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Abstract

Greedy optimization methods such as Matching Pursuit (MP) and Frank-Wolfe
(FW) algorithms regained popularity in recent years due to their simplicity, effec-
tiveness and theoretical guarantees. MP and FW address optimization over the
linear span and the convex hull of a set of atoms, respectively. In this paper, we
consider the intermediate case of optimization over the convex cone, parametrized
as the conic hull of a generic atom set, leading to the first principled definitions
of non-negative MP algorithms for which we give explicit convergence rates and
demonstrate excellent empirical performance. In particular, we derive sublinear
(O(1/t)) convergence on general smooth and convex objectives, and linear con-
vergence (O(e−t)) on strongly convex objectives, in both cases for general sets
of atoms. Furthermore, we establish a clear correspondence of our algorithms
to known algorithms from the MP and FW literature. Our novel algorithms and
analyses target general atom sets and general objective functions, and hence are
directly applicable to a large variety of learning settings.

1 Introduction

In recent years, greedy optimization algorithms have attracted significant interest in the domains
of signal processing and machine learning thanks to their ability to process very large data sets.
Arguably two of the most popular representatives are Frank-Wolfe (FW) [12, 21] and Matching
Pursuit (MP) algorithms [34], in particular Orthogonal MP (OMP) [9, 49]. While the former targets
minimization of a convex function over bounded convex sets, the latter apply to minimization over a
linear subspace. In both cases, the domain is commonly parametrized by a set of atoms or dictionary
elements, and in each iteration, both algorithms rely on querying a so-called linear minimization
oracle (LMO) to find the direction of steepest descent in the set of atoms. The iterate is then updated
as a linear or convex combination, respectively, of previous iterates and the newly obtained atom
from the LMO. The particular choice of the atom set allows to encode structure such as sparsity and
non-negativity (of the atoms) into the solution. This enables control of the trade-off between the
amount of structure in the solution and approximation quality via the number of iterations, which
was found useful in a large variety of use cases including structured matrix and tensor factorizations
[50, 53, 54, 18].

In this paper, we target an important “intermediate case” between the two domain parameterizations
given by the linear span and the convex hull of an atom set, namely the parameterization of the
optimization domain as the conic hull of a possibly infinite atom set. In this case, the solution
can be represented as a non-negative linear combination of the atoms, which is desirable in many
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applications, e.g., due to the physics underlying the problem at hand, or for the sake of interpretability.
Concrete examples include unmixing problems [11, 16, 3], model selection [33], and matrix and
tensor factorizations [4, 24]. However, existing convergence analyses do not apply to the currently
used greedy algorithms. In particular, all existing MP variants for the conic hull case [5, 38, 52] are
not guaranteed to converge and may get stuck far away from the optimum (this can be observed in
the experiments in Section 6). From a theoretical perspective, this intermediate case is of paramount
interest in the context of MP and FW algorithms. Indeed, the atom set is not guaranteed to contain
an atom aligned with a descent direction for all possible suboptimal iterates, as is the case when the
optimization domain is the linear span or the convex hull of the atom set [39, 32]. Hence, while conic
constraints have been widely studied in the context of a manifold of different applications, none of
the existing greedy algorithms enjoys explicit convergence rates.

We propose and analyze new MP algorithms tailored for the minimization of smooth convex functions
over the conic hull of an atom set. Specifically, our key contributions are:

• We propose the first (non-orthogonal) MP algorithm for optimization over conic hulls
guaranteed to converge, and prove a corresponding sublinear convergence rate with ex-
plicit constants. Surprisingly, convergence is achieved without increasing computational
complexity compared to ordinary MP.

• We propose new away-step, pairwise, and fully corrective MP variants, inspired by variants
of FW [28] and generalized MP [32], respectively, that allow for different degrees of weight
corrections for previously selected atoms. We derive corresponding sublinear and linear (for
strongly convex objectives) convergence rates that solely depend on the geometry of the
atom set.

• All our algorithms apply to general smooth convex functions. This is in contrast to all prior
work on non-negative MP, which targets quadratic objectives [5, 38, 52]. Furthermore, if
the conic hull of the atom set equals its linear span, we recover both algorithms and rates
derived in [32] for generalized MP variants.

• We make no assumptions on the atom set which is simply a subset of a Hilbert space, in
particular we do not assume the atom set to be finite.

Before presenting our algorithms (Section 3) along with the corresponding convergence guarantees
(Section 4), we briefly review generalized MP variants. A detailed discussion of related work can
be found in Section 5 followed by illustrative experiments on a least squares problem on synthetic
data, and non-negative matrix factorization as well as non-negative garrote logistic regression as
applications examples on real data (numerical evaluations of more applications and the dependency
between constants in the rate and empirical convergence can be found in the supplementary material).

Notation. Given a non-empty subset A of some Hilbert space, let conv(A) be the convex hull
of A, and let lin(A) denote its linear span. Given a closed set A, we call its diameter diam(A) =
maxz1,z2∈A ‖z1 − z2‖ and its radius radius(A) = maxz∈A ‖z‖. ‖x‖A := inf{c > 0: x ∈
c · conv(A)} is the atomic norm of x over a set A (also known as the gauge function of conv(A)).
We call a subset A of a Hilbert space symmetric if it is closed under negation.

