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Abstract
We study the problem of learning overcomplete HMMs—those that have many
hidden states but a small output alphabet. Despite having significant practical
importance, such HMMs are poorly understood with no known positive or negative
results for efficient learning. In this paper, we present several new results—both
positive and negative—which help define the boundaries between the tractable and
intractable settings. Specifically, we show positive results for a large subclass of
HMMs whose transition matrices are sparse, well-conditioned, and have small
probability mass on short cycles. On the other hand, we show that learning is
impossible given only a polynomial number of samples for HMMs with a small
output alphabet and whose transition matrices are random regular graphs with large
degree. We also discuss these results in the context of learning HMMs which can
capture long-term dependencies.

1 Introduction
Hidden Markov Models (HMMs) are commonly used for data with natural sequential structure (e.g.,
speech, language, video). This paper focuses on overcomplete HMMs, where the number of output
symbols m is much smaller than the number of hidden states n. As an example, for an HMM that
outputs natural language documents one character at a time, the number of characters m is quite
small, but the number of hidden states n would need to be very large to encode the rich syntactic,
semantic, and discourse structure of the document.

Most algorithms for learning HMMs with provable guarantees assume the transition T ∈ Rn×n and
observation O ∈ Rm×n matrices are full rank [2, 3, 20] and hence do not apply to the overcomplete
regime. A notable exception is the recent work of Huang et al. [14] who studied this setting where
m � n and showed that generic HMMs can be learned in polynomial time given exact moments
of the output process (which requires infinite data). Though understanding properties of generic
HMMs is an important first step, in reality, HMMs with a large number of hidden states typically have
structured, non-generic transition matrices—e.g., consider sparse transition matrices or transition
matrices of factorial HMMs [12]. Huang et al. [14] also assume access to exact moments, which
leaves open the question of when learning is possible with efficient sample complexity. Summarizing,
we are interested in the following questions:

1. What are the fundamental limitations for learning overcomplete HMMs?

2. What properties of HMMs make learning possible with polynomial samples?

3. Are there structured HMMs which can be learned in the overcomplete regime?

Our contributions. We make progress on all three questions in this work, sharpening our under-
standing of the boundary between tractable and intractable learning. We begin by stating a negative
result, which perhaps explains some of the difficulty of obtaining strong learning guarantees in the
overcomplete setting.

Theorem 1. The parameters of HMMs where i) the transition matrix encodes a random walk on a
regular graph on n nodes with degree polynomial in n, ii) the output alphabet m = polylog(n) and,



iii) the output distribution for each hidden state is chosen uniformly and independently at random,
cannot be learned (even approximately) using polynomially many samples over any window length
polynomial in n, with high probability over the choice of the observation matrix.

Theorem 1 is somewhat surprising, as parameters of HMMs with such transition matrices can be
easily learned in the non-overcomplete (m ≥ n) regime. This is because such transition matrices
are full-rank and their condition numbers are polynomial in n; hence spectral techniques such
as Anandkumar et al. [3] can be applied. Theorem 1 is also fundamentally of a different nature
as compared to lower bounds based on parity with noise reductions for HMMs [20], as ours is
information-theoretic.1 Also, it seems far more damning as the hard cases are seemingly innocuous
classes such as random walks on dense graphs. The lower bound also shows that analyzing generic or
random HMMs might not be the right framework to consider in the overcomplete regime as these
might not be learnable with polynomial samples even though they are identifiable. This further
motivates the need for understanding HMMs with structured transition matrices. We provide a proof
of Theorem 1 with more explicitly stated conditions in Appendix D.
For our positive results we focus on understanding properties of structured transition matrices
which make learning tractable. To disentangle additional complications due to the choice of the
observation matrix, we will assume that the observation matrix is drawn at random throughout the
paper. Long-standing open problems on learning aliased HMMs (HMMs where multiple hidden states
have identical output distributions) [7, 15, 23] hint that understanding learnability with respect to
properties of the observation matrix is a daunting task in itself, and is perhaps best studied separately
from understanding how properties of the transition matrix affect learning.

