
Appendix

A Results without input augmentation

See table 5 for the results without input augmentation.

Table 5: Error rate percentage on SVHN and CIFAR-10 over 10 runs, including the results
without input augmentation. We use exponential moving average weights in the evaluation of
all our models. All the comparison methods use a 13-layer ConvNet architecture similar to
ours and augmentation similar to ours, expect GAN, which does not use augmentation.

SVHN 250 labels 500 labels 1000 labels all labelsa

GANb 18.44± 4.8 8.11± 1.3
⇧ modelc 6.65± 0.53 4.82± 0.17 2.54± 0.04
Temporal Ensemblingc 5.12± 0.13 4.42± 0.16 2.74± 0.06
VAT+EntMind 3.863.863.86

Ours
Supervised-onlye 27.77± 3.18 16.88± 1.30 12.32± 0.95 2.75± 0.10
⇧ model 9.69± 0.92 6.83± 0.66 4.95± 0.26 2.50± 0.07
Mean Teacher 4.35± 0.504.35± 0.504.35± 0.50 4.18± 0.274.18± 0.274.18± 0.27 3.95± 0.19 2.50± 0.052.50± 0.052.50± 0.05

Without augmentation
Supervised-onlye 36.26± 3.83 19.68± 1.03 14.15± 0.87 3.04± 0.04
⇧ model 10.36± 0.94 7.01± 0.29 5.73± 0.16 2.75± 0.08
Mean Teacher 5.85± 0.62 5.45± 0.14 5.21± 0.21 2.77± 0.09

CIFAR-10 1000 labels 2000 labels 4000 labels all labelsa

GANb 18.63± 2.32
⇧ modelc 12.36± 0.31 5.56± 0.105.56± 0.105.56± 0.10
Temporal Ensemblingc 12.16± 0.31 5.60± 0.10
VAT+EntMind 10.55

Ours
Supervised-onlye 46.43± 1.21 33.94± 0.73 20.66± 0.57 5.82± 0.15
⇧ model 27.36± 1.20 18.02± 0.60 13.20± 0.27 6.06± 0.11
Mean Teacher 21.55± 1.48 15.73± 0.3115.73± 0.3115.73± 0.31 12.31± 0.28 5.94± 0.15
Mean Teacher ResNet 10.08± 0.4110.08± 0.4110.08± 0.41 6.28± 0.156.28± 0.156.28± 0.15

Without augmentation
Supervised-onlye 48.38± 1.07 36.07± 0.90 24.47± 0.50 7.43± 0.06
⇧ model 32.18± 1.33 23.92± 1.07 17.08± 0.32 7.00± 0.20
Mean Teacher 30.62± 1.13 23.14± 0.46 17.74± 0.30 7.21± 0.24

a 4 runs b Salimans et al. [25] c Laine & Aila [13] d Miyato et al. [16]
e Only labeled examples and only classification cost

B Experimental setup

Source code for the experiments is available at https://github.com/CuriousAI/

mean-teacher.

B.1 Convolutional network models

We replicated the ⇧ model of Laine & Aila [13] in TensorFlow [1], and added support for Mean
Teacher training. We modified the model slightly to match the requirements of the experiments, as
described in subsections B.1.1 and B.1.2. The difference between the original ⇧ model described by
Laine & Aila [13] and our baseline ⇧ model thus depends on the experiment. The difference between

11

https://github.com/CuriousAI/mean-teacher
https://github.com/CuriousAI/mean-teacher


Table 6: The convolutional network architecture we used
in the experiments.