2 Review of Matching Pursuit Variants

LetH be a Hilbert space with associated inner product 〈x,y〉, ∀x,y ∈ H. The inner product induces
the norm ‖x‖2 := 〈x,x〉, ∀x ∈ H. Let A ⊂ H be a compact set (the “set of atoms” or dictionary)
and let f : H→R be convex and L-smooth (L-Lipschitz gradient in the finite dimensional case).
If H is an infinite-dimensional Hilbert space, then f is assumed to be Fréchet differentiable. The
generalized MP algorithm studied in [32], presented in Algorithm 1, solves the following optimization
problem:

min
x∈lin(A)

f(x). (1)

In each iteration, MP queries a linear minimization oracle (LMO) solving the following linear
problem:

LMOA(y) := arg min
z∈A

〈y, z〉 (2)

for a given query y ∈ H. The MP update step minimizes a quadratic upper bound gxt(x) =
f(xt) + 〈∇f(xt),x− xt〉+ L

2 ‖x− xt‖2 of f at xt, where L is an upper bound on the smoothness
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constant of f with respect to a chosen norm ‖ · ‖. Optimizing this norm problem instead of f
directly allows for substantial efficiency gains in the case of complicated f . For symmetric A and for
f(x) = 1

2‖y − x‖2, y ∈ H, Algorithm 1 recovers MP (Variant 0) [34] and OMP (Variant 1) [9, 49],
see [32] for details.

Algorithm 1 Norm-Corrective Generalized Match-
ing Pursuit

1: init x0 ∈ lin(A), and S := {x0}
2: for t = 0 . . . T
3: Find zt := (Approx-)LMOA(∇f(xt))
4: S := S ∪ {zt}
5: Let b := xt − 1

L∇f(xt)
6: Variant 0:

Update xt+1 := arg min
z:=xt+γzt

γ∈R

‖z− b‖2

7: Variant 1:
Update xt+1 := arg min

z∈lin(S)

‖z− b‖2

8: Optional: Correction of some/all atoms z0...t

9: end for

Approximate linear oracles. Solving the
LMO defined in (2) exactly is often hard in
practice, in particular when applied to matrix
(or tensor) factorization problems, while ap-
proximate versions can be much more efficient.
Algorithm 1 allows for an approximate LMO.
For given quality parameter δ ∈ (0, 1] and
given direction d ∈ H, the approximate LMO
for Algorithm 1 returns a vector z̃ ∈ A such
that

〈d, z̃〉 ≤ δ〈d, z〉, (3)
relative to z = LMOA(d) being an exact solu-
tion.

Discussion and limitations of MP. The anal-
ysis of the convergence of Algorithm 1 in [32]
critically relies on the assumption that the ori-
gin is in the relative interior of conv(A) with

respect to its linear span. This assumption originates from the fact that the convergence of MP- and
FW-type algorithms fundamentally depends on an alignment assumption of the search direction
returned by the LMO (i.e., zt in Algorithm 1) and the gradient of the objective at the current iteration
(see third premise in [39]). Specifically, for Algorithm 1, the LMO is assumed to select a descent
direction, i.e., 〈∇f(xt), zt〉 < 0, so that the resulting weight (i.e., γ for Variant 0) is always positive.
In this spirit, Algorithm 1 is a natural candidate to minimize f over the conic hull of A. However,
if the optimization domain is a cone, the alignment assumption does not hold as there may be
non-stationary points x in the conic hull of A for which minz∈A〈∇f(x), z〉 = 0. Algorithm 1 is
therefore not guaranteed to converge when applied to conic problems. The same issue arises for
essentially all existing non-negative variants of MP, see, e.g., Alg. 2 in [38] and in Alg. 2 in [52]. We
now present modifications corroborating this issue along with the resulting MP-type algorithms for
conic problems and corresponding convergence guarantees.

3 Greedy Algorithms on Conic Hulls

The cone cone(A− y) tangent to the convex set conv(A) at a point y is formed by the half-lines
emanating from y and intersecting conv(A) in at least one point distinct from y. Without loss of
generality we consider 0 ∈ A and assume the set cone(A) (i.e., y = 0) to be closed. If A is finite
the cone constraint can be written as cone(A) := {x : x =

∑|A|
i=1 αiai s.t. ai ∈ A, αi ≥ 0 ∀i}. We

consider conic optimization problems of the form:

min
x∈cone(A)

f(x). (4)

Note that if the setA is symmetric or if the origin is in the relative interior of conv(A) w.r.t. its linear
span then cone(A) = lin(A). We will show later how our results recover known MP rates when the
origin is in the relative interior of conv(A).

As a first algorithm to solve problems of the form (4), we present the Non-Negative Generalized
Matching Pursuit (NNMP) in Algorithm 2 which is an extension of MP to general f and non-negative
weights.

Discussion: Algorithm 2 differs from Algorithm 1 (Variant 0) in line 4, adding the iteration-
dependent atom − xt

‖xt‖A to the set of possible search directions1. We use the atomic norm for the

1This additional direction makes sense only if xt 6= 0. Therefore, we set − xt
‖xt‖A

= 0 if xt = 0, i.e., no
direction is added.
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Algorithm 2 Non-Negative Matching Pursuit

1: init x0 = 0 ∈ A
2: for t = 0 . . . T
3: Find z̄t := (Approx-)LMOA(∇f(xt))
4: zt = arg min

z∈
{
z̄t,

−xt
‖xt‖A

}〈∇f(xt), z〉

5: γ := 〈−∇f(xt),zt〉
L‖zt‖2

6: Update xt+1 := xt + γzt
7: end for

Figure 1: Two dimensional example for TA(xt) where
A = {a1,a2}, for three different iterates x0, x1 and
x2. The shaded area corresponds to TA(xt) and the
white area to lin(A) \ TA(xt).

normalization because it yields the best constant in the convergence rate. In practice, one can replace
it with the Euclidean norm, which is often much less expensive to compute. This iteration-dependent
additional search direction allows to reduce the weights of the atoms that were previously selected,
thus admitting the algorithm to “move back” towards the origin while maintaining the cone constraint.
This idea is informally explained here and formally studied in Section 4.1.