Our positive result on learnability (Theorem 2) depends on two natural graph-theoretic properties of
the transition matrix. We consider transition matrices which are i) sparse (hidden states have constant
degree) and ii) have small probability mass on cycles shorter than 10 logm n states—and show that
these HMMs can be learned efficiently using tensor decomposition and the method of moments,
given random observation matrices. The condition prohibiting short cycles might seem mysterious.
Intuitively, we need this condition to ensure that the Markov Chain visits a sufficient large portion of
the state space in a short interval of time, and in fact the condition stems from information-theoretic
considerations. We discuss these further in Sections 2.4 and 3.1. We also discuss how our results
relate to learning HMMs which capture long-term dependencies in their outputs, and introduce a new
notion of how well an HMM captures long-term dependencies. These are discussed in Section 5.

We also show new identifiability results for sparse HMMs. These results provide a finer picture of
identifiability than Huang et al. [14], as ours hold for sparse transition matrices which are not generic.

Technical contribution. To prove Theorem 2 we show that the Khatri-Rao product of dependent
random vectors is well-conditioned under certain conditions. Previously, Bhaskara et al. [6] showed
that the Khatri-Rao product of independent random vectors is well-conditioned to perform a smoothed
analysis of tensor decomposition, their techniques however do not extend to the dependent case. For
the dependent case, we show a similar result using a novel Markov chain coupling based argument
which relates the condition number to the best coupling of output distributions of two random walks
with disjoint starting distributions. The technique is outlined in Section 2.2.

Related work. Spectral methods for learning HMMs have been studied in Anandkumar et al.
[3], Bhaskara et al. [5], Allman et al. [1], Hsu et al. [13], but these results require m ≥ n. In Allman
et al. [1], the authors show that that HMMs are identifiable given moments of continuous observations
over a time interval of length N = 2τ + 1 for some τ such that

(
τ+m−1
m−1

)
≥ n. When m � n

this requires τ = O(n1/m). Bhaskara et al. [5] give another bound on window size which requires
τ = O(n/m). However, with a output alphabet of size m, specifying all moments in a N length
continuous time interval requires mN time and samples, and therefore all of these approaches lead to
exponential runtimes when m is constant with respect to n. Also relevant is the work by Anandkumar
et al. [4] on guarantees for learning certain latent variable models such as Gaussian mixtures in the
overcomplete setting through tensor decomposition. As mentioned earlier, the work closest to ours is
Huang et al. [14] who showed that generic HMMs are identifiable with τ = O(logm n), which gives
the first polynomial runtimes for the case when m is constant.

1Parity with noise is information theoretically easy given observations over a window of length at least the
number of inputs to the parity. This is linear in the number of hidden states of the parity with noise HMM,
whereas Theorem 1 says that the sample complexity must be super polynomial for any polynomial sized window.
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Outline. Section 2 introduces the notation and setup. It also provides examples and a high-level
overview of our proof approach. Section 3 states the learnability result, discusses our assumptions
and HMMs which satisfy these assumptions. Section 4 contains our identifiability results for sparse
HMMs. Section 5 discusses natural measures of long-term dependencies in HMMs. We conclude in
Section 6. Proof details are deferred to the Appendix.

2 Setup and preliminaries
In this section we first introduce the required notation, and then outline the method of moments
approach for parameter recovery. We also go over some examples to provide a better understanding
of the classes of HMMs we aim to learn, and give a high level proof strategy.

2.1 Notation and preliminaries

We will denote the output at time t by yt and the hidden state at time t by ht. Let the number of hidden
states be n and the number of observations be m. Assume that the output alphabet is {0, . . . ,m− 1}
without loss of generality. Let T be the transition matrix and O be the observation matrix of the
HMM, both of these are defined so that the columns add up to one. For any matrix A, we refer to
the ith column of A as Ai. T ′ is defined as the transition matrix of the time-reversed Markov chain,
but we do not assume reversibility and hence T may not equal T ′. Let yji = yi, . . . , yj denote the
sequence of outputs from time i to time j. Let lji = li, . . . , lj refer to a string of length i + j − 1
over the output alphabet, denoting a particular output sequence from time i to j. Define a bijective
mapping L which maps an output sequence lτ1 ∈ {0, . . . ,m−1}τ into an index L(lτ1 ) ∈ {1, . . . ,mτ}
and the associated inverse mapping L−1.

