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Abstract

We consider the problem of computing a restricted nonnegative matrix factorization
(NMF) of an m × n matrix X . Specifically, we seek a factorization X ≈ BC,
where the k columns of B are a subset of those from X and C ∈ Rk×n≥0 . Equiv-
alently, given the matrix X , consider the problem of finding a small subset, S,
of the columns of X such that the conic hull of S ε-approximates the conic
hull of the columns of X , i.e., the distance of every column of X to the conic
hull of the columns of S should be at most an ε-fraction of the angular diame-
ter of X . If k is the size of the smallest ε-approximation, then we produce an
O(k/ε2/3) sized O(ε1/3)-approximation, yielding the first provable, polynomial
time ε-approximation for this class of NMF problems, where also desirably the
approximation is independent of n and m. Furthermore, we prove an approximate
conic Carathéodory theorem, a general sparsity result, that shows that any column
of X can be ε-approximated with an O(1/ε2) sparse combination from S. Our
results are facilitated by a reduction to the problem of approximating convex hulls,
and we prove that both the convex and conic hull variants are d-SUM-hard, resolv-
ing an open problem. Finally, we provide experimental results for the convex and
conic algorithms on a variety of feature selection tasks.

1 Introduction

Matrix factorizations of all sorts (SVD, NMF, CU, etc.) are ubiquitous in machine learning and
computer science. In general, given an m× n matrix X , the goal is to find a decomposition into a
product of two matrices B ∈ Rm×k and C ∈ Rk×n such that the Frobenius norm between X and
BC is minimized. If no further restrictions are placed on the matrices B and C, this problem can be
solved optimally by computing the singular value decomposition. However, imposing restrictions on
B and C can lead to factorizations which are more desirable for reasons such as interpretability and
sparsity. One of the most common restrictions is non-negative matrix factorization (NMF), requiring
B and C to consist only of non-negative entries (see [Berry et al., 2007] for a survey). Practically,
NMF has seen widespread usage as it often produces nice factorizations that are frequently sparse.
Typically NMF is accomplished by applying local search heuristics, and while NMF can be solved
exactly in certain cases (see [Arora et al., 2016]), in general NMF is not only NP-hard [Vavasis, 2009]
but also d-SUM-hard [Arora et al., 2016].

One drawback of factorizations such as SVD or NMF is that they can represent the data using a basis
that may have no clear relation to the data. CU decompositions [Mahoney and Drineas, 2009] address
this by requiring the basis to consist of input points. While it appears that the hardness of this problem
has not been resolved, approximate solutions are known. Most notable is the additive approximation
of Frieze et al. [2004], though more recently there have been advances on the multiplicative front
[Drineas et al., 2008, Çivril and Magdon-Ismail, 2012, Guruswami and Sinop, 2012]. Similar
restrictions have also been considered for NMF. Donoho and Stodden [2003] introduced a separability
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assumption for NMF, and Arora et al. [2016] showed that a NMF can be computed in polynomial
time under this assumption. Various other methods have since been proposed for NMF under the
separability (or near separability) assumption [Recht et al., 2012, Kumar et al., 2013, Benson et al.,
2014, Gillis and Vavasis, 2014, Zhou et al., 2014, Kumar and Sindhwani, 2015]. The separability
assumption requires that there exists a subset S of the columns of X such that X = XSC for some
nonnegative matrix C. This assumption can be restrictive in practice, e.g., when an exact subset
does not exist but a close approximate subset does, i.e., X ≈ XSC. To our knowledge, no exact or
approximate polynomial time algorithms have been proposed for the general problem of computing a
NMF under only the restriction that the columns must be selected from those of X .

In this work, we fill this gap by arguing that a simple greedy algorithm can be used to provide a
polynomial time ε-approximation algorithm for NMF under the column subset restriction. Note that
the separability assumption is not required here: our theoretical analysis bounds the error of our
selected columns versus the best possible columns that could have been chosen. The algorithm is
based off of recent work on fast algorithms for approximately computing the convex hull of a set
of points [Blum et al., 2016]. As in previous approaches [Donoho and Stodden, 2003, Kumar et al.,
2013], we formulate restricted NMF geometrically as finding a subset, S, of the columns of the matrix
X whose conic hull, the set of all nonnegative combinations of columns of S, well-approximates
the conic hull of X . Using gnomonic projection, we reduce the conic hull problem to a convex hull
problem and then apply the greedy strategy of Blum et al. [2016] to compute the convex hull of the
projected points. Given a set of points P in Rm, the convex hull of S ⊆ P , denoted Convex(S), is
said to ε-approximate Convex(P ) if the Hausdorff distance between Convex(S) and Convex(P ) is
at most ε · diameter(P ). For a fixed ε > 0, suppose the minimum sized subset of P whose convex
hull ε-approximates the convex hull of P has size k, then Blum et al. [2016] show that a simple
greedy algorithm gives an ε′ = O(ε1/3) approximation using at most k′ = O(k/ε2/3) points of P ,
with an efficient O(nc(m+ c/ε2 + c2)) running time, where c = O(kopt/ε

2/3). By careful analysis,
we show that our reduction achieves the same guarantees for the conic problem. (Note Blum et al.
[2016] present other trade-offs between k′ and ε′, which we argue carry to the conic case as well).
Significantly, k′ and ε′ are independent of n and m, making this algorithm desirable for large high
dimensional point sets. Note that our bounds on the approximation quality and the number of points
do not explicitly depend on the dimension as they are relative to the size of the optimal solution,
which itself may or may not depend on dimension. Like the X-RAY algorithm [Kumar et al., 2013],
our algorithm is easy to parallelize, allowing it to be applied to large-scale problems.

In addition to the above ε-approximation algorithm, we also present two additional theoretical
results of independent interest. The first theoretical contribution provides justification for empirical
observations about the sparsity of NMF [Lee and Seung, 1999, Ding et al., 2010]. Due to the
high dimensional nature of many data sets, there is significant interest in sparse representations
requiring far fewer points than the dimension. Our theoretical justification for sparsity is based
on Carathéodory’s theorem: any point q in the convex hull of P can be expressed as a convex
combination of at most m+ 1 points from P . This is tight in the worst case for exact representation,
however the approximate Carathéodory theorem [Clarkson, 2010, Barman, 2015] states there is a
point q′ which is a convex combination of O(1/ε2) points of P (i.e., independent of n and m) such
that ||q − q′|| ≤ ε · diameter(P ). This result has a long history with significant implications in
machine learning, e.g., relating to the analysis of the perceptron algorithm [Novikoff, 1962], though
the clean geometric statement of this theorem appears to be not well known outside the geometry
community. Moreover, this approximation is easily computable with a greedy algorithm (e.g., [Blum
et al., 2016]) similar to the Frank-Wolfe algorithm. The analogous statement for the linear case
does not hold, so it is not immediately obvious whether such an approximate Carathéodory theorem
should hold for the conic case, a question which we answer in the affirmative. As a second theoretical
contribution, we address the question of whether or not the convex/conic hull problems are actually
hard, i.e., whether approximations are actually necessary. We answer this question for both problems
in the affirmative, resolving an open question of Blum et al. [2016], by showing both that the conic
and convex problems are d-SUM-hard.

Finally, we evaluate the performance of the greedy algorithms for computing the convex and conic
hulls on a variety of feature selection tasks against existing methods. We observe that, both the
conic and convex algorithms perform well for a variety of feature selection tasks, though, somewhat
surprisingly, the convex hull algorithm, for which previously no experimental results had been
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produced, yields consistently superior results on text datasets. We use our theoretical results to
provide intuition for these empirical observations.

2 Preliminaries

Let P be a point set in Rm. For any p ∈ P , we interchangeably use the terms vector and point,
depending on whether or not we wish to emphasize the direction from the origin. Let ray(p)
denote the unbounded ray passing through p, whose base lies at the origin. Let unit(p) denote the
unit vector in the direction of p, or equivalently unit(p) is the intersection of ray(p) with the unit
hypersphere S(m−1). For any subset X = {x1, . . . , xk} ⊆ P , ray(X) = {ray(x1), . . . , ray(xk)}
and unit(X) = {unit(x1), . . . , unit(xk)}.
Given points p, q ∈ P , let d(p, q) = ||p−q|| denote their Euclidean distance, and let 〈p, q〉 denote their
dot product. Let angle(ray(p), ray(q)) = angle(p, q) = cos−1(〈unit(p), unit(q)〉) denote the angle
between the rays ray(p) and ray(q), or equivalently between vectors p and q. For two sets, P,Q ⊆ Rm,
we write d(P,Q) = minp∈P,q∈Q d(p, q) and for a single point q we write d(q, P ) = d({q}, P ), and
the same definitions apply to angle().