Recall the alignment assumption of the search direction and the gradient of the objective at the current
iterate discussed in Section 2 (see also [39]). Algorithm 2 obeys this assumption. The intuition
behind this is the following. Whenever xt is not a minimizer of (4) and minz∈A〈∇f(xt), z〉 = 0,
the vector − xt

‖xt‖A is aligned with ∇f(xt) (i.e., 〈∇f(xt),− xt
‖xt‖A 〉 < 0), preventing the algorithm

from stopping at a suboptimal iterate. To make this intuition more formal, let us define the set of
feasible descent directions of Algorithm 2 at a point x ∈ cone(A) as:

TA(x) :=

{
d ∈ H : ∃z ∈ A ∪

{
− x

‖x‖A

}
s.t. 〈d, z〉 < 0

}
. (5)

If at some iteration t = 0, 1, . . . the gradient ∇f(xt) is not in TA(xt) Algorithm 2 terminates as
minz∈A〈d, z〉 = 0 and 〈d,−xt〉 ≥ 0 (which yields zt = 0). Even though, in general, not every
direction in H is a feasible descent direction, ∇f(xt) /∈ TA only occurs if xt is a constrained
minimum of Equation 4:
Lemma 1. If x̃ ∈ cone(A) and ∇f(x̃) 6∈ TA then x̃ is a solution to minx∈cone(A) f(x).

Initializing Algorithm 2 with x0 = 0 guarantees that the iterates xt always remain inside cone(A)
even though this is not enforced explicitly (by convexity of f , see proof of Theorem 2 in Appendix D
for details).

Limitations of Algorithm 2: Let us call active the atoms which have nonzero weights in the
representation of xt =

∑t−1
i=0 αizi computed by Algorithm 2. Formally, the set of active atoms is

defined as S := {zi : αi > 0, i = 0, 1, . . . , t− 1}. The main drawback of Algorithm 2 is that when
the direction − xt

‖xt‖A is selected, the weight of all active atoms is reduced. This can lead to the
algorithm alternately selecting − xt

‖xt‖A and an atom from A, thereby slowing down convergence in a
similar manner as the zig-zagging phenomenon well-known in the Frank-Wolfe framework [28]. In
order to achieve faster convergence we introduce the corrective variants of Algorithm 2.

3.1 Corrective Variants

To achieve faster (linear) convergence (see Section 4.2) we introduce variants of Algorithm 2, termed
Away-steps MP (AMP) and Pairwise MP (PWMP), presented in Algorithm 3. Here, inspired by the
away-steps and pairwise variants of FW [12, 28], instead of reducing the weights of the active atoms
uniformly as in Algorithm 2, the LMO is queried a second time on the active set S to identify the
direction of steepest ascent in S. This allows, at each iteration, to reduce the weight of a previously
selected atom (AMP) or swap weight between atoms (PWMP). This selective “reduction” or “swap
of weight” helps to avoid the zig-zagging phenomenon which prevent Algorithm 2 from converging
linearly.

At each iteration, Algorithm 3 updates the weights of zt and vt as αzt = αzt +γ and αvt = αvt −γ,
respectively. To ensure that xt+1 ∈ cone(A), γ has to be clipped according to the weight which is
currently on vt, i.e., γmax = αvt . If γ = γmax, we set αvt = 0 and remove vt from S as the atom vt
is no longer active. If dt ∈ A (i.e., we take a regular MP step and not an away step), the line search
is unconstrained (i.e., γmax =∞).
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For both algorithm variants, the second LMO query increases the computational complexity. Note
that an exact search on S is feasible in practice as |S| has at most t elements at iteration t.

Taking an additional computational burden allows to update the weights of all active atoms in the
spirit of OMP. This approach is implemented in the Fully Corrective MP (FCMP), Algorithm 4.

Algorithm 3 Away-steps (AMP) and Pairwise
(PWMP) Non-Negative Matching Pursuit

1: init x0 = 0 ∈ A, and S := {x0}
2: for t = 0 . . . T
3: Find zt := (Approx-)LMOA(∇f(xt))
4: Find vt := (Approx-)LMOS(−∇f(xt))
5: S = S ∪ zt
6: AMP: dt=arg mind∈{zt,−vt}〈∇f(xt),d〉
7: PWMP: dt = zt − vt

8: γ := min
{
〈−∇f(xt),dt〉

L‖dt‖2 , γmax

}
(γmax see text)

9: Update αzt , αvt and S according to γ
(γ see text)

10: Update xt+1 := xt + γdt
11: end for

Algorithm 4 Fully Corrective Non-Negative
Matching Pursuit (FCMP)

1: init x0 = 0 ∈ A,S = {x0}
2: for t = 0 . . . T
3: Find zt := (Approx-)LMOA(∇f(xt))
4: S := S ∪ {zt}
5: Variant 0:

xt+1 = arg min
x∈cone(S)