Throughout the paper, we assume that the transition matrix T is ergodic, and hence has a stationary
distribution. We also assume that every hidden state has stationary probability at least 1/poly(n).
This is a necessary condition, as otherwise we might not even visit all states in poly(n) samples. We
also assume that the output process of the HMM is stationary. A stochastic process is stationary
if the distribution of any subset of random variables is invariant with respect to shifts in the time
index—that is, P[yτ−τ = lτ−τ ] = P[yτ+T−τ+T = lτ−τ ] for any τ, T and string lτ−τ . This is true if the
initial hidden state is chosen according to the stationary distribution.

Our results depend on the conditioning of the matrix T with respect to the `1 norm. We define
σ
(1)
min(T ) as the minimum `1 gain of the transition matrix T over all vectors x having unit `1 norm

(not just non-negative vectors x, for which the ratio would always be 1):

σ
(1)
min(T ) = min

x∈Rn
‖Tx‖1
‖x‖1

σ
(1)
min(T ) is also a natural parameter to measure the long-term dependence of the HMM—if σ(1)

min(T )
is large then T preserves significant information about the distribution of hidden states at time 0 at a
future time t, for all initial distributions at time 0. We discuss this further in Section 5.

2.2 Method of moments for learning HMMs

Our algorithm for learning HMMs follows the method of moments based approach, outlined for
example in Anandkumar et al. [2] and Huang et al. [14]. In contrast to the more popular Expectation-
Maximization (EM) approach which can suffer from slow convergence and local optima [21], the
method of moments approach ensures guaranteed recovery of the parameters under mild conditions.
More details about tensor decomposition and the method of moments approach to learning HMMs
can be found in Appendix A.

The method of moments approach to learning HMMs has two high-level steps. In the first step, we
write down a tensor of empirical moments of the data, such that the factors of the tensor correspond to
parameters of the underlying model. In the second step, we perform tensor decomposition to recover
the factors of the tensor—and then recover the parameters of the model from the factors. The key fact
that enables the second step is that tensors have a unique decomposition under mild conditions on
their factors, for example tensors have a unique decomposition if all the factors are full rank. The
uniqueness of tensor decomposition permits unique recovery of the parameters of the model.

We will learn the HMM using the moments of observation sequences yτ−τ from time −τ to τ .
Since the output process is assumed to be stationary, the distribution of outputs is the same for
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any contiguous time interval of the same length, and we use the interval −τ to τ in our setup for
convenience. We call the length of the observation sequences used for learning the window length
N = 2τ + 1. Since the number of samples required to estimate moments over a window of length N
ismN , it is desirable to keepN small. Note that to ensure polynomial runtime and sample complexity
for the method of moments approach, the window length N must be O(logm n).
We will now define our moment tensor. Given moments over a window of length N = 2τ + 1, we
can construct the third-order moment tensor M ∈ Rmτ×mτ×m using the mapping L from strings of
outputs to indices in the tensor:

M(L(lτ1 ),L(l
−τ
−1 ),l0)

= P[yτ−τ = lτ−τ ].

M is simply the tensor of the moments of the HMM over a window length N , and can be estimated
directly from data. We can write M as an outer product because of the Markov property:

M = A⊗B ⊗ C

where A ∈ Rmτ×n, B ∈ Rmτ×n, C ∈ Rm×n are defined as follows (here h0 denotes the hidden
state at time 0):

AL(lτ1 ),i = P[yτ1 = lτ1 | h0 = i]

BL(l−τ−1 ),i
= P[y−τ−1 = l−τ−1 | h0 = i]

Cl0,i = P[y0 = l, h0 = i]

T andO can be related in a simple manner toA,B and C. If we can decompose the tensorM into the
factors A, B and C, we can recover T and O from A, B and C. Kruskal’s condition [18] guarantees
that tensors have a unique decomposition whenever A and B are full rank and no two column of C
are the same. We refer the reader to Appendix A for more details, specifically Algorithm 1.