For any subset X = {x1, . . . , xk} ⊆ P , let Convex(X) = {∑i αixi | αi ≥ 0,
∑
i αi = 1} denote

the convex hull of X . Similarly, let Conic(X) = {∑i αixi | αi ≥ 0} denote the conic hull of X and
DualCone(X) = {z ∈ X | 〈x, z〉 ≥ 0 ∀x ∈ X} the dual cone. For any point q ∈ Rm, the projection
of q onto Convex(X) is the closest point to q in Convex(X), proj(q) = proj(q,Convex(X)) =
arg minx∈Convex(X) d(q, x). Similarly the angular projection of q onto Conic(X) is the angularly
closest point to q in Conic(X), aproj(q) = aproj(q,Conic(X)) = arg minx∈Conic(X) angle(q, x).
Note that angular projection defines an entire ray of Conic(X), rather than a single point, which
without loss of generality we choose the point on the ray minimizing the Euclidean distance to q. In
fact, abusing notation, we sometimes equivalently view Conic(X) as a set of rays rather than points,
in which case aproj(ray(q)) = aproj(q) is the entire ray.

For X ⊂ Rm, let ∆ = ∆X = maxp,q∈X d(p, q) denote the diameter of X . The angular diameter of
X is φ = φX = maxp,q∈X angle(p, q). Similarly φX(q) = maxp∈X angle(p, q) denotes the angular
radius of the minimum radius cone centered around the ray through q and containing all of P .

Definition 2.1. Consider a subsetX of a point set P ⊂ Rm. X is an ε-approximation to Convex(P )
if dconvex(X,P ) = maxp∈Convex(P ) d(p,Convex(X)) ≤ ε∆. Note dconvex(X,P ) is the Hausdorff
distance between Convex(X) and Convex(P ). Similarly X is an ε-approximation to Conic(P ) if
dconic(X,P ) = maxp∈Conic(P ) angle(p,Conic(X)) ≤ εφP .

Note that the definition of ε-approximation for Conic(P ) uses angular rather than Euclidean distance
in order to be defined for rays, i.e., scaling a point outside the conic hull changes its Euclidean
distance but its angular distance is unchanged since its ray stays the same. Thus we find considering
angles better captures what it means to approximate the conic hull than the distance based Frobenius
norm which is often used to evaluate the quality of approximation for NMF.

As we are concerned only with angles, without loss of generality we often will assume that all points
in the input set P have been scaled to have unit length, i.e., P = unit(P ). In our theoretical results,
we will always assume that φP < π/2. Note that if P lies in the non-negative orthant, then for any
strictly positive q, φP (q) < π/2. In the case that the P is not strictly inside the positive orthant, the
points can be uniformly translated a small amount to ensure that φP < π/2.

3 A Simple Greedy Algorithm

Let P be a finite point set in Rm (with unit lengths). Call a point p ∈ P extreme if it lies on the
boundary of the conic hull (resp. convex hull). Observe that for any X ⊆ P , containing all the
extreme points, it holds that Conic(X) = Conic(P ) (resp. Convex(X) = Convex(P )). Consider
the simple greedy algorithm which builds a subset of points S, by iteratively adding to S the point
angularly furthest from the conic hull of the current point set S (for the convex hull take the furthest
point in distance). One can argue in each round this algorithm selects an extreme point, and thus can
be used to find a subset of points whose hull captures that of P . Note if the hull is not degenerate, i.e.,
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no point on the boundary is expressible as a combination of other points on the boundary, then this
produces the minimum sized subset capturing P . Otherwise, one can solve a recursive subproblem as
discussed by Kumar et al. [2013] to exactly recover S.

Here instead we consider finding a small subset of points (potentially much smaller than the number
of extreme points) to approximate the hull. The question is then whether this greedy approach
still yields a reasonable solution, which is not clear as there are simple examples showing the best
approximate subset includes non-extreme points. Moreover, arguing about the conic approximation
directly is challenging as it involves angles and hence spherical (rather than planar) geometry. For the
convex case, Blum et al. [2016] argued that this greedy strategy does yield a good approximation.
Thus we seek a way to reduce our conic problem to an instance of the convex problem, without
introducing too much error in the process, which brings us to the gnomonic projection. Let hplane(q)
be the hyperplane defined by the equation 〈(q − x), q〉 = 0 where q ∈ Rm is a unit length normal
vector. The gnomonic projection of P onto hplane(q), is defined as gpq(P ) = {ray(P )∩ hplane(q)}
(see Figure 3.1). Note that gpq(q) = q. For any point x in hplane(q), the inverse gnomonic projection
is pgq(x) = ray(x)∩ S(m−1). Similar to other work [Kumar et al., 2013], we allow projections onto
any hyperplane tangent to the unit hypersphere with normal q in the strictly positive orthant.

A key property of the gnomonic projection, is that the problem of finding the extreme points of the
convex hull of the projected points is equivalent to finding the extreme points of the conic hull of P .
(Additional properties of the gnomonic projection are discussed in the full version.) Thus the strategy
to approximate the conic hull should now be clear. Let P ′ = gpq(P ). We apply the greedy strategy
of Blum et al. [2016] to P ′ to build a set of extreme points S, by iteratively adding to S the point
furthest from the convex hull of the current point set S. This procedure is shown in Algorithm 1.

We show that Algorithm 1 can be used to produce an ε-approximation to the restricted NMF
problem. Formally, for ε > 0, let opt(P, ε) denote any minimum cardinality subset X ⊆ P which
ε-approximates Conic(P ), and let kopt = |opt(P, ε)|. We consider the following problem.

Problem 3.1. Given a set P of n points in Rm such that φP ≤ π/2− γ, for a constant γ > 0, and
a value ε > 0, compute opt(P, ε).

Alternatively one can fix k rather than ε, defining opt(P, k) = arg minX⊆P,|X|=k dconic(X,P ) and
εopt = dconic(opt(P, k), P ). Our approach works for either variant, though here we focus on the
version in Problem 3.1. Note the bounded angle assumption applies to any collection of points in the
strictly positive orthant (a small translation can be used to ensure this for any nonnegative data set).

In this section we argue Algorithm 1 produces an (α, β)-approximation to an instance (P, ε) of
Problem 3.1, that is a subset X ⊆ P such that dconic(X,P ) ≤ α and |X| ≤ β ·kopt = β · |opt(P, ε)|.
For ε > 0, similarly define optconvex(P, ε) to be any minimum cardinality subset X ⊆ P which
ε-approximates Convex(P ). Blum et al. [2016] gave (α, β)-approximation for the following.

Problem 3.2. Given a set P of n points in Rm, and a value ε > 0, compute optconvex(P, ε).

Note the proofs of correctness and approximation quality from Blum et al. [2016] for Problem 3.2 do
not immediately imply the same results for using Algorithm 1 for Problem 3.1. To see this, consider
any points u, v on S(m−1). Note the angle between u and v is the same as their geodesic distance
on S(m−1). Intuitively, we want to claim the geodesic distance between u and v is roughly the same
as the Euclidean distance between gpq(u) and gpq(v). While this is true for points near q, as we
move away from q the correspondence breaks down (and is unbounded as you approach π/2). This
non-uniform distortion requires care, and thus the proofs had to be moved to the full version.

Finally, observe that Algorithm 1, requires being able to compute the point furthest from the convex
hull. To do so we use the (convex) approximate Carathéodory, which is both theoretically and
practically very efficient, and produces provably sparse solutions. As a stand alone result, we first
prove the conic analog of the approximate Carathéodory theorem. This result is of independent
interest since it can be used to sparsify the returned solution from Algorithm 1, or any other algorithm.

3.1 Sparsity and the Approximate Conic Carathéodory Theorem

Our first result is a conic approximate Carathéodory theorem. That is, given a point set P ⊆ Rm and
a query point q, then the angularly closest point to q in Conic(P ) can be approximately expressed as
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Algorithm 1: Greedy Conic Hull
Data: A set of n points, P , in Rm such

that φP < π/2, a positive integer k,
and a normal vector q in
DualCone(P ).