‖x−(xt− 1
L∇f(xt))‖2

6: Variant 1:
xt+1 = arg minx∈cone(S) f(x)

7: Remove atoms with zero weights from S
8: end for

At each iteration, Algorithm 4 maintains the set of active atoms S by adding zt and removing atoms
with zero weights after the update. In Variant 0, the algorithm minimizes the quadratic upper bound
gxt(x) on f at xt (see Section 2) imitating a gradient descent step with projection onto a “varying”
target, i.e., cone(S). In Variant 1, the original objective f is minimized over cone(S) at each iteration,
which is in general more efficient than minimizing f over cone(A) using a generic solver for cone
constrained problems. For f(x) = 1

2‖y − x‖2, y ∈ H, Variant 1 recovers Algorithm 1 in [52] and
the OMP variant in [5] which both only apply to this specific objective f .

3.2 Computational Complexity
algorithm cost per iteration convergence k(t)
NNMP C +O(d) O(1/t) -
PWMP C +O(d+ td) O

(
e−βk(t)

)
t

3|A|!+1

AMP C +O(d+ td) O
(
e−

β
2 k(t)

)
t/2

FCMP v. 0 C +O(d) + h0 O
(
e−βk(t)

)
t

3|A|!+1

FCMP v. 1 C +O(d) + h1 O
(
e−βk(t)

)
t

Table 1: Computational complexity versus convergence rate (see Sec-
tion 4) for strongly convex objectives

We briefly discuss the computa-
tional complexity of the algorithms
we introduced. ForH = Rd, sums
and inner products have cost O(d).
Let us assume that each call of the
LMO has cost C on the set A and
O(td) on S. The variants 0 and 1
of FCMP solve a cone problem at
each iteration with cost h0 and h1,
respectively. In general, h0 can be
much smaller than h1. In Table 1
we report the cost per iteration for every algorithm along with the asymptotic convergence rates
derived in Section 4.

4 Convergence Rates

In this section, we present convergence guarantees for Algorithms 2, 3, and 4. All proofs are deferred
to the Appendix in the supplementary material. We write x? ∈ arg minx∈cone(A) f(x) for an optimal
solution. Our rates will depend on the atomic norm of the solution and the iterates of the respective
algorithm variant:

ρ = max {‖x?‖A, ‖x0‖A . . . , ‖xT ‖A} . (6)

If the optimum is not unique, we consider x? to be one of largest atomic norm. A more intuitive
and looser notion is to simply upper-bound ρ by the diameter of the level set of the initial iterate
x0 measured by the atomic norm. Then, boundedness follows since the presented method is a
descent method (due to Lemma 1 and line search on the quadratic upper bound, each iteration strictly
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decreases the objective and our method stops only at the optimum). This justifies the statement
f(xt) ≤ f(x0). Hence, ρ must be bounded for any sequence of iterates produced by the algorithm,
and the convergence rates presented in this section are valid as T goes to infinity. A similar notion to
measure the convergence of MP was established in [32]. All of our algorithms and rates can be made
affine invariant. We defer this discussion to Appendix B.

4.1 Sublinear Convergence

We now present the convergence results for the non-negative and Fully-Corrective Matching Pursuit
algorithms. Sublinear convergence of Algorithm 3 is addressed in Theorem 3.
Theorem 2. Let A ⊂ H be a bounded set with 0 ∈ A, ρ := max {‖x?‖A, ‖x0‖A, . . . , ‖xT ‖A, }
and f be L-smooth over ρ conv(A ∪−A). Then, Algorithms 2 and 4 converge for t ≥ 0 as

f(xt)− f(x?) ≤
4
(

2
δLρ

2 radius(A)2 + ε0

)
δt+ 4

,

where δ ∈ (0, 1] is the relative accuracy parameter of the employed approximate LMO (see Equa-
tion (3)).

Relation to FW rates. By rescaling A by a large enough factor τ > 0, FW with τA as atom
set could in principle be used to solve (4). In fact, for large enough τ , only the constraints of (4)
become active when minimizing f over conv(τA). The sublinear convergence rate obtained with
this approach is up to constants identical to that in Theorem 2 for our MP variants, see [21]. However,
as the correct scaling is unknown, one has to either take the risk of choosing τ too small and hence
failing to recover an optimal solution of (4), or to rely on too large τ which can result in slow
convergence. In contrast, knowledge of ρ is not required to run our MP variants.

Relation to MP rates. If A is symmetric, we have that lin(A) = cone(A) and it is easy to show
that the additional direction − xt

‖xt‖ in Algorithm 2 is never selected. Therefore, Algorithm 2 becomes
equivalent to Variant 0 of Algorithm 1, while Variant 1 of Algorithm 1 is equivalent to Variant 0 of
Algorithm 4. The rate specified in Theorem 2 hence generalizes the sublinear rate in [32, Theorem 2]
for symmetric A.

4.2 Linear Convergence

We start by recalling some of the geometric complexity quantities that were introduced in the context
of FW and are adapted here to the optimization problem we aim to solve (minimization over cone(A)
instead of conv(A)).