2.3 High-level proof strategy

As the transition and observation matrices can be recovered from the factors of the tensors, our goal
is to analyze the conditions under which the tensor decomposition step works provably. Note that the
factor matrix A is the likelihood of observing each sequence of observations conditioned on starting
at a given hidden state. We’ll refer to A as the likelihood matrix for this reason. B is the equivalent
matrix for the time-reversed Markov chain. If we show that A,B are full rank and no two columns of
C are the same, then the HMM can be learned provided the exact moments using the simultaneous
diagonalization algorithm, also known as Jennrich’s algorithm (see Algorithm 1). We show this
property for our identifiability results. For our learnability results, we show that the matrices A and
B are well-conditioned (have condition numbers polynomial in n), which implies learnability from
polynomial samples. This is the main technical contribution of the paper, and requires analyzing
the condition number of the Khatri-Rao product of dependent random vectors. Before sketching the
argument, we first introduce some notation. We can define A(t) as the likelihood matrix over t steps:

A
(t)

L(lt1),i
= P[yt1 = lt1 | h0 = i].

A(t) can be recursively written down as follows:

A(0) = OT, A(t) = (O �A(t−1))T (1)

where A�B, denotes the Khatri-Rao product of the matrices A and B. If A and B are two matrices
of size m1 × r and m2 × r then the Khatri-Rao product is a m1m2 × r matrix whose ith column is
the outer product Ai ⊗Bi flattened into a vector. Note that A(τ) is the same as A. We now sketch
our argument for showing that A(τ) is well-conditioned under appropriate conditions.

Coupling random walks to analyze the Khatri-Rao product. As mentioned in the introduction,
in this paper we are interested in the setting where the transition matrix is fixed but the observation
matrix is drawn at random. If we could draw fresh random matrices O at each time step of the
recursion in Eq. 1, then A would be well-conditioned by the smoothed analysis of the Khatri-Rao
product due to Bhaskara et al. [6]. However, our setting is significantly more difficult, as we do not
have access to fresh randomness at each time step, so the techniques of Bhaskara et al. [6] cannot be
applied here. As pointed out earlier, the condition number of A in this scenario depends crucially on
the transition matrix T , as A is not even full rank if T = I .
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(a) Transition matrix is a cycle, or a
permutation on the hidden states.

(b) Transition matrix is a random walk on a
graph with small degree and no short cycles.

Figure 1: Examples of transition matrices which we can learn, refer to Section 2.4 and Section 3.2.

Instead, we analyze A by a coupling argument. To get some intuition for this, note that if A does not
have full rank, then there are two disjoint sets of columns of A whose linear combinations are equal,
and these combination weights can be used to setup the initial states of two random walks defined by
the transition matrix T which have the same output distribution for τ time steps. More generally, if
A is ill-conditioned then there are two random walks with disjoint starting states which have very
similar output distributions. We show that if two random walks have very similar output distributions
over τ time steps for a randomly chosen observation matrix O, then most of the probability mass in
these random walks can be coupled. On the other hand, if (σ(1)

min(T ))
τ is sufficiently large, the total

variational distance between random walks starting at two different starting states must be at least
(σ

(1)
min(T ))

τ after τ time steps, and so there cannot be a good coupling, and A is well-conditioned.
We provide a sketch of the argument for a simple case in Appendix 1 before we prove Theorem 2.

