 as follows:
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By the above two equalities, the following result holds:
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By simple algebraic manipulations, we have
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Using the above equality and the definition of zk, we have(
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This completes the proof.

Lemma 2. If f : X → R is G-convex and G-L-smooth, the diameter of domain is bounded by D,
{yk} satisfies the equation (5), and zk is defined as

zk =
k

α− 1
Exp−1yk (xk)−Dĝk ∈ TykM.

Then the following results hold:
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Proof. For any k = 0, · · · ,K − 1, zk is defined as follows:
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where ĝk = gradf(yk)/‖gradf(yk)‖yk .Then zk ∈ TykM, and by the equation (5) in Algorithm 2,
we have
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That is,
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Using the above equality and Property 2, we have
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This completes the proof.

C Proof of Lemma 3:

Lemma 3. Let {xk} be the sequence produced by Algorithms 1 and 2 with η ≤ 1/L. If f : X → R
is G-convex and G-L-smooth for any x ∈ X , then the following result holds:

f(xk+1) ≤ f(x) +
〈
gradf(yk), −Exp−1yk (x)

〉
yk
− η

2
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Proof. Since f(·) is geodesically convex, then for any x ∈ X , we have
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By (15) and (16), we have

f(x)− f(xk+1) ≥ η
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This completes the proof.

D Proof of Theorem 1:

Theorem 1 (Strongly G-convex). Let x? be the optimal solution of Problem (1), and {xk} be the
sequence produced by Algorithm 1. If f : X → R is geodesically µ-strongly convex and G-L-smooth,
then the following result holds:
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Then (18) is rewritten as follows:
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Multiplying both sides of the inequality (17) by (1−
√
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adding the two resulting inequalities with η = 1/L, we obtain
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Multiplying both sides of the inequality (20) by (1−
√
µ/L)K−k and assuming z−1 = z0, summing

it over k = 0, · · · ,K − 1, we obtain
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This completes the proof.

E Proof of Theorem 2:

Theorem 2 (General G-convex). If f : X → R is G-convex and G-L-smooth, the diameter of
domain is bounded by D, {xk} is produced by Algorithm 2, and let x? be an optimal solution of
Problem (1), then

f(xk+1)− f(x?) ≤
(α− 1)2

2η(k + α− 2)2
‖z0‖2y0 ,

where z0 is defined in Lemma 2.

Proof. Using Lemma 3, we have

f(xk+1) ≤ f(x) +
〈
gradf(yk), −Exp−1yk (x)

〉
yk
− η

2
‖gradf(yk)‖2yk , ∀x ∈ X .

Let us write successively this formula at x = xk and x = x?, we obtain

f(xk+1) ≤ f(xk) +
〈
gradf(yk), −Exp−1yk (xk)

〉
yk
− η

2
‖gradf(yk)‖2yk , (21)
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and
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where the last inequality holds due to the assumption of d(yk, x?) = ‖Exp−1yk (x?)‖yk ≤ D.

Multiplying both sides of the inequality (21) by k
k+α−1 , and the inequality (22) by α−1
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adding the two resulting inequalities, we obtain
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where ĝk = gradf(yk)/‖gradf(yk)‖yk . By the above inequality and Lemma 2, we have
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]
.
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[
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It is easy to verify that 2η(k+α−2)2
α−1 ≥ 2ηk(k+α−1)

α−1 . Summing the above inequality over k =

0, · · · ,K−1, we have

2η(K + α− 2)2

α− 1
[f(xK)− f(x?)])

≤ (α− 1)
[
‖z0‖2y0 − ‖zK‖

2
yK

]
.

Multiplying both sides of the above inequality by (α−1)
2η(K+α−2)2 , we have

f(xK)− f(x?) ≤
(α− 1)2

2η(K + α− 2)2
‖z0‖2y0 .

This completes the proof.

F Complexity Analysis

In this part, we provide the detailed complexity analysis of our algorithm for solving the matrix
Karcher mean problem. As stated in [3], the exponential mapping is expensive to compute in
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practice. Therefore, we use the retraction RX(ξX) = X + ξX + 1
2ξXX

−1ξX in [1] to replace
with the exponential mapping in our algorithm, where X ∈ P and ξX ∈ TXP . Clearly, the
retraction RX is cheaper to compute and tends to avoid numerical overflow [3]. Then the main
cost of RGD is the computation of the Riemannian gradient, and its overall per-iteration complexity
is O((2N+3)d3). Compared with RGD, our accelerated method has one more update for Yk in
(14). The term 1

N

∑N
i=1log(Y

1/2
k−1W

−1
i Y

1/2
k−1) can be directly available from the evaluation of the

Riemannian gradient at Yk−1, and the term log(Y
−1/2
k−1 Xk−1Y

−1/2
k−1 ) can also be obtained directly

from (13). The cost of the computation of Yk is O(4d3), and the overall per-iteration complexity of
our accelerated method is O((2N+7)d3).

For fair comparison, we implemented RGD, LRBFGS2, and our accelerated method in Matlab, and
performed all the experiments on a PC with an Intel i5-4570 CPU and 16GB RAM.
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