Result: S ⊆ P such that |S| = k
Y ← gpq(P );
Select an arbitrary starting point p0 ∈ Y ;
S ← {p0};
for i = 2 to k do

Select
p∗ ∈ arg maxp∈Y dconvex(p, S);
S ← S ∪ {p∗};

q

x

x′hplane(q)

Figure 3.1: Side view of gnomonic projection.

a sparse combination of point from P . More precisely, one can compute a point t which is a conic
combination of O(1/ε2) points from P such that angle(q, t) ≤ angle(q,Conic(P )) + εφP .

The significance of this result is as follows. Recall that we seek a factorization X ≈ BC, where the k
columns of B are a subset of those from X and the entries of C are non-negative. Ideally each point
in X is expressed as a sparse combination from the basis B, that is each column of C has very few
non-zero entries. So suppose we are given any factorization BC, but C is dense. Then no problem,
just throw out C, and use our Carathéodory theorem to compute a new matrix C ′ with sparse columns.
Namely treat each column of X as the query q and run the theorem for the point set P = B, and then
the non-zero entries of corresponding column of C ′ are just the selected combination from B. Not
only does this mean we can sparsify any solution to our NMF problem (including those obtained by
other methods), but it also means conceptually that rather than finding a good pair BC, one only
needs to focus on finding the subset B, as is done in Algorithm 1. Note that Algorithm 1 allows
non-negative inputs in P because φP < π/2 ensures P can be rotated into the positive orthant.

While it appears the conic approximate Carathéodory theorem had not previously been stated, the
convex version has a long history (e.g., implied by [Novikoff, 1962]). The algorithm to compute this
sparse convex approximation is again a simple and fast greedy algorithm, which roughly speaking is
a simplification of the Frank-Wolfe algorithm for this particular problem. Specifically, to find the
projection of q onto Convex(P ), start with any point t0 ∈ Convex(P ). In the ith round, find the point
pi ∈ P most extreme in the direction of q from ti−1 (i.e., maximizing 〈q − ti−1, pi〉) and set ti to be
the closest point to q on the segment ti−1pi (thus simplifying Frank Wolfe, as we ignore step size
issues). The standard analysis of this algorithm (e.g., [Blum et al., 2016]) gives the following.

Theorem 3.3 (Convex Carathéodory). For a point set P ⊆ Rm, ε > 0, and q ∈ Rm, one can
compute, in O

(
|P |m/ε2

)
time, a point t ∈ Convex(P ), such that d(q, t) ≤ d(q,Convex(P )) + ε∆,

where ∆ = ∆P . Furthermore, t is a convex combination of O(1/ε2) points of P .

Again by exploiting properties of the gnomonic projection we are able to prove a conic analog of the
above theorem. Note for P ⊂ Rm, P is contained in the linear span of at most m points from P , and
similarly the exact Carathéodory theorem states any point q ∈ Convex(P ) is expressible as a convex
combination of at most m+ 1 points from P . As the conic hull lies between the linear case (with
all combinations) and the convex case (with non-negative combinations summing to one), it is not
surprising an exact conic Carathéodory theorem holds. However, the linear analog of the approximate
convex Caratheodory theorem does not hold, and so the following conic result is not a priori obvious.

Theorem 3.4. Let P ⊂ Rm be a point set, let q be such that φP (q) < π/2− γ for some constant
γ > 0, and let ε > 0 be a parameter. Then one can find, in O(|P |m/ε2) time, a point t ∈ Conic(P )
such that angle(q, t) ≤ angle(q,Conic(P ))+εφP (q). Moreover, t is a conic combination ofO(1/ε2)
points from P .

Due to space constraints, the detailed proof of Theorem 3.4 appears in the full version. In the proof,
the dependence on γ is made clear but we make a remark about it here. If ε is kept fixed, γ shows up

5



in the running time roughly by a factor of tan2(π/2− γ). Alternatively, if the running time is fixed,
the approximation error will roughly depend on the factor 1/ tan(π/2− γ).

We now give a simple example of a high dimensional point set which shows our bounded angle
assumption is required for the conic Carathéodory theorem to hold. Let P consist of the standard
basis vectors in Rm, let q be the all ones vector, and let ε be a parameter. Let X be a subset of P of
size k, and consider aproj(q) = aproj(q,X). As P consists of basis vectors, each of which have all
but one entry set to zero, aproj(q) will have at most k non-zero entries. By the symmetry of q it is
also clear that all non-zero entries in aproj(q) should have the same value. Without loss of generality
assume that this value is 1, and hence the magnitude of aproj(q) is

√
k. Thus for aproj(q) to be an

ε-approximation to q, angle(aproj(q), q) = cos−1( k√
k
√
m

) = cos−1(
√
k/m) < ε. Hence for a fixed

ε, the number of points required to ε-approximate q depends on m, while the conic Carathéodory
theorem should be independent of m.

3.2 Approximating the Conic Hull

We now prove that Algorithm 1 yields an approximation to the conic hull of a given point set
and hence an approximation to the nonnegative matrix factorization problem. As discussed above,
previously Blum et al. [2016] provided the following (α, β)-approximation for Problem 3.2.

Theorem 3.5 ([Blum et al., 2016]). For a set P of n points in Rm, and ε > 0, the greedy strat-
egy, which iteratively adds the point furthest from the current convex hull, gives a ((8ε1/3 +
ε)∆, O(1/ε2/3))-approximation to Problem 3.2, and has running time O(nc(m + c/ε2 + c2))
time, where c = O(kopt/ε

2/3).

Our second result, is a conic analog of the above theorem.

Theorem 3.6. Given a set P of n points in Rm such that φP ≤ π
2 − γ for a constant γ > 0, and a

value ε > 0, Algorithm 1 gives an ((8ε1/3 + ε)φP , O(1/ε2/3))-approximation to Problem 3.1, and
has running time O(nc(m+ c/ε2 + c2)), where c = O(kopt/ε

2/3).

Bounding the approximation error requires carefully handling the distortion due to the gnomonic
project, and the details are presented in the full version. Additionally, Blum et al. [2016] provide
other (α, β)-approximations, for different values of α and β, and in the full version these other results
are also shown to hold for the conic case.

4 Hardness of the Convex and Conic Problems

This section gives a reduction from d-SUM to the convex approximation of Problem 3.2, implying
it is d-SUM-hard. In the full version a similar setup is used to argue the conic approximation
of Problem 3.1 is d-SUM-hard. Actually if Problem 3.1 allowed instances where φP = π/2 the
reduction would be virtually the same. However, arguing that the problem remains hard under our
requirement that φP ≤ π/2− γ, is non-trivial and some of the calculations become challenging and
lengthy. The reductions to both problems are partly inspired by Arora et al. [2016]. However, here,
we use the somewhat non-standard version of d-SUM where repetitions are allowed as described
below.

Problem 4.1 (d-SUM). In the d-SUM problem we are given a set S = {s1, s2, · · · , sN} of N
values, each in the interval [0, 1], and the goal is to determine if there is a set of d numbers (not
necessarily distinct) whose sum is exactly d/2.

It was shown by Patrascu and Williams [2010] that if d-SUM can be solved in No(d) time then
3-SAT has a sub-exponential time algorithm, i.e., that the Exponential Time Hypothesis is false.

Theorem 4.2 (d-SUM-hard). Let d < N0.99, δ < 1. If d-SUM on N numbers of O(d log(N)) bits
can be solved in O(Nδd) time, then 3-SAT on n variables can be solved in 2o(n) time.
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We will prove the following decision version of Problem 3.2 is d-SUM-hard. Note in this section the
dimension will be denoted by d rather than m, as this is standard for d-SUM reductions.

Problem 4.3. Given a set P of n points in Rd, a value ε > 0, and an integer k, is there a subset
X ⊆ P of k points such that dconvex(X,P ) ≤ ε∆, where ∆ is the diameter of P .

Given an instance of d-SUM with N values S = {s1, s2, · · · , sN} we construct an instance of
Problem 4.3 where P ⊂ Rd+2, k = d, and ε = 1/3 (or any sufficiently small value). The idea is to
create d clusters each containing N points corresponding to a choice of one of the si values. The
clusters are positioned such that exactly one point from each cluster must be chosen. The d + 2
coordinates are labeled ai for i ∈ [d], w, and v. Together, a1, · · · , ad determine the cluster. The w
dimension is used to compute the sum of the chosen si values. The v dimension is used as a threshold
to determine whether d-SUM is a yes or no instance to Problem 4.3. Let w(pj) denote the w value of
an arbitrary point pj .