Directional Width. The directional width of a set A w.r.t. a direction r ∈ H is defined as:

dirW (A, r) := max
s,v∈A

〈
r
‖r‖ , s− v

〉
(7)

Pyramidal Directional Width [28]. The Pyramidal Directional Width of a set A with respect to a
direction r and a reference point x ∈ conv(A) is defined as:

PdirW (A, r,x) := min
S∈Sx

dirW (S ∪ {s(A, r)}, r), (8)

where Sx := {S | S ⊂ A and x is a proper convex combination of all the elements in S} and
s(A, r) := maxs∈A〈 r

‖r‖ , s〉.

Inspired by the notion of pyramidal width in [28], which is the minimal pyramidal directional width
computed over the set of feasible directions, we now define the cone width of a set A where only
the generating faces (g-faces) of cone(A) (instead of the faces of conv(A)) are considered. Before
doing so we introduce the notions of face, generating face, and feasible direction.

Face of a convex set. Let us consider a set K with a k−dimensional affine hull along with a
point x ∈ K. Then, K is a k−dimensional face of conv(A) if K = conv(A) ∩ {y : 〈r,y − x〉 =
0} for some normal vector r and conv(A) is contained in the half-space determined by r, i.e.,
〈r,y − x〉 ≤ 0, ∀ y ∈ conv(A). Intuitively, given a set conv(A) one can think of conv(A) being a
dim(conv(A))−dimensional face of itself, an edge on the border of the set a 1-dimensional face and
a vertex a 0-dimensional face.
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Face of a cone and g-faces. Similarly, a k−dimensional face of a cone is an open and unbounded
set cone(A) ∩ {y : 〈r,y − x〉 = 0} for some normal vector r and cone(A) is contained in the half
space determined by r. We can define the generating faces of a cone as:

g-faces(cone(A)) :={B ∩ conv(A) :B ∈ faces(cone(A))} .

Note that g-faces(cone(A)) ⊂ faces(conv(A)) and conv(A) ∈ g-faces(cone(A)). Furthermore,
for each K ∈ g-faces(cone(A)), cone(K) is a k−dimensional face of cone(A).

We now introduce the notion of feasible directions. A direction d is feasible from x ∈ cone(A) if it
points inwards cone(A), i.e., if ∃ε > 0 s.t. x + εd ∈ cone(A). Since a face of the cone is itself a
cone, if a direction is feasible from x ∈ cone(K) \ 0, it is feasible from every positive rescaling of x.
We therefore can consider only the feasible directions on the generating faces (which are closed and
bounded sets). Finally, we define the cone width of A.

Cone Width.

CWidth(A) := min
K∈g-faces(cone(A))

x∈K
r∈cone(K−x)\{0}

PdirW (K ∩A, r,x) (9)

We are now ready to show the linear convergence of Algorithms 3 and 4.

Theorem 3. Let A ⊂ H be a bounded set with 0 ∈ A and let the objective function f : H→R be
both L-smooth and µ-strongly convex over ρ conv(A ∪−A). Then, the suboptimality of the iterates
of Algorithms 3 and 4 decreases geometrically at each step in which γ < αvt (henceforth referred to
as “good steps”) as:

εt+1 ≤ (1− β) εt, (10)

where β := δ2 µCWidth(A)2

L diam(A)2 ∈ (0, 1], εt := f(xt)−f(x?) is the suboptimality at step t and δ ∈ (0, 1]

is the relative accuracy parameter of the employed approximate LMO (3). For AMP (Algorithm 3),
βAMP = β/2. If µ = 0 Algorithm 3 converges with rate O(1/k(t)) where k(t) is the number of

“good steps” up to iteration t.

Discussion. To obtain a linear convergence rate, one needs to upper-bound the number of “bad
steps” t−k(t) (i.e., steps with γ ≥ αvt ). We have that k(t) = t for Variant 1 of FCMP (Algorithm 4),
k(t) ≥ t/2 for AMP (Algorithm 3) and k(t) ≥ t/(3|A|! + 1) for PWMP (Algorithm 3) and Variant 0
of FCMP (Algorithm 4). This yields a global linear convergence rate of εt ≤ ε0 exp (−βk(t)). The
bound for PWMP is very loose and only meaningful for finite sets A. However, it can be observed
in the experiments in the supplementary material (Appendix A) that only a very small fraction of
iterations result in bad PWMP steps in practice. Further note that Variant 1 of FCMP (Algorithm 4)
does not produce bad steps. Also note that the bounds on the number of good steps given above are
the same as for the corresponding FW variants and are obtained using the same (purely combinatorial)
arguments as in [28].

Relation to previous MP rates. The linear convergence of the generalized (not non-negative) MP
variants studied in [32] crucially depends on the geometry of the set which is characterized by the
Minimal Directional Width mDW(A):

mDW(A) := min
d∈lin(A)

d6=0

max
z∈A
〈 d

‖d‖
, z〉 . (11)

The following Lemma relates the Cone Width with the minimal directional width.

Lemma 4. If the origin is in the relative interior of conv(A) with respect to its linear span, then
cone(A) = lin(A) and CWidth(A) = mDW(A).