Layer Hyperparameters
Input 32⇥ 32 RGB image
Translation Randomly {�x,�y} ⇠ [�2, 2]
Horizontal flipa Randomly p = 0.5
Gaussian noise � = 0.15
Convolutional 128 filters, 3⇥ 3, same padding
Convolutional 128 filters, 3⇥ 3, same padding
Convolutional 128 filters, 3⇥ 3, same padding
Pooling Maxpool 2⇥ 2
Dropout p = 0.5
Convolutional 256 filters, 3⇥ 3, same padding
Convolutional 256 filters, 3⇥ 3, same padding
Convolutional 256 filters, 3⇥ 3, same padding
Pooling Maxpool 2⇥ 2
Dropout p = 0.5
Convolutional 512 filters, 3⇥ 3, valid padding
Convolutional 256 filters, 1⇥ 1, same padding
Convolutional 128 filters, 1⇥ 1, same padding
Pooling Average pool (6⇥ 6 ! 1⇥1 pixels)
Softmax Fully connected 128 ! 10

a Not applied on SVHN experiments

our baseline ⇧ model and our Mean Teacher model is whether the teacher weights are identical to the
student weights or an EMA of the student weights. In addition, the ⇧ models (both the original and
ours) backpropagate gradients to both sides of the model whereas Mean Teacher applies them only to
the student side.

Table 6 describes the architecture of the convolutional network. We applied mean-only batch
normalization and weight normalization [24] on convolutional and softmax layers. We used Leaky
ReLu [15] with ↵ = 0.1 as the nonlinearity on each of the convolutional layers.

We used cross-entropy between the student softmax output and the one-hot label as the classification
cost, and the mean square error between the student and teacher softmax outputs as the consistency
cost. The total cost was the weighted sum of these costs, where the weight of classification cost was
the expected number of labeled examples per minibatch, subject to the ramp-ups described below.

We trained the network with minibatches of size 100. We used Adam Optimizer [12] for training with
learning rate 0.003 and parameters �1 = 0.9, �2 = 0.999, and " = 10�8. In our baseline ⇧ model
we applied gradients through both teacher and student sides of the network. In Mean teacher model,
the teacher model parameters were updated after each training step using an EMA with ↵ = 0.999.
These hyperparameters were subject to the ramp-ups and ramp-downs described below.

We applied a ramp-up period of 40000 training steps at the beginning of training. The consistency
cost coefficient and the learning rate were ramped up from 0 to their maximum values, using a
sigmoid-shaped function e�5(1�x)2 , where x 2 [0, 1].

We used different training settings in different experiments. In the CIFAR-10 experiment, we matched
the settings of Laine & Aila [13] as closely as possible. In the SVHN experiments, we diverged
from Laine & Aila [13] to accommodate for the sparsity of labeled data. Table 7 summarizes the
differences between our experiments.

B.1.1 ConvNet on CIFAR-10

We normalized the input images with ZCA based on training set statistics.

12



For sampling minibatches, the labeled and unlabeled examples were treated equally, and thus the
number of labeled examples varied from minibatch to minibatch.

We applied a ramp-down for the last 25000 training steps. The learning rate coefficient was ramped
down to 0 from its maximum value. Adam �1 was ramped down to 0.5 from its maximum value. The
ramp-downs were performed using sigmoid-shaped function 1� e�12.5x2

, where x 2 [0, 1]. These
ramp-downs did not improve the results, but were used to stay as close as possible to the settings of
Laine & Aila [13].

B.1.2 ConvNet on SVHN

We normalized the input images to have zero mean and unit variance.

When doing semi-supervised training, we used 1 labeled example and 99 unlabeled examples in
each mini-batch. This was important to speed up training when using extra unlabeled data. After
all labeled examples had been used, they were shuffled and reused. Similarly, after all unlabeled
examples had been used, they were shuffled and reused.

We applied different values for Adam �2 and EMA decay rate during the ramp-up period and the rest
of the training. Both of the values were 0.99 during the first 40000 steps, and 0.999 afterwards. This
helped the 250-label case converge reliably.

We trained the network for 180000 steps when not using extra unlabeled examples, for 400000 steps
when using 100k extra unlabeled examples, and for 600000 steps when using 500k extra unlabeled
examples.

B.1.3 The baseline ConvNet models

For training the supervised-only and ⇧ model baselines we used the same hyperparameters as for
training the Mean Teacher, except we stopped training earlier to prevent over-fitting. For supervised-
only runs we did not include any unlabeled examples and did not apply the consistency cost.