2.4 Illustrative examples

We now provide a few simple examples which will illustrate some classes of HMMs we can and
cannot learn. We first provide an example of a class of simple HMMs which can be handled by our
results, but has non-generic transition matrices and hence does not fit into the framework of Huang
et al. [14]. Consider an HMM where the transition matrix is a permutation or cyclic shift on the
hidden states (see Fig. 1a). Our results imply that such HMMs are learnable in polynomial time from
polynomial samples if the output distributions of the hidden states are chosen at random. We will
try to provide some intuition about why an HMM with the transition matrix as in Fig. 1a should be
efficiently learnable. Let us consider the simple case when the the outputs are binary (so m = 2) and
each hidden state deterministically outputs a 0 or a 1, and is labeled by a 0 or a 1 accordingly. If
the labels are assigned at random, then with high probability the string of labels of any continuous
sequence of 2 log2 n hidden states in the cycle in Fig. 1a will be unique. This means that the output
distribution in a 2 log2 n time window is unique for every initial hidden state, and it can be shown
that this ensures that the moment tensor has a unique factorization. By showing that the output
distribution in a 2 log2 n time window is very different for different initial hidden states—in addition
to being unique—we can show that the factors of the moment tensor are well-conditioned, which
allows recovery with efficient sample complexity. As another slightly more complex example of
an HMM we can learn, Fig. 1b depicts an HMM whose transition matrix is a random walk on a
graph with small degree and no short cycles. Our learnability result can handle such HMMs having
structured transition matrices.

As an example of an HMM which cannot be learned in our framework, consider an HMM with
transition matrix T = I and binary observations (m = 2), see Fig. 2a. In this case, the probability of
an output sequence only depends on the total number of zeros or ones in the sequence. Therefore,
we only get t independent measurements from windows of length t, hence windows of length O(n)
instead of O(log2 n) are necessary for identifiability (also refer to Blischke [8] for more discussions
on this case). More generally, we prove in Proposition 1 that for smallm a transition matrix composed
only of cycles of constant length (see Fig. 2b) requires the window length to be polynomial in n to
become identifiable.

Proposition 1. Consider an HMM on n hidden states and m observations with the transition matrix
being a permutation composed of cycles of length c. Then windows of length O(n1/m

c

) are necessary
for the model to be identifiable, which is polynomial in n for constant c and m.

The root cause of the difficulty in learning HMMs having short cycles is that they do not visit a large
enough portion of the state space in O(logm n) steps, and hence moments over a O(logm n) time
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(a) Transition matrix is the identity on
8 hidden states.

(b) Transition matrix is a union of 4 cycles,
each on 5 hidden states.

Figure 2: Examples of transition matrices which do not fit in our framework. Proposition 1 shows
that such HMMs where the transition matrix is composed of a union of cycles of constant length are
not even identifiable from short windows of length O(logm n)

window do not carry sufficient information for learning. Our results cannot handle such classes of
transition matrices, also see Section 3.1 for more discussion.

3 Learnability results for overcomplete HMMs
In this section, we state our learnability result, discuss the assumptions and provide examples of
HMMs which satisfy these assumptions. Our learnability results hold under the following conditions:

Assumptions: For fixed constants c1, c2, c3 > 1, the HMM satisfies the following properties for
some c > 0:

1. Transition matrix is well-conditioned: Both T and the transition matrix T ′ of the time
reversed Markov Chain are well-conditioned in the `1-norm: σ(1)

min(T ), σ
(1)
min(T

′) ≥ 1/mc/c1

2. Transition matrix does not have short cycles: For both T and T ′, every state visits at least
10 logm n states in 15 logm n time except with probability δ1 ≤ 1/nc.

3. All hidden states have small “degree”: There exists δ2 such that for every hidden state i, the
transition distributions Ti and T ′i have cumulative mass at most δ2 on all but d states, with
d ≤ m1/c2 and δ2 ≤ 1/nc. Hence this is a soft “degree” requirement.

4. Output distributions are random and have small support : There exists δ3 such that for every
hidden state i the output distribution Oi has cumulative mass at most δ3 on all but k outputs,
with k ≤ m1/c3 and δ3 ≤ 1/nc. Also, the output distribution Oi is drawn uniformly on
these k outputs.

The constants c1, c2, c3 are can be made explicit, for example, c1 = 20, c2 = 16 and c3 = 10 works.
Under these conditions, we show that HMMs can be learned using polynomially many samples:
Theorem 2. If an HMM satisfies the above conditions, then with high probability over the choice
of O, the parameters of the HMM are learnable to within additive error ε with observations over
windows of length 2τ + 1, τ = 15 logm n, with the sample complexity poly(n, 1/ε).