We assume d ≥ 2 as d-SUM is trivial for d = 1. Let e1, e2, · · · , ed ∈ Rd be the standard basis in Rd,
e1 = (1, · · · , 0), e2 = (0, 1, · · · , 0), . . . , and ed = (0, · · · , 1). Together they form the unit d-simplex,
and they define the d clusters in the construction. Finally, let ∆∗ =

√
2 + (εsmax − εsmin)2 be a

constant where smax and smin are, respectively, the maximum and minimum values in S.

Definition 4.4. The set of points P ⊂ Rd+2 are the following

pij points: For each i ∈ [d], j ∈ [N ], set (a1, · · · , ad) = ei, w = εsj and v = 0
q point: For each i ∈ [d], ai = 1/d, w = ε/2, v = 0
q′ point: For each i ∈ [d], ai = 1/d and w = ε/2, v = ε∆∗

Lemma 4.5 (Proof in full version). The diameter of P , ∆P , is equal to ∆∗.

We prove completeness and soundness of the reduction. Below P i = ∪j pij denotes the ith cluster.

Lemma 4.6 (Completeness). If there is a subset {sk1 , sk2 , · · · , skd} of d values (not necessarily
distinct) such that

∑
i∈[d] ski = d/2, then the above described instance of Problem 4.3 is a true

instance, i.e. there is a d sized subset X ⊆ P with dconvex(X,P ) ≤ ε∆.

Proof: For each value ski consider the point xi = (ei, ε · ski , 0), which by Definition 4.4 is a
point in P . Let X = {x1, . . . , xd}. We now prove maxp∈P d(p,Convex(X)) ≤ ε∆, which by
Observation C.3 implies that dconvex(X,P ) ≤ ε∆.

First observe that for any pij in P , d(pij , xi) =
√

(w(pij)− w(xi))2 ≤ |εsj − εski | ≤ ε∆. The

only other points in P are q and q′. Note that d(q, q′) = ε∆∗ = ε∆ from Lemma 4.5. Thus
if we can prove that q ∈ Convex(X) then we will have shown maxp∈P d(p,Convex(X)) ≤ ε∆.
Specifically, we prove that the convex combination x = 1

d

∑d
i xi is the point q. As X contains

exactly one point from each set P i, and in each such set all points have ai = 1 and all other
aj = 0, it holds that x has 1/d for all the a coordinates. All points in X have v = 0 and so this
holds for x as well. Thus we only need to verify that w(x) = w(q) = ε/2, for which we have
w(x) = 1

d

∑
i w(xi) = 1

d

∑
i εski = 1

d (εd/2) = ε/2.

Proving soundness requires some helper lemmas. Note that in the above proof we constructed a
solution to Problem 4.3 that selected exactly one point from each cluster P i. We now prove that this
is a required property.

Lemma 4.7 (Proof in full version). Let P ⊂ Rd+2 be as defined above, and let X ⊆ P be a subset
of size d. If dconvex(X,P ) ≤ ε∆, then for all i, X contains exactly one point from P i.

Lemma 4.8 (Proof in full version). If dconvex(X,P ) ≤ ε∆, then q ∈ Convex(X) and moreover
q = 1

d

∑
xi∈X xi.
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Figure 4.1: Experimental results for feature selection on six different data sets. Best viewed in color.

Lemma 4.9 (Soundness). Let P be an instance of Problem 4.3 generated from a d-SUM instance
S, as described in Definition 4.4. If there is a subset X ⊆ P of size d such that dconvex(X,P ) ≤ ε∆,
then there is a choice of d values from S that sum to exactly d/2.

Proof: From Lemma 4.7 we know that X consist of exactly one point from each cluster P i. Thus
for each xi ∈ X , w(xi) = εski for some ski ∈ S. By Lemma 4.8, q = 1

d

∑
i xi, which implies

w(q) = 1
d

∑
i w(xi). By Definition 4.4w(q) = ε/2, which implies ε/2 = 1

d

∑
i w(xi) = 1

d

∑
i εski .

Thus we have a set {sk1 , . . . , skd} of d values from S such that
∑
i ski = d/2.

Lemma 4.6 and Lemma 4.9 immediately imply the following.

Theorem 4.10. For point sets in Rd+2, Problem 4.3 is d-SUM-hard.

5 Experimental Results

We report an experimental comparison of the proposed greedy algorithm for conic hulls, the greedy
algorithm for convex hulls (the conic hull algorithm without the projection step) [Blum et al., 2016],
the X-RAY (max) algorithm [Kumar et al., 2013], a modified version of X-RAY, dubbed mutant
X-RAY, which simply selects the point furthest away from the current cone (i.e., with the largest
residual), and a γ-shifted version of the conic hull algorithm described below. Other methods such
as Hottopixx [Recht et al., 2012, Gillis and Luce, 2014] and SPA [Gillis and Vavasis, 2014] were
not included due to their similar performance to the above methods. For our experiments, we
considered the performance of each of the methods when used to select features for a variety of SVM
classification tasks on various image, text, and speech data sets including several from the Arizona
State University feature selection repository [Li et al., 2016] as well as the UCI Reuters dataset and
the BBC News dataset [Greene and Cunningham, 2006]. The Reuters and BBC text datasets are
represented using the TF-IDF representation. For the Reuters dataset, only the ten most frequent
topics were used for classification. In all datasets, columns (corresponding to features) that were
identically equal to zero were removed from the data matrix.

For each problem, the data is divided using a 30/70 train/test split, the features are selected by the
indicated method, and then an SVM classifier is trained using only the selected features. For the conic
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and convex hull methods, ε is set to 0.1. The accuracy (percent of correctly classified instances) is
plotted versus the number of selected features for each method in Figure 4.1. Additional experimental
results can be found in the full version. Generally speaking, the convex, mutant X-RAY, and shifted
conic algorithms seem to consistently perform the best on the tasks. The difference in performance
between convex and conic is most striking on the two text data sets Reuters and BBC. In the case of
BBC and Reuters, this is likely due to the fact that many of the columns of the TF-IDF matrix are
orthogonal. We note that the quality of both X-RAY and conic is improved if thresholding is used
when constructing the feature matrix, but they still seem to under perform the convex method for text
datasets.

The text datasets are also interesting as not only do they violate the explicit assumption in our
theorems that the angular diameter of the conic hull be strictly less than π/2, but that there are many
such mutually orthogonal columns of the document-feature matrix. This observation motivates the
γ-shifted version of the conic hull algorithm that simply takes the input matrix X and adds γ to all
of the entries (essentially translating the data along the all ones vector) and then applies the conic
hull algorithm. Let 1a,b denote the a × b matrix of ones. After a nonnegative shift, the angular
assumption is satisfied, and the restricted NMF problem is that of approximating (X + γ1m,n) as
(B + γ1m,k)C, where the columns of B are again chosen from those of X . Under the Frobenus
norm ||(X + γ1m,n)− (B + γ1m,k)C||22 =

∑
i,j(Xij −Bi,:C:,j + γ(1− ||C:,j ||1))2. As C must

be a nonnegative matrix, the shifted conic case acts like the original conic case plus a penalty that
encourages the columns of C to sum to one (i.e., it is a hybrid between the conic case and the convex
case). The plots illustrate the performance of the γ-shifted conic hull algorithm for γ = 10. After
the shift, the performance more closely matches that of the convex and mutant X-RAY methods on
TF-IDF features.

Given these experimental results and the simplicity of the proposed convex and conic methods, we
suggest that both methods should be added to practitioners’ toolboxes. In particular, the superior
performance of the convex algorithm on text datasets, compared to X-RAY and the conic algorithm,
seems to suggest that these types of “convex” factorizations may be more desirable for TF-IDF
features.
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A Gnomonic Projection

Here we provide some basic facts about the gnomonic projection. The lemma below follows by
elementary trigonometry (see Figure 3.1).

Observation A.1. For any q ∈ S(m−1), the function gpq(·) defines a one to one correspondence
between hplane(q) and the part of the hypersphere at angle < π/2 from q, i.e., the gnomonic
projection projects the hemisphere defined by positive dot product with q onto hplane(q).

Lemma A.2. Let q, x be any two points on S(m−1) such that angle(q, x) < π/2. By the cosine
formula for the dot product, gpq(x) = x

〈x,q〉 . Moreover, for any point x′ in hplane(q), by con-
sidering the triangle defined by the origin, q, and x′, the definition of the tangent function gives
tan(angle(q, x′)) = d(q, x′).