We trained the supervised-only model on CIFAR-10 for 7500 steps when using 1000 images, for
15000 steps when using 2000 images, for 30000 steps when using 4000 images and for 150000 steps
when using all images. We trained it on SVHN for 40000 steps when using 250, 500 or 1000 labels,
and for 180000 steps when using all labels.

We trained the ⇧ model on CIFAR-10 for 60000 steps when using 1000 labels, for 100000 steps
when using 2000 labels, and for 180000 steps when using 4000 labels or all labels. We trained it on
SVHN for 100000 steps when using 250 labels, and for 180000 steps when using 500, 1000, or all
labels.

B.2 Residual network models

We implemented our residual network experiments in PyTorch1. We used different architectures for
our CIFAR-10 and ImageNet experiments.

B.2.1 ResNet on CIFAR-10

For CIFAR-10, we replicated the 26-2x96d Shake-Shake regularized architecture described in [5],
and consisting of 4+4+4 residual blocks.

We trained the network on 4 GPUs using minibatches of 512 images, 124 of which were labeled. We
sampled the images in the same way as described in the SVHN experiments above. We augmented
the input images with 4x4 random translations (reflecting the pixels at borders when necessary) and
random horizontal flips. (Note that following [5] we used a larger translation size than on our earlier
experiments.) We normalized the images to have channel-wise zero mean and unit variance over
training data.

We trained the network using stochastic gradient descent with initial learning rate 0.2 and Nesterov
momentum 0.9. We trained for 180 epochs, decaying the learning rate with cosine annealing [14]

1https://github.com/pytorch/pytorch

13



Table 7: Differences in training settings between the ConvNet experiments

Aspect
semi-supervised
SVHN

supervised
SVHN

semi-supervised
CIFAR-10

image pre-processing
zero mean,
unit variance

zero mean,
unit variance ZCA

image augmentation translation translation
translation +
horizontal flip

number of labeled
examples per minibatch 1 100 varying

training steps 180000-600000 180000 150000

Adam �2 during
and after ramp-up 0.99, 0.999 0.99, 0.999 0.999, 0.999

EMA decay rate during
and after ramp-up 0.99, 0.999 0.99, 0.999 0.999, 0.999

Ramp-downs No No Yes

so that it would have reached zero after 210 epochs. We define epoch as one pass through all the
unlabeled examples – each labeled example was included many times in one such epoch.

We used a total cost function consisting of classification cost and three other costs: We used the
dual output trick described in subsection 3.4 and Figure 4(e) with MSE cost between logits with
coefficient 0.01. This simplified other hyperparameter choices and improved the results. We used
MSE consistency cost with coefficient ramping up from 0 to 100.0 during the first 5 epochs, using
the same sigmoid ramp-up shape as in the experiments above. We also used an L2 weight decay with
coefficient 2e-4. We used EMA decay value 0.97.

B.2.2 ResNet on ImageNet

On our ImageNet evaluation runs, we used a 152-layer ResNeXt architecture [33] consisting of
3+8+36+3 residual blocks, with 32 groups of 4 channels on the first block.

We trained the network on 10 GPUs using minibatches of 400 images, 200 of which were labeled.
We sampled the images in the same way as described in the SVHN experiments above. Following
[10], we randomly augmented images using a 10 degree rotation, a crop with aspect ratio between
3/4 and 4/3 resized to 224x224 pixels, a random horizontal flip and a color jitter. We then normalized
images to have channel-wise zero mean and unit variance over training data.

We trained the network using stochastic gradient descent with maximum learning rate 0.25 and
Nesterov momentum 0.9. We ramped up the learning rate linearly during the first two epochs from
0.1 to 0.25. We trained for 60 epochs, decaying the learning rate with cosine annealing so that it
would have reached zero after 75 epochs.