Appendix C also states a corollary of Theorem 2 in terms of the minimum singular value σmin(T ) of
the matrix T , instead of σ(1)

min(T ). We discuss the conditions for Theorem 2 next, and subsequently
provide examples of HMMs which satisfy these conditions.

3.1 Discussion of the assumptions

1. Transition matrix is well-conditioned: Note that singular transition matrices might not even be
identifiable. Moreover, Mossel and Roch [20] showed that learning HMMs with singular transition
matrices is as hard as learning parity with noise, which is widely conjectured to be computationally
hard. Hence, it is necessary to exclude at least some classes of ill-conditioned transition matrices.

2. Transition matrix does not have short cycles: Due to Proposition 1, we know that a HMM might
not even be identifiable from short windows if it is composed of a union of short cycles, hence we
expect a similar condition for learning the HMM with polynomial samples; though there is a gap
between the upper and lower bounds in terms of the probability mass which is allowed on the short
cycles. We performed some simulations to understand how the length of cycles in the transition
matrix and the probability mass assigned to short cycles affects the condition number of the likelihood
matrix A; recall that the condition number of A determines the stability of the method of moments
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(a) The conditioning becomes worse
when cycles are smaller or when more
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Figure 3: Experiments to study the effect of sparsity and short cycles on the learnability of HMMs.
The condition number of the likelihood matrix A determines the stability or sample complexity of the
method of moments approach. The condition numbers are averaged over 10 trials.

approach. We take the number of hidden states n = 128, and let P128 be a cycle on the n hidden
states (as in Fig. 1a). Let Pc be a union of short cycles of length c on the n states (refer to Fig. 2b
for an example). We take the transition matrix to be T = εPc + (1− ε)P128 for different values of
c and ε. Fig. 3a shows that the condition number of A becomes worse and hence learning requires
more samples if the cycles are shorter in length, and if more probability mass is assigned to the short
cycles, hinting that our conditions are perhaps not be too stringent.

3. All hidden states have a small degree: Condition 3 in Theorem 2 can be reinterpreted as saying
that the transition probabilities out of any hidden state must have mass at most 1/n1+c on any hidden
state except a set of d hidden states, for any c > 0. While this soft constraint is weaker than a hard
constraint on the degree, it natural to ask whether any sparsity is necessary to learn HMMs. As above,
we carry out simulations to understand how the degree affects the condition number of the likelihood
matrix A. We consider transition matrices on n = 128 hidden states which are a combination of a
dense part and a cycle. Define P128 to be a cycle as before. Define Gd as the adjacency matrix of a
directed regular graph with degree d. We take the transition matrix T = εGd + (1− εd)P128. Hence
the transition distribution of every hidden state has mass ε on a set of d neighbors, and the residual
probability mass is assigned to the permutation P128. Fig. 3b shows that the condition number of
A becomes worse as the degree d becomes larger, and as more probability mass ε is assigned to
the dense part Gd of the transition matrix T , providing some weak evidence for the necessity of
Condition 3. Also, recall that Theorem 1 shows that HMMs where the transition matrix is a random
walk on an undirected regular graph with large degree (degree polynomial in n) cannot be learned
using polynomially many samples if m is a constant with respect to n. However, such graphs have
all eigenvalues except the first one to be less than O(1/

√
d), hence it is not clear if the hardness of

learning depends on the large degree itself or is only due to T being ill-conditioned. More concretely,
we pose the following open question:

Open question: Consider an HMM with a transition matrix T = (1 − ε)P + εU , where P is the
cyclic permutation on n hidden states (such as in Fig. 1a) and U is a random walk on a undirected,
regular graph with large degree (polynomial in n) and ε > 0 is a constant. Can this HMM be learned
using polynomial samples when m is small (constant) with respect to n? This example approximately
preserves σmin(T ) by the addition of the permutation, and hence the difficulty is only due to the
transition matrix having large degree.