In particular, for any point set P ⊆ S(m−1) such that φP (q) < π/2, diameter(gpq(P )) ≤
2 tan(φP (q)), and notably this holds for q = p for any p ∈ P when φP < π/2.

As tan(θ) is monotonically increasing for 0 ≤ θ < π/2, we have the following corollary.

Corollary A.3. Let q, x, y be points on S(m−1) such that angle(q, x), angle(q, y) < π/2. Then
angle(q, x) ≤ angle(q, y) if and only if d(q, gpq(x)) ≤ d(q, gpq(y)). Conversely, for any two points
x′, y′ ∈ hplane(q), d(q, x′) ≤ d(q, y′) if and only if angle(q, pgq(x′)) ≤ angle(q, pgq(y′)).

The proofs of the following lemmas are straightforward and are provided for completeness.

Lemma A.4. Given a point set P ⊂ Rm, Conic(P ) = ray(Convex(P )).

Proof: First note that any x ∈ Conic(P ) is a scaling of some point z ∈ Convex(P ), i.e. x = λz for
some value λ. To see this, let x =

∑
αipi such that αi ≥ 0. Now let λ =

∑
αi and z = 1

λ

∑
αipi.

The other direction can be shown in a similar way.

Lemma A.5. Given a point set P ⊂ Rm and a point q ∈ S(m−1) such that φP (q) < π/2, it holds
that Conic(P ) ∩ hplane(q) = Convex(gpq(P ))

Proof: Let P = {p1, . . . , pn}. As φP (q) < π/2, by Observation A.1, each pi defines a unique
p′i = gpq(pi) in hplane(q), and by Lemma A.2, p′i = pi/ 〈pi, q〉. Let gpq(P ) = P ′ = {p′1, . . . , p′n}.
First we show Conic(P ) ∩ hplane(q) ⊇ Convex(P ′). Consider any point in x′ ∈ Convex(P ′). Note
that x′ =

∑
i αip

′
i =

∑
i

αi

〈pi,q〉pi, where
∑
i αi = 1 and αi ≥ 0 for all i. Thus x′ ∈ Conic(P ) as

the coefficients αi

〈pi,q〉 are non-negative. Moreover, x′ ∈ hplane(q) as it is a convex combination of
points in hplane(q).

Now we argue Conic(P ) ∩ hplane(q) ⊆ Convex(P ′). Consider any point x in Convex(P ), that is
x =

∑
i αipi, where

∑
i αi = 1 and αi ≥ 0 for all i. First observe since x is a convex combination

of the pi, each of which has positive dot product with q, by linearity of the dot product, so does x,
and hence gpq(x) is a well defined point on hplane(q). We now argue gpq(x) ∈ Convex(P ′), which
by Lemma A.4 implies the claim as gpq(x) is on ray(x) for x ∈ Convex(P ).

gpq(x) =
x

〈x, q〉 =

∑
i αipi〈

(
∑
j αjpj), q

〉 =

∑
i αipi∑

j αj 〈pj , q〉
=

∑
i αi 〈pi, q〉 p′i∑
j αj 〈pj , q〉

=
∑
i

αi 〈pi, q〉∑
j αj 〈pj , q〉

p′i.

Thus gpq(x) ∈ Convex(P ′) as the coefficients are non-negative and
∑
i

αi〈pi,q〉∑
j αj〈pj ,q〉 = 1.

B Proof of Theorem 3.4

Theorem B.1 (Restatement of Theorem 3.4). Let P ⊂ Rm be a point set, let q ∈ S(m−1) be such
that φP (q) < π/2− γ for some constant γ > 0, and let ε > 0 be a parameter. Then one can find,
in O(|P |m/ε2) time, a point t ∈ Conic(P ) such that angle(q, t) ≤ angle(q,Conic(P )) + εφP (q).
Moreover, t is a conic combination of O(1/ε2) points from P .
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Proof: First compute the set gpq(P ). (Note that since φP (q) < π/2, by Observation A.1, every
point p ∈ P defines a unique point gpq(p) ∈ hplane(q).) Let ε′ = εφP (q)/(2 tan(φP (q))). Note
that φP (q) < π/2 − γ implies c ≤ φP (q)/(2 tan(φP (q))) ≤ 1/2, for some positive constant c
depending only on the constant γ, and thus ε′ = Θ(ε).

Let opt′ ∈ Convex(gpq(P )) be a point in the convex hull of gpq(P ) that is closest to q. By
Theorem 3.3, one can compute a point t ∈ Convex(gpq(P )) such that d(q, t) ≤ d(q, opt′) +
ε′∆, where ∆ = diameter(gpq(P )), in O(|P |m/ε′2) = O(|P |m/ε2) time, which is a convex
combination of a subset Z of O(1/ε′2) = O(1/ε2) points of gpq(P ). We return pgq(Z) as our
solution. (Note pgq(Z) is returned instead of Z, only because the theorem requires returning a subset
of P .) Thus the running time and size of pgq(Z) in the theorem statement hold, and what remains is
proving t yields the desired approximation.

By Lemma A.2, ∆ ≤ 2 tan(φP (q)). By the same lemma, for any x ∈ Convex(gpq(P )),
angle(x, q) = tan−1(d(x, q)). Since tan−1(θ) is monotonically increasing for 0 ≤ θ ≤ π/2,

angle(q, t) = tan−1(d(q, t)) ≤ tan−1(d(q, opt′) + ε′∆)

≤ tan−1(d(q, opt′) + 2ε′ · tan(φP (q))) = tan−1(d(q, opt′) + εφP (q)).

Furthermore, because tan−1(θ) is concave between 0 ≤ θ ≤ π/2 and d
dθ tan−1(θ)|0 = 1,

tan−1(d(q, opt′) + εφP (q)) ≤ tan−1(d(q, opt′)) + εφP (q) = angle(q, opt′) + εφP (q)

Let opt ∈ Conic(P ) be a point in the conic hull of P that has smallest angle to q. To complete the
proof, observe that Lemma A.5 implies both that gpq(opt) ∈ Convex(gpq(P )) and t ∈ Conic(P ).
By definition d(opt′, q) ≤ d(gpq(opt), q), and thus by Corollary A.3, angle(opt′, q) ≤ angle(opt, q)
(which actually implies angle(opt′, q) = angle(opt, q)). Combining with the above inequality gives
angle(q, t) ≤ angle(q, opt′) + εφP (q) ≤ angle(q, opt) + εφP (q)

C Proof of Theorem 3.6

The following helper lemma is crucial in bounding the approximation quality of our algorithm.

Lemma C.1. Let P ⊂ S(m−1) be a point set on the hypersphere such that φP ≤ π
2 − γ for

some constant γ > 0, and let X ⊆ P be a non-empty subset. For any q ∈ X and p ∈ P , let
y = pgq(proj(gpq(p),Convex(gpq(X)))) be the projection of gpq(p) onto Convex(gpq(X)) pulled
back to S(m−1). Then it holds that angle(p, y) ≤ 3`, where ` = d(gpq(p), gpq(y)).

Proof: First observe that if y = q, the angle between p and y is simply tan−1(`) ≤ ` < 3`. Also, if
y = p, i.e. gpq(p) is in Convex(gpq(X)), then angle(p, y) = 0. So for the remainder of the proof we
assume y 6= q and gpq(p) /∈ Convex(gpq(X)).

We need to show some basic relations about these points and angles that are needed in the proof.
Consider the spherical triangle defined by points p, y, q. Let β = angle(q, p), and let θ be the interior
angle opposite the side py, see Figure C.1. First observe that ` ≤ tan(β) as otherwise, q would
be closer to gpq(p) than gpq(y). Next, observe that angle(gpq(y), q) ≤ angle(gpq(p), q). To see
this, assume the contrary and note that we could then draw a perpendicular line from gpq(p) to
the line q gpq(y). The point of intersection would then be closer to gpq(p) than gpq(y) which is a
contradiction.