We used a total cost function consisting of classification cost and three other costs: We used the
dual output trick described in subsection 3.4 and Figure 4(e) with MSE cost between logits with
coefficient 0.01. We used a KL-divergence consistency cost with coefficient ramping up from 0 to
10.0 during the first 5 epochs, using the same sigmoid ramp-up shape as in the experiments above.
We also used an L2 weight decay with coefficient 5e-5. We used EMA decay value 0.9997.

14



Figure 5: Copy of Figure 4(f) in the main text. Validation error on 250-label SVHN over four runs
and their mean, when varying the consistency cost shape hyperparameter ⌧ between mean squared
error (⌧ = 0) and KL-divergence (⌧ = 1).

B.3 Use of training, validation and test data

In the development phase of our work with CIFAR-10 and SVHN datasets, we separated 10% of
training data into a validation set. We removed randomly most of the labels from the remaining
training data, retaining an equal number of labels from each class. We used a different set of labels
for each of the evaluation runs. We retained labels in the validation set to enable exploration of the
results. In the final evaluation phase we used the entire training set, including the validation set but
with labels removed.

On a real-world use case we would not possess a large fully-labeled validation set. However, this
setup is useful in a research setting, since it enables a more thorough analysis of the results. To the
best of our knowledge, this is the common practice when carrying out research on semi-supervised
learning. By retaining the hyperparameters from previous work where possible we decreased the
chance of over-fitting our results to validation labels.

In the ImageNet experiments we removed randomly most of the labels from the training set, retaining
an equal number of labels from each class. For validation we used the given validation set without
modifications. We used a different set of training labels for each of the evaluation runs and evaluated
the results against the validation set.

C Varying between mean squared error and KL-divergence

As mentioned in subsection 3.4, we ran an experiment varying the consistency cost function between
MSE and KL-divergence (reproduced in Figure 5). The exact consistency function we used was

C
⌧

(p, q) = Z
⌧

DKL(p⌧kq⌧ ), where Z
⌧

=
2

N2⌧2
, p

⌧

= ⌧p+
1� ⌧

N
, q

⌧

= ⌧q +
1� ⌧

N
,

⌧ 2 (0, 1] and N is the number of classes. Taking the Taylor expansion we get

DKL(pikqi) =
X

i

1

2
⌧2N(p

i

� q
i

)2 +O
�
N2⌧3

�

where the zeroth- and first-order terms vanish. Consequently,

C
⌧

(p, q) ! 1

N

X

i

(p
i

� q
i

)2 when ⌧ ! 0

C
⌧

(p, q) =
2

N2
DKL (pkq) when ⌧ = 1.

The results in Figure 5 show that MSE performs better than KL-divergence or C
⌧

with any ⌧ . We
also tried other consistency cost weights with KL-divergence and did not reach the accuracy of MSE.

15



The exact reason why MSE performs better than KL-divergence remains unclear, but the form of
C

⌧

may help explain it. Modern neural network architectures tend to produce accurate but overly
confident predictions [7]. We can assume that the true labels are accurate, but we should discount the
confidence of the teacher predictions. We can do that by having ⌧ = 1 for the classification cost and
⌧ < 1 for the consistency cost. Then p

⌧

and q
⌧

discount the confidence of the approximations while
Z
⌧

keeps gradients large enough to provide a useful training signal. However, we did not perform
experiments to validate this explanation.

16


	Introduction
	Mean Teacher
	Experiments
	Comparison to other methods on SVHN and CIFAR-10
	SVHN with extra unlabeled data
	Analysis of the training curves
	Ablation experiments
	Mean Teacher with residual networks on CIFAR-10 and ImageNet

	Related work
	Conclusion
	Results without input augmentation
	Experimental setup
	Convolutional network models
	ConvNet on CIFAR-10
	ConvNet on SVHN
	The baseline ConvNet models

	Residual network models
	ResNet on CIFAR-10
	ResNet on ImageNet

	Use of training, validation and test data

	Varying between mean squared error and KL-divergence