4. Output distributions are random and have small support: As discussed in the introduction, if we
do not assume that the observation matrices are random, then even simple HMMs with a cycle or
permutation as the transition matrix might require long windows even to become identifiable, see Fig.
4. Hence some assumptions on the output distribution do seem necessary for learning the model from
short time windows, though our assumptions are probably not tight. For instance, the assumption that
the output distributions have a small support makes learning easier as it leads to the outputs being
more discriminative of the hidden states, but it is not clear that this is a necessary assumption. Ideally,
we would like to prove our learnability results under a smoothed model for O, where an adversary is
allowed to see the transition matrix T and pick any worst-case O, but random noise is then added to
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the output distributions, which limits the power of the adversary. We believe our results should hold
under such a smoothed setting, but set this aside for future work.

Figure 4: Consider two HMMs with transition matrices being cycles on n = 16 states with binary
outputs, and outputs conditioned on the hidden states are deterministic. The states labeled as 0 always
emit a 0 and the states labeled as 1 always emit a 1. The two HMMs are not distinguishable from
windows of length less than 8. Hence with worst case O even simple HMMs like the cycle could
require long windows to even become identifiable.

3.2 Examples of transition matrices which satisfy our assumptions

We revisit the examples from Fig. 1a and Fig. 1b, showing that they satisfy our assumptions.

1. Transition matrices where the Markov Chain is a permutation: If the Markov chain is a permutation
with all cycles longer than 10 logm n then the transition matrix obeys all the conditions for Theorem
2. This is because all the singular values of a permutation are 1, the degree is 1 and all hidden states
visit 10 logm n different states in 15 logm n time steps.

2. Transition matrices which are random walks on graphs with small degree and large girth:
For directed graphs, Condition 2 can be equivalently stated as that the graph representation of the
transition matrix has a large girth (girth of a graph is defined as the length of its shortest cycle).

3. Transition matrices of factorial HMMs: Factorial HMMs [12] factor the latent state at any time into
D dimensions, each of which independently evolves according to a Markov process. For D = 2, this
is equivalent to saying that the hidden states are indexed by two labels (i, j) and if T1 and T2 represent
the transition matrices for the two dimensions, then P[(i1, j1) → (i2, j2)] = T1(i2, i1)T2(j2, j1).
This naturally models settings where there are multiple latent concepts which evolve independently.
The following properties are easy to show:

1. If either of T1 or T2 visit N different states in 15 logm n time steps with probability (1− δ),
then T visits N different states in 15 logm n time steps with probability (1− δ).

2. σmin(T ) = σmin(T1)σmin(T2)

3. If all hidden states in T1 and T2 have mass at most δ on all but d1 states and d2 states
respectively, then T has mass at most 2δ on all but d1d2 states.

Therefore, factorial HMMs are learnable with random O if the underlying processes obey conditions
similar to the assumptions for Theorem 2. If both T1 and T2 are well-conditioned and at least one of
them does not have short cycles, and either has small degree, then T is learnable with random O.

4 Identifiability of HMMs from short windows
As it is not obvious that some of the requirements for Theorem 2 are necessary, it is natural to attempt
to derive stronger results for just identifiability of HMMs having structured transition matrices. In this
section, we state our results for identifiability of HMMs from windows of size O(logm n). Huang
et al. [14] showed that all HMMs except those belonging to a measure zero set become identifiable
from windows of length 2τ + 1 with τ = 8dlogm ne. However, the measure zero set itself might
possibly contain interesting classes of HMMs (see Fig. 1), for example sparse HMMs also belong to
a measure zero set. We refine the identifiability results in this section, and show that a natural sparsity
condition on the transition matrix guarantees identifiability from short windows. Given any transition
matrix T , we regard T as being supported by a set of indices S if the non-zero entries of T all lie in
S. We now state our result for identifiability of sparse HMMs.
Theorem 3. Let S be a set of indices which supports a permutation where all cycles have at least
2dlogm ne hidden states. Then the set T of all transition matrices with support S is identifiable from
windows of length 4dlogm ne + 1 for all observation matrices O except for a measure zero set of
transition matrices in T and observation matrices O.
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We hypothesize that excluding a measure zero set of transition matrices in Theorem 3 should not be
necessary as long as the transition matrix is full rank, but are unable to show this. Note that our result
on identifiability is more flexible in allowing short cycles in transition matrices than Theorem 2, and
is closer to the lower bound on identifiability in Proposition 1.