The last relation we need involves a new point, z, which we now define. Consider two circles on
the sphere. The first is the great circle through q and y. The second is the latitude circle at p with
respect to q (i.e. q acts as the north pole), which is the set of all points on the sphere with fixed angle
β = angle(q, p) from q. Let z be the intersection point of these two circles (technically there are
two intersections, so take the one closer to p). See Figure C.1. Let θ1 = ∠gpq(y)gpq(p)gpq(z) and
θ2 = ∠qgpq(z)gpq(p) (see Figure C.2) and note that θ1 ≤ θ2. Hence by the law of sines, we obtain
d(gpq(y), gpq(z)) ≤ `.
To prove the lemma, we invoke the spherical triangle inequality, that is angle(p, y) ≤ angle(p, z) +
angle(z, y). We now upper bound angle(p, z) and angle(z, y) separately.
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To bound angle(y, z), first observe that q, y, and z are all on the same great circle, and so angle(q, z) =
angle(q, y) + angle(y, z). By Lemma A.2,

angle(y, z) = angle(q, z)− angle(q, y) = tan−1(d(gpq(z), q))− tan−1(d(gpq(y), q))

= tan−1(d(gpq(y), q) + d(gpq(y), gpq(z)))− tan−1(d(gpq(y), q))

≤ tan−1(d(gpq(y), q)) + d(gpq(y), gpq(z))− tan−1(d(gpq(y), q)) = d(gpq(y), gpq(z)) ≤ `,

where the first inequality follows as tan−1(ζ) is concave for 0 ≤ ζ ≤ π/2 and d
dζ tan−1(ζ)|0 = 1

(i.e. the same argument from Theorem B.1).

To bound angle(p, z), first observe that β = angle(q, p) = angle(q, z), that is we have an isosceles
spherical triangle. Consider the corresponding isosceles triangle in hplane(q) defined by the points
q, gpq(p), and gpq(z), see Figure C.2. Note that the interior spherical angle θ defined above is also
the angle at q in this planar triangle, that is θ = ∠gpq(p) q gpq(y). Also, θ < π/2 as otherwise
d(q, gpq(p)) ≤ d(gpq(p), gpq(y)) contradicting the assumption gpq(y) = proj(p). By Lemma A.2,
d(gpq(p), q) = d(gpq(z), q) = tan(β), so by the law cosines,

cos(θ) =
tan2(β) + tan2(β)− d(gpq(p), gpq(z))2

2 · tan(β) · tan(β)
= 1− d(gpq(p), gpq(z))2

2 · tan2(β)
.

Going back to the sphere, by the spherical cosine law,

cos(angle(p, z)) = cos(β) cos(β) + sin(β) sin(β) cos(θ) =

cos2(β) + sin2(β) ·
(

1− d(gpq(p), gpq(z))2

2 · tan2(β)

)
= 1− sin2(β) · d(gpq(p), gpq(z))2

2 · sin2(β)/ cos2 β

= 1− cos2(β) · d(gpq(p), gpq(z))2

2
≥ 1− 2`2 · cos2(β),

where the last inequality follows from d(gpq(p), gpq(z)) ≤ d(gpq(p), gpq(y)) + d(gpq(y), gpq(z))
≤ 2`, by the above relations. Remember that ` ≤ tan(β) and tan−1(·) is monotonically increasing.
Therefore, as cos−1(·) is a monotonically decreasing function,

angle(p, z) ≤ cos−1(1−2`2 ·cos2(β)) ≤ cos−1(1−2`2 ·cos2(tan−1(`))) = cos−1

(
1− 2`2

1 + `2

)
.

We now show cos−1(1 − 2`2/(1 + `2)) ≤ 2`. Consider the ratio cos−1(1−2`2/(1+`2))
` and observe

that the derivative is negative for ` > 0 (` is always positive). Thus, cos−1(1−2`2/(1+`2))
` is increasing

as ` approaches 0+. By L’Hopital’s rule,

lim
`→0+

cos−1(1− 2`2/(1 + `2))

`
= lim
`→0+

2

`+ 1
= 2.

Therefore, the ratio is upper bounded by 2, and angle(p, z) ≤ cos−1(1 − 2`2/(1 + `2)) ≤ 2`
holds. Note that because 2`2/(1 + `2) < 2, the upper bound we obtained for angle(p, z), i.e.
cos−1(1− 2`2/(1 + `2)), is well defined for any value ` > 0.

Finally, the spherical triangle inequality tell us our bounds angle(y, z) ≤ ` and angle(p, z) ≤ 2`,
imply angle(p, y) ≤ 3`.

We wish to prove the conic analog of the following theorem from [Blum et al., 2016], which is a
more general form of Theorem 3.5 from Section 3.2.
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Theorem C.2 ([Blum et al., 2016]). Given a set P of n points in Rm, and a value ε > 0, in polyno-
mial one can compute:(i) an (ε∆, O(m log kopt))-approximation, (ii) a ((1+δ)ε∆, O(log(n)/(εδ)))-
approximation, and (iii) an ((8ε1/3 + ε)∆, O(1/ε2/3))-approximation to Problem 3.2. Moreover, for
(iii), the run time is O(nc(m+ c/ε2 + c2)), where c = O(kopt/ε

2/3).

We are now ready to prove our main theorem, which is a more general form of Theorem 3.6. The
proof will make use of the following simple observation about dconvex(X,P ) and dconic(X,P ),
which we formally state as it is also used in our d-SUM-harness proofs.

Observation C.3. If maxp∈P d(p,Convex(X)) ≤ ε∆, then dconvex(X,P ) ≤ ε∆: For point sets
A and B = {b1, . . . , bm}, if we fix a ∈ Convex(A), then for any b ∈ Convex(B) we have ||a− b|| =
||a−∑i αibi|| = ||

∑
i αi(a− bi)|| ≤

∑
i αi||a− bi|| ≤ maxi ||a− bi||.

Similarly, if maxp∈P d(p,Conic(X)) ≤ εφP , then dconic(X,P ) ≤ εφP : Again for sets A and
B with φA∪B < π/2, fix a ∈ Conic(A) and b ∈ Conic(B). Lemma A.5 implies that gpa(b) is a
convex combination of gpa(bi), and thus the argument for the convex case implies ||a− gpa(b)|| ≤
maxi ||a− gpa(bi)||. Corollary A.3 then implies angle(a, b) ≤ maxi angle(a, bi).

Theorem C.4. Given a set P of n points in Rm such that φP ≤ π
2 − γ for a constant γ > 0, and a

value ε > 0, in polynomial time one can compute: (i) an (εφP , O(m log kopt))-approximation,
(ii) a ((1 + δ)εφP , O(log(n)/(εδ)))-approximation, and (iii) an ((8ε1/3 + ε)φP , O(1/ε2/3))-
approximation to Problem 3.1. Moreover, for case (iii), the run time is O(nc(m + c/ε2 + c2)),
where c = O(kopt/ε

2/3).

Proof: First note that as we are only concerned with angles, without loss of generality we assume P ⊂
S(m−1). Set ε′ = c·ε for a constant c > 0 to be determined shortly, and let q = unit(p) for an arbitrary
point p in P . Compute the set P ′ = gpq(P ), and consider the instance (P ′, ε′) of Problem 3.2. By
Theorem C.2, in polynomial time we can compute a subset X ′ ⊆ P ′ that is an (α, β)-approximation
to Problem 3.2 where (α, β) is either (i) (ε′∆, O(m log kopt)), (ii) ((1 + δ)ε′∆, O(log(n)/(εδ))),
or (iii) ((8(ε′)1/3 + ε′)∆, O(1/ε2/3)), where we used the fact that ε′ = Θ(ε).

Note that X = unit(X ′) is a subset of P . To prove the theorem, we apply Lemma C.1 to the
sets X and P , which we now argue implies X is a (3α, β)-approximation to the instance (P, ε)
of Problem 3.1. First observe that in order to apply the lemma, q must be in X , so if it is not
already, simply add q to X as this does not asymptotically change β. By Definition 2.1, if X ′ is
an (α, β)-approximation to an instance (P ′, ε′) of Problem 3.2, then for any point gpq(p) ∈ P ′

the distance to its projection onto Convex(X ′), y′ = proj(gpq(p),Convex(X ′)), is at most α. Thus
setting ` = d(gpq(p), y′), Lemma C.1 implies angle(p, pgq(y′)) ≤ 3` ≤ 3α. Note by Lemma A.5,
pgq(y′) ∈ Conic(X), and so every point p ∈ P has a point in Conic(X) at angle ≤ 3α, which by
Observation C.3 implies X is a (3α, β)-approximation to Problem 3.1.