Now, if the set A is symmetric or, more generally, if cone(A) spans the linear space lin(A) (which
implies that the origin is in the relative interior of conv(A)), there are no bad steps. Hence, by
Lemma 4, the linear rate obtained in Theorem 3 for non-negative MP variants generalizes the one
presented in [32, Theorem 7] for generalized MP variants.
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Relation to FW rates. Optimization over conic hulls with non-negative MP is more similar to FW
than to MP itself in the following sense. For MP, every direction in lin(A) allows for unconstrained
steps, from any iterate xt. In contrast, for our non-negative MPs, while some directions allow for
unconstrained steps from some iterate xt, others are constrained, thereby leading to the dependence
of the linear convergence rate on the cone width, a geometric constant which is very similar in spirit
to the Pyramidal Width appearing in the linear convergence bound in [28] for FW. Furthermore, as
for Algorithm 3, the linear rate of Away-steps and Pairwise FW holds only for good steps. We finally
relate the cone width with the Pyramidal Width [28]. The Pyramidal Width is defined as

PWidth(A) := min
K∈faces(conv(A))

x∈K
r∈cone(K−x)\{0}

PdirW (K ∩A, r,x).

We have CWidth(A) ≥ PWidth(A) as the minimization in the definition (9) of CWidth(A) is only
over the subset g-faces(cone(A)) of faces(conv(A)). As a consequence, the decrease per iteration
characterized in Theorem 3 is larger than what one could obtain with FW on the rescaled convex set
τA (see Section 4.1 for details about the rescaling). Furthermore, the decrease characterized in [28]
scales as 1/τ2 due to the dependence on 1/diam(conv(A))2.

5 Related Work

The line of recent works by [44, 46, 47, 48, 37, 32] targets the generalization of MP from the
least-squares objective to general smooth objectives and derives corresponding convergence rates
(see [32] for a more in-depth discussion). However, only little prior work targets MP variants with
non-negativity constraint [5, 38, 52]. In particular, the least-squares objective was addressed and
no rigorous convergence analysis was carried out. [5, 52] proposed an algorithm equivalent to our
Algorithm 4 for the least-squares case. More specifically, [52] then developed an acceleration heuristic,
whereas [5] derived a coherence-based recovery guarantee for sparse linear combinations of atoms.
Apart from MP-type algorithms, there is a large variety of non-negative least-squares algorithms,
e.g., [30], in particular also for matrix and tensor spaces. The gold standard in factorization problems
is projected gradient descent with alternating minimization, see [43, 4, 45, 23]. Other related works
are [40], which is concerned with the feasibility problem on symmetric cones, and [19], which
introduces a norm-regularized variant of problem (4) and solves it using FW on a rescaled convex
set. To the best of our knowledge, in the context of MP-type algorithms, we are the first to combine
general convex objectives with conic constraints and to derive corresponding convergence guarantees.

Boosting: In an earlier line of work, a flavor of the generalized MP became popular in the context
of boosting, see [35]. The literature on boosting is vast, we refer to [42, 35, 7] for a general overview.
Taking the optimization perspective given in [42], boosting is an iterative greedy algorithm minimizing
a (strongly) convex objective over the linear span of a possibly infinite set called hypothesis class.
The convergence analysis crucially relies on the assumption of the origin being in the relative interior
of the hypothesis class, see Theorem 1 in [17]. Indeed, Algorithm 5.2 of [35] might not converge
if the [39] alignment assumption is violated. Here, we managed to relax this assumption while
preserving essentially the same asymptotic rates in [35, 17]. Our work is therefore also relevant in
the context of (non-negative) boosting.

6 Illustrative Experiments
We illustrate the performance of the presented algorithms on three different exemplary tasks, showing
that our algorithms are competitive with established baselines across a wide range of objective func-
tions, domains, and data sets while not being specifically tailored to any of these tasks (see Section 3.2
for a discussion of the computational complexity of the algorithms). Additional experiments targeting
KL divergence NMF, non-negative tensor factorization, and hyperspectral image unmixing can be
found in the appendix.

Synthetic data. We consider minimizing the least squares objective on the conic hull
of 100 unit-norm vectors sampled at random in the first orthant of R50. We compare
the convergence of Algorithms 2, 3, and 4 with the Fast Non-Negative MP (FNNOMP)
of [52], and Variant 3 (line-search) of the FW algorithm in [32] on the atom set rescaled
by τ = 10‖y‖ (see Section 4.1), observing linear convergence for our corrective variants.
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Figure 2: Synthetic data experiment.

Figure 2 shows the suboptimality εt, averaged over 20
realizations ofA and y, as a function of the iteration t. As
expected, FCMP achieves fastest convergence followed
by PWMP, AMP and NNMP. The FNNOMP gets stuck
instead. Indeed, [52] only show that the algorithm termi-
nates and not its convergence.

Non-negative matrix factorization. The second task
consists of decomposing a given matrix into the product
of two non-negative matrices as in Equation (1) of [20].
We consider the intersection of the positive semidefinite
cone and the positive orthant. We parametrize the set A as
the set of matrices obtained as an outer product of vectors

from A1 = {z ∈ Rk : zi ≥ 0 ∀ i} and A2 = {z ∈ Rd : zi ≥ 0 ∀ i}. The LMO is approximated
using a truncated power method [55], and we perform atom correction with greedy coordinate descent
see, e.g., [29, 18], to obtain a better objective value while maintaining the same (small) number of
atoms. We consider three different datasets: The Reuters Corpus2, the CBCL face dataset3 and the
KNIX dataset4. The subsample of the Reuters corpus we used is a term frequency matrix of 7,769
documents and 26,001 words. The CBCL face dataset is composed of 2,492 images of 361 pixels
each, arranged into a matrix. The KNIX dataset contains 24 MRI slices of a knee, arranged in a
matrix of size 262, 144× 24. Pixels are divided by their overall mean intensity. For interpretability
reasons, there is interest to decompose MRI data into non-negative factorizations [25]. We compare
PWMP and FCMP against the multiplicative (mult) and the alternating (als) algorithm of [4], and the
greedy coordinate descent (GCD) of [20]. Since the Reuters corpus is much larger than the CBCL
and the KNIX dataset we only used the GCD for which a fast implementation in C is available. We
report the objective value for fixed values of the rank in Table 2, showing that FCMP outperform all
the baselines across all the datasets. PWMP achieves smallest error on the Reuters corpus.