We also strengthen the result of Huang et al. [14] for identifiability of generic HMMs. Huang
et al. [14] conjectured that windows of length 2dlogm ne+ 1 are sufficient for generic HMMs to be
identifiable. The constant 2 is the information theoretic bound as an HMM on n hidden states and
m outputs has O(n2 + nm) independent parameters, and hence needs observations over a window
of size 2dlogm ne + 1 to be uniquely identifiable. Proposition 2 settles this conjecture, proving
the optimal window length requirement for generic HMMs to be identifiable. As the number of
possible outputs over a window of length t is mt, the size of the moment tensor in Section 2.2 is itself
exponential in the window length. Therefore even a factor of 2 improvement in the window length
requirement leads to a quadratic improvement in the sample and time complexity.
Proposition 2. The set of all HMMs is identifiable from observations over windows of length
2dlogm ne+ 1 except for a measure zero set of transition matrices T and observation matrices O.

5 Discussion on long-term dependencies in HMMs
In this section, we discuss long-term dependencies in HMMs, and show how our results on overcom-
plete HMMs improve the understanding of how HMMs can capture long-term dependencies, both
with respect to the Markov chain and the outputs. Recall the definition of σ(1)

min(T ):

σ
(1)
min(T ) = min

x∈Rn
‖Tx‖1
‖x‖1

We claim that if σ(1)
min(T ) is large, then the transition matrix preserves significant information about

the distribution of hidden states at time 0 at a future time t, for all initial distributions at time 0.
Consider any two distributions p0 and q0 at time 0. Let pt and qt be the distributions of the hidden
states at time t given that the distribution at time 0 is p0 and q0 respectively. Then the `1 distance
between pt and qt is ‖pt − qt‖1 ≥ (σ

(1)
min(T ))

t‖p0 − q0‖1, verifying our claim. It is interesting
to compare this notion with the mixing time of the transition matrix. Defining mixing time as
the time until the `1 distance between any two starting distributions is at most 1/2, it follows that
the mixing time τmix ≥ 1/ log(1/σ

(1)
min(T )), therefore if σ(1)

min(T )) is large then the chain is slowly
mixing. However, the converse is not true—σ

(1)
min(T ) might be small even if the chain never mixes,

for example if the graph is disconnected but the connected components mix very quickly. Therefore,
σ
(1)
min(T ) is possibly a better notion of the long-term dependence of the transition matrix, as it requires

that information is preserved about the past state “in all directions”.

Another reasonable notion of the long-term dependence of the HMM is the long-term dependence in
the output process instead of in the hidden Markov chain, which is the utility of past observations
when making predictions about the distant future (given outputs y−∞, . . . , y1, y2, . . . , yt, at time t
how far back do we need to remember about the past to make a good prediction about yt?). This does
not depend in a simple way on the T and O matrices, but we do note that if the Markov chain is fast
mixing then the output process can certainly not have long-term dependencies. We also note that with
respect to long-term dependencies in the output process, the setting m� n seems to be much more
interesting than when m is comparable to n. The reason is that in the small output alphabet setting
we only receive a small amount of information about the true hidden state at each step, and hence
longer windows are necessary to infer the hidden state and make a good prediction. We also refer the
reader to Kakade et al. [16] for related discussions on the memory of output processes of HMMs.

6 Conclusion and Future Work
The setting where the output alphabet m is much smaller than the number of hidden states n is
well-motivated in practice and seems to have several interesting theoretical questions about new
lower bounds and algorithms. Though some of our results are obtained in more restrictive conditions
than seems necessary, we hope the ideas and techniques pave the way for much sharper results in
this setting. Some open problems which we think might be particularly useful for improving our
understanding is relaxing the condition on the observation matrix being random to some structural
constraint on the observation matrix (such as on its Kruskal rank), and more thoroughly investigating
the requirement for the transition matrix being sparse and not having short cycles.
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