To complete the proof, we provide constants c such that either (i) 3(cε∆) ≤ εφP , or (ii) 3(1 +
δ)cε∆ ≤ (1 + δ)εφP , or (iii) 3(8(cε)1/3 + cε)∆ ≤ (8ε1/3 + ε)φP . For case (i) and (ii), set
c = φP

6 tan(φP ) . Note that c can indeed be treated as a positive constant because φP

6 tan(φP ) is always less
than 1, and is bounded away from 0 by our assumption that φP ≤ π/2− γ for some constant γ (and
thus we still have ε′ = Θ(ε)). From Lemma A.2, ∆ ≤ 2 tan(φP ), and so 3(cε∆) = 3ε∆φP

6 tan(φP ) ≤
6εφP tan(φP )

6 tan(φP ) = εφP , thus satisfying case (i). Similarly, 3(1+δ)cε∆ ≤ (1+δ)εφP , satisfying case (ii).

For case (iii) set c =
(

φP

6 tan(φP )

)3

, which is still a constant. Since φP

6 tan(φP ) ≤ 1 we have 3(8(cε)1/3+

cε)∆ ≤ 3(8
(

φP

6 tan(φP )

)
ε1/3 +

(
φP

6 tan(φP )

)3

ε)2 tan(φP ) ≤ (8ε1/3 +
(

φP

6 tan(φP )

)2

ε)φP ≤ (8ε1/3 +

ε)φP .

D Additional Hardness Results

D.1 Problem 3.1 is d-SUM-hard

This section proves the following decision version of Problem 3.1 is d-SUM-hard. The approach is
the same as in the convex reduction where we construct a point set P with d clusters each having N
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points. However, we now require that φP ≤ π/2− γ to match the problem statement in Problem 3.1.
Without this requirement, the reduction would be virtually the same as before, except with angles not
distances. As a consequence of the bounded angle assumption, some of the calculations become very
technically challenging.

Problem D.1. Given a set P of n points in Rd such that φP ≤ π/2 − γ, a value ε > 0, and an
integer k, is there a subset X ⊆ P of k points such that dconic(X,P ) ≤ εφP , where φP is the
angular diameter of P .

Given an instance of d-SUM with N values S = {s1, s2, · · · , sN} we construct an instance of
Problem D.1 where P ⊂ Rd+2, k = d, and ε = 1/7. Let u = (1, 1 · · · , 1) be the all ones vector in
Rd, ei be the ith standard basis vector in Rd, and w∗ = tan(ε cos−1

(
d+2+1/5
d+3

)
) be a constant. Note

that setting ε = 1/7 still implies the general ε case is hard, and moreover the problem remains hard
even if we restrict to cases with ε ≥ 1/7. In this section we assume d ≥ 4, which is not necessary
but it simplifies some of our later calculations.

Definition D.2. The set of points P ⊂ Rd+2 are the following

pij points: For each i ∈ [d], j ∈ [N ], set (a1, · · · , ad) = u+ ei, w = sj · w∗ and v = 0

Let R = ∪i,j pij be the set of all pij points

q point: For each i ∈ [d], ai = 1+d
d , w = w∗/2, v = 0

q′ point For each i ∈ [d], ai = 1+d
d , w = w∗/2, v = ||q|| · tan(εφR)

Again, we let P i = ∪j pij denote the ith cluster. Observe that w∗ is the largest w value any point
can have because sk ∈ [0, 1]. Since w∗ is largest when d = 4 and since ε = 1/7 we have the upper
bound w∗ < 1/

√
5, which will be used in the following calculations.

Lemma D.3. φR = cos−1

(
d+2+sminsmax(w∗)2√

d+3+(sminw∗)2
√
d+3+(smaxw∗)2

)
where smin and smax are, respec-

tively, the minimum and maximum values in S.

Proof: We consider the angle between two points in different clusters and two points in the same
cluster. Let pij , p

i
k, p

m
l be three arbitrary points in R where j 6= k and m 6= i.

The inter-cluster angle is angle(pij , p
m
l ) = cos−1

(
d+2+w(pij)w(pml )(w∗)2√

d+3+(w(pij)w∗)2
√
d+3+(w(pml )w∗)2

)
.

The intra-cluster angle is angle(pij , p
i
k) = cos−1

(
d+3+w(pij)w(pik)(w∗)2√

d+3+(w(pij)w∗)2
√
d+3+(w(pik)w∗)2

)
.

Note that the inter-cluster angle is maximized when w(pij) = smax and w(pml ) = smin. This angle
is exactly what we claim φR to be. So it is left to show that this maximized inter-cluster angle is
always larger than any intra-cluster angle. Note that any inter-cluster angle is lower bounded by
angle(pij , p

m
l ) ≥ cos−1

(
d+2+1/5
d+3

)
and thus we have

angle(pij , p
i
k) ≤ cos−1

(
d+ 3

d+ 3 + 1
5

)
< cos−1

(
d+ 2 + 1

5

d+ 3

)
≤ angle(pij , p

m
l ).

Lemma D.4. The angular diameter of P , φP , is equal to φR.

Proof: To prove the lemma we show the lower bound for φR, seen in Lemma D.3, is larger than
angle(pij , q), angle(pij , q

′), and angle(q, q′) for a point pij ∈ R. First note that by Definition D.2,
angle(q, q′) = εφR < φP , since φP is at least φR.
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It is clear that angle(pij , q) ≤ angle(pij , q
′), so we only need to consider the latter. We first find an

upper bound on angle(pij , q
′). Because ||q||2 ≤ (d+ 2 + 1/d+ 1/20), we obtain

cos(angle(pij , q
′)) ≥ (d+ 1)2

d
√
d+ 3 + 1

5

√
d+ 2 + 1

d + (w∗)2

4 + ||q||2 tan2(εφR)

≥ (d+ 1)2

d
√
d+ 16

5

√
d+ 1

d + 23
10

.

The last inequality holds because φR ≤ cos−1
(
d+2
d+4

)
and ||q||2 tan2(ε cos−1

(
d+2
d+4

)
) < 1/4 for all

d ≥ 4 and ε = 1/7. To verify angle(pij , q
′) ≤ φR, we use the this upper bound on angle(pij , q

′) and
the same lower bound on φR used in the proof of Lemma D.3. The limit of the ratio of these two
bounds is

lim
d→∞

cos−1

(
d2+2d+1

d
√
d+3+ 1

5

√
d+ 1

d + 23
10

)
cos−1

(
d+2+ 1

5

d+3

) =

√
15

16
< 1.

Since the derivative of this ratio is positive for all d ≥ 4, this limit is an upper bound. Thus,
angle(pij , q

′) ≤ φR and hence φP = φR.

Corollary D.5. The diameter of P is less than π/4.

Proof: From the above proofs we have the bound φP = φR ≤ cos−1
(

d+2
d+3+ 1

5

)
. Thus for any d ≥ 4,

φP < π/4, and moreover this upper bound is a decreasing function whose limit is 0 as d goes to
infinity.

We now prove the completeness and soundness of the above reduction using the fact that φP = φR
from Lemma D.4.

Lemma D.6 (Completeness). If there is a subset {sk1 , sk2 , · · · , skd} of d values (not necessarily
distinct) such that

∑
i∈[d] ski = d/2, then the above described instance of Problem D.1 is a true

instance, i.e. there is a d sized subset X ⊆ P such that dconic(X,P ) ≤ εφP .

Proof: Let xi = (u + ei, ski · w∗, 0), which by Definition D.2 is a point in P and let X =
{x1, . . . , xd}. By Observation C.3, maxp∈P d(p,Conic(X)) ≤ εφP implies dconic(X,P ) ≤ εφP .
We now show that maxp∈P angle(p,Conic(X)) ≤ εφP which completes the lemma.

First observe that for any point pij in P , xi will have the same values as pij in all the ai coordinates.
Consider the right triangle formed by the origin, pij with w(pij) set to 0, and pij with w(pij) set
to w∗. Both pij and xi lie somewhere on the short leg since their w values are at most w∗ =

tan(ε cos−1
(
d+2+1/5
d+3

)
) ≤ tan(εφP ). Thus their angle is less than the angle opposite the short leg.

Since tan−1(·) is monotonically increasing and the length of the longer leg is at least
√
d, we get

angle(pij , xi) ≤ tan−1

(
w∗√
d

)
≤ tan−1(tan(εφP )) ≤ εφP .