Non-negative garrote. We consider the non-negative garrote which is a common approach to
model order selection [6]. We evaluate NNMP, PWMP, and FCMP in the experiment described
in [33], where the non-negative garrote is used to perform model order selection for logistic regression
(i.e., for a non-quadratic objective function). We evaluated training and test accuracy on 100 random
splits of the sonar dataset from the UCI machine learning repository. In Table 3 we compare the
median classification accuracy of our algorithms with that of the cyclic coordinate descent algorithm
(NNG) from [33].

algorithm Reuters
K = 10

CBCL
K = 10

CBCL
K = 50

KNIX
K = 10

mult - 2.4241e3 1.1405e3 2.4471e03
als - 2.73e3 3.84e3 2.7292e03
GCD 5.9799e5 2.2372e3 806 2.2372e03
PWMP 5.9591e5 2.2494e3 789.901 2.2494e03
FCMP 5.9762e5 2.2364e3 786.15 2.2364e03

Table 2: Objective value for least-squares non-negative
matrix factorization with rank K.

training accuracy test accuracy
NNMP 0.8345 ± 0.0242 0.7419 ± 0.0389
PWMP 0.8379 ± 0.0240 0.7419 ± 0.0392
FCMP 0.8345 ± 0.0238 0.7419 ± 0.0403
NNG 0.8069 ± 0.0518 0.7258 ± 0.0602

Table 3: Logistic Regression with non-negative
Garrote, median ± std. dev.

7 Conclusion

In this paper, we considered greedy algorithms for optimization over the convex cone, parametrized
as the conic hull of a generic atom set. We presented a novel formulation of NNMP along with a
comprehensive convergence analysis. Furthermore, we introduced corrective variants with linear
convergence guarantees, and verified this convergence rate in numerical applications. We believe that
the generality of our novel analysis will be useful to design new, fast algorithms with convergence
guarantees, and to study convergence of existing heuristics, in particular in the context of non-negative
matrix and tensor factorization.

2http://www.nltk.org/book/ch02.html
3http://cbcl.mit.edu/software-datasets/FaceData2.html
4http://www.osirix-viewer.com/resources/dicom-image-library/
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A Additional experiments

A.1 An illustrative experiment: Tightness of Theorem 3

We now consider the setting depicted in Figure 3. We consider the set A := {Aθ ∪
−Aθ} where Aθ :=

{(
0
0

)
,
(−1

0

)
,
(

cos θ
sin θ

)}
with θ ∈ (0, π/2). For this set CWidth(A) can be

computed in closed form as CWidth(A) = sin(θ/2). We then perform 20 runs of Algorithm 3 and
report the ratio between the theoretical rate and the empirical one. The result is depicted in Figure 4.
There, we considered an iteration starting from the origin minimizing the distance function to 20
random points

(−α1

α2

)
with αi > 0. The vertical bars shows minimal and maximal values.

A.2 Real Data

Hyperspectral image unmixing. One of the classical applications of non-negative least squares
are unmixing problems [11] such as hyperspectral image unmixing. Scalable unmixing approaches
such as SPA [2] first extract a self-dictionary from a target image. Each pixel is then projected on the
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Figure 5: Hyperspectral Imaging. We report suboptimality in a non-negative least squares task on real data,
respectively.
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Figure 7: CBCL KL-Divergence

conic hull of the dictionary to estimate the abundance of each material. A standard technique is the
hierarchical alternating least squares of [14] (nnlsHALSupdt). In Figure 5 (right), we compare the
suboptimality of different methods as a function of the iteration. The dictionary is extracted from the
undersampled Urban HSI Dataset5 using SPA. This dataset contains 5,929 pixels, each associated
with 162 hyperspectral features. The number of dictionary elements is 6, motivated by the fact that
6 different physical materials are depicted in this HSI data [16]. Therefore, FCMP converges after
6 iterations. For PWMP only 1.5% of the iterations were bad steps on average for all dictionaries.
Therefore, our corrective methods are proven to be competitive also on real data and the effect of the
bad steps is negligible. We test other dictionaries for the Hyperspectral Imaging task. The result is
depicted in Figure 6.