The only other points in P are q and q′ and by definition angle(q, q′) = εφP . Again, we claim
x = 1

d

∑d
i xi ∈ Conic(X) is the point q which implies maxp∈P angle(p,Conic(X)) ≤ εφP . As

X contains exactly one point from each set P i, and in each such set all points have ai = 2 and all
other aj = 1, it holds that x has 1+d

d for all the a coordinates. All points in X have v = 0 and so
this holds for x as well. Thus we only need to verify that w(x) = w(q) = w∗

2 , for which we have
w(x) = 1

d

∑
i w(xi) = w∗

d

∑
i ski = w∗

2 .
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Lemma D.7. Let P ⊂ Rd+2 be as defined above, and let X ⊆ P be a subset of size d. Then if
dconic(X,P ) ≤ εφP , then for all i, X contains exactly one point from P i.

Proof: Assume that there is a set P t such that X ∩ P t = ∅. Consider an arbitrary point ptj in P t.
We prove that angle(x, ptj) > εφP for any point x in Conic(X), which contradicts the assumption
that dconic(X,P ) ≤ εφP .

We first find a point x′ that lower bounds angle(x, ptj) for all x in Conic(X). Since every point in
P \ P t has at most 1+d

d in the at coordinate, any point x in Conic(X) will have at most this value
for at. Thus, we let x′ have the same value as ptj in every coordinate except for at which is 1+d

d .
Note that the angle between x′ and ptj is minimized when they have the same w values. Thus we let
w(ptj) = w(x′) = w and their angle becomes

angle(x, ptj) ≥ angle(x′, ptj) = cos−1

 2 + 2
d + d− 1 + w2√

(d+ 3 + w2)(
(

1+d
d

)2
+ d− 1 + w2)


The derivative with respect to w of the above inner ratio is positive for any d ≥ 4, w ≥ 0. Therefore,
as w∗ < 1/

√
5 is an upper bound on the w value of any point, we let w(ptj) = w(x′) = 1/

√
5 which

maximizes the inner ratio and consequently minimizes the angle between the two points. Thus for
any x ∈ Conic(X),

angle(x, ptj) ≥ angle(x′, ptj) ≥ cos−1

 2 + 2
d + d− 1 + 1

5√
(d+ 3 + 1

5 )(
(

1+d
d

)2
+ d− 1 + 1

5 )


Remember from the proof of Lemma D.4 that cos−1

(
d+2
d+4

)
is an upper bound for φP . Thus to show

angle(x, ptj) > εφP it suffices to argue the ratio

cos−1

(
2+ 2

d +d−1+ 1
5√

(d+3+ 1
5 )(( 1+d

d )
2
+d−1+ 1

5 )

)
cos−1

(
d+2
d+4

) ,

is > ε = 1/7 for any d ≥ 4. Thus the claim follows as the derivative of this ratio is positive for all
d ≥ 4, and thus the minimum occurs at d = 4, which itself is greater than 1/7.

Lemma D.8. If dconic(X,P ) ≤ εφP , then q ∈ Conic(X) and moreover q = 1
d

∑
xi∈X xi.

Proof: By Lemma D.7, X cannot contain the point q′, and since all points in P other than q′ have v
coordinate equal to 0, Conic(X) is contained in the hyperplane v = 0. Note that the projection of q′
onto this hyperplane is the point q. As the angle between q′ and q is exactly εφP by definition, it then
must be that q ∈ Conic(X).

For the second part of the lemma, consider the coordinate ai for any i. q has this coordinate set to
1+d
d . Again by Lemma D.7, X contains exactly one point with this coordinate set to 2 and all other

points in X have this coordinate set to 1. Thus the convex combination for q must take at least a 1/d
fraction of this one point in order to achieve a total value of 1+d

d in coordinate ai. On the other hand,
the convex combination cannot take more than a 1/d fraction of this point, as by symmetry it would
imply for some other coordinate aj , the total value would be strictly less than 1+d

d . Thus for all i, the
convex combination for q must take exactly a 1/d fraction of xi

Lemma D.9 (Soundness). Let P be an instance of Problem 3.1 generated from a d-SUM instance
S, as described in Definition D.2. If there is a subset X ⊆ P of size d such that dconic(X,P ) ≤ εφP ,
then there is a choice of d values from S that sum to exactly d/2.
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Proof: From Lemma D.7 we know that X consists of exactly one point from each cluster P i. Thus
for each xi ∈ X , w(xi) = ski · w∗ for some ski ∈ S. By Lemma D.8, q = 1

d

∑
i xi, which implies

w(q) = 1
d

∑
i w(xi). By Definition D.2 w(q) = w∗

2 , which implies:

w∗

2
=

1

d

∑
i

w(xi) =
w∗

d

∑
i

ski .

Thus we have a set {sk1 , . . . , skd} of d values from S such that
∑
i ski = d/2.

Lemma D.6 and Lemma D.9 immediately imply the following.

Theorem D.10. For point sets in Rd+2, Problem D.1 is d-SUM-hard.

E Additional Experimental Results
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Figure E.1: Additional experimental results for feature selection.

F Proofs from Section 4

Lemma F.1 (Restatement of Lemma 4.5). The diameter of P , ∆P , is equal to ∆∗.

Proof: Observe that there are only five different types of pairs of points in P that can determine ∆P .
Consider three points pij , p

i
k, pml in P where j 6= k and m 6= i, i.e. pij and pik are in the same cluster

and pml is in a different cluster. The five distances are: d(pij , p
i
k), d(pij , p

m
l ), d(pij , q

′), d(pij , q
′),

d(q, q′). Consider d(pij , p
m
l ). The distance between these two points is

√
2 + (εw(pij)− εw(pml ))2.

This distance is maximized when w(pij) and w(pml ) are the maximum and minimum values in S,
which is exactly ∆∗. Thus we need to show every other distance is less than ∆∗.

First we have d(pij , p
i
k) ≤

√
(εw(pij)− εw(pik))2 ≤ ε and d(q, q′) = ε∆∗ < ∆∗. Next, note that

(εsj − ε/2)2 ≤ 1/36 and (ε∆∗)2 ≤ 7/27 since ε ≤ 1/3. Thus,

d(pij , q) ≤ d(pij , q
′) =

√
(1− 1/d)2 + (d− 1)/d2 + (εsj − ε/2)2 + (ε∆∗)2 <

√
2 ≤ ∆∗.
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Lemma F.2 (Restatement of Lemma 4.7). Let P ⊂ Rd+2 be as defined above, and let X ⊆ P be
a subset of size d. If dconvex(X,P ) ≤ ε∆, then for all i, X contains exactly one point from P i.

Proof: Assume that there is a set P t such that X ∩ P t = ∅. Consider an arbitrary point ptj in P t.
We prove that d(x, ptj) > ε∆ for any point x in Convex(X), which is a contradiction as it implies
dconvex(X,P ) ≤ ε∆. This will imply each set P i has non-empty intersection with X , and as the
size of X is the same as the number of P i sets, this in turn implies X contains exactly one point from
each P i set.

First observe the only points in P \ P t with non-zero at coordinate are q and q′, each of which has
at = 1/d. As x is a convex combination of points from P \ P t this implies that its at coordinate
is at most 1/d. On the other hand, ptj has coordinate at set to 1. This implies that d(x, ptj) ≥√

(1− 1/d)2 = 1− 1/d ≥ 1/2 > ε∆∗ = ε∆. (Other coordinates can be ignored as differing values
in other coordinates can only increase d(x, ptj).)

Lemma F.3 (Restatement of Lemma 4.8). If dconvex(X,P ) ≤ ε∆, then q ∈ Convex(X) and
moreover q = 1

d

∑
xi∈X xi.

Proof: By Lemma 4.7, observe that X cannot contain the point q′. On the other hand, all points in P
other than q′ have v coordinate equal to 0, and thus Convex(X) is contained in the hyperplane v = 0.
At the same time, q′ has v coordinate equal to ε∆∗, and thus has distance ε∆ to the hyperplane v = 0.
Thus the projection of q′ onto the v = 0 hyperplane must be contained in Convex(X). However, the
projection of q′ onto this hyperplane is the point q, and thus q ∈ Convex(X).

For second part of the lemma, consider the coordinate ai for any i. q has this coordinate set to 1/d.
Again by Lemma 4.7, X contains exactly one point with this coordinate set to 1 and all other points
in X have this coordinate set to zero. Thus any convex combination of X realizing q must take a 1/d
fraction of this point. As this is true for all i, the claim follows.
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