KL-divergence non-negative low-rank matrix factorization. The third task targets non-negative
matrix factorization by minimization of the (non-least squares) KL-divergence-based objective
function in Equation (3) in [20]. We again use the CBCL face dataset and we compare FCMP (Variant
1) and PWMP against the multiplicative algorithm from [31] (multiplicative) and the cyclic coordinate
descent (CCD) from [20]. We use the same approximate LMO and parametrization of A as for the

5download at http://bit.ly/fgnsr
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algorithm training accuracy test accuracy
NNMP 0.8345 ± 0.0242 0.7419 ± 0.0389
PWMP 0.8379 ± 0.0240 0.7419 ± 0.0392
FCMP 0.8345 ± 0.0238 0.7419 ± 0.0403
NNG 0.8069 ± 0.0518 0.7258 ± 0.0602

Table 4: Logistic Regression with non-negative Garrote, median ± standard deviation. Our methods achieve
highest accuracy.

algorithm relative error
multiplicative 0.2991
hals 0.2927
anls-as 0.2912
anls-bpp 0.2914
PWMP 0.2913
FCMP 0.2909

Table 5: Non-negative tensor factorization on the KNIX dataset with rank 20

least-squares non-negative matrix factorization, and we set the L to 0.1. The atom correction was
implemented using the CCD algorithm. In this experiment the use of Variant 0 of FCMP is crucial as
it allows for a much easier update step. The objective value as a function of the rank is depicted in
Figure 7. We note that all the algorithms yield comparable objective value up to rank 35. For higher
rank, FCMP and PWMP achieve a slightly smaller objective value.

Least Squares Non-negative Tensor Factorization. For this task we again use the KNIX dataset
but now we arrange the scans to form a tensor of dimensionality 512 × 512 × 24. We compare
against the alternating nonnegativity-constrained least squares with block principal pivoting [24]
(anlss-bpp) (which is also used in the FCMP and PWMP for the corrections), the active set method in
[22] (anls-as), the hierarchical alternating least squares of [10] (hals) and the multiplicative updating
algorithm (multiplicative) of [51]. The LMO for the tensor factorization is implemented with the
tensor power method [1]. The result is depicted in Table 5.

In this section we showed that the merit of our algorithms is not limited to their theoretical properties.
Indeed, our algorithms are competitive with several approaches and can be successfully used in a
manifold of different tasks and datasets while not being tailored to any specific cost function.

B Affine Invariant Algorithms and Rates

In this section, present affine invariant versions of all presented algorithms, along with sub-linear
and linear convergence guarantees. An optimization method is called affine invariant if it is invariant
under linear or affine transformations of the input problem: If one chooses any re-parameterization of
the domainQ by a surjective linear or affine map M : Q̂ → Q, then the “old” and “new” optimization
problems minx∈Q f(x) and minx̂∈Q̂ f̂(x̂) for f̂(x̂) := f(Mx̂) look the same to the algorithm. We
still require the set Q to contain the origin. In the following, we assume that after the transformation
the origin is still on the border of conv(Q). If the origin is contained in the relative interior of
conv(Q) we recover the existing affine invariant rates of [32].

B.1 Affine invariant non-negative MP

To define an affine invariant upper bound on the objective function f , we use a variation of the affine
invariant definition of the curvature constant from [21], adapted for MP in [32]:

CMP
f,A := sup

s∈A,x∈conv(A)
γ∈[0,1]
y=x+γs

2

γ2
D(y,x), (12)

where for cleaner exposition, we have used the shorthand notation D(y,x) to denote the difference
of f(y) and its linear approximation at x

D(y,x) := f(y)− f(x)− 〈y − x,∇f(x)〉.
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Bounded curvature Cf,A closely corresponds to smoothness of the objective f . More precisely,
if ∇f is L-Lipschitz continuous on conv(A) with respect to some arbitrary chosen norm ‖.‖, i.e.
‖∇f(x)−∇f(y)‖∗ ≤ L‖x− y‖, where ‖.‖∗ is the dual norm of ‖.‖, then

Cf,A ≤ L radius‖.‖(A)2 , (13)

where radius‖.‖(.) denotes the ‖.‖-radius, see Lemma 15 in [32]. The curvature constant Cf,A is
affine invariant as it does not depend on any norm. It combines the complexity of the domain conv(A)
and the curvature of the objective function f into a single quantity. Throughout this section, we
assume availability of a finite constant ρ > 0 upper-bounding the atomic norms ‖.‖A of the optimum
x?, as well as the iterate sequence (xt)

T
t=0 until the current iteration, as defined in (6). We now

present the affine invariant version of the non-negative MP algorithm (Algorithm 2) in Algorithm
5. The algorithm uses the curvature constant CMP

f,ρ(A∪−A) over the re-scaled set ρ conv(A ∪ −A),
rather than conv(A ∪−A).

Algorithm 5 Affine Invariant Non-Negative Matching Pursuit

Same as Algorithm 2 except:
5: γ := 〈−∇f(xt),ρ

2zt〉
CMP
f,ρ(A∪−A)

A sub-linear convergence guarantee for Algorithm 5 is presented in the following theorem.
Theorem 5. Let A ⊂ H be a bounded set with 0 ∈ A, ρ := max {‖x?‖A, ‖x0‖A, . . . , ‖xT ‖A} <
∞. Assume f has smoothness constant CMP

f,ρ(A∪−A). Then, Algorithm 5 converges for t ≥ 0 as

f(xt)− f(x?) ≤
4
(

2
δC

MP
f,ρ(A∪−A) + ε0

)
δt+ 4

,

where δ ∈ (0, 1] is the relative accuracy parameter of the employed approximate LMO (3).

Exact knowledge of CMP
f,ρ(A∪−A) is not required; the same theorem also holds if any upper bound on

CMP
f,ρ(A∪−A) is used in the algorithm and resulting rate instead.

B.2 Affine invariant corrective MP

An affine invariant version of AMP and PWMP, Algorithm 3, is presented in Algorithm 6. Note
that Variant 1 of the fully corrective non-negative MP in Algorithm 4 is already affine invariant as it
does not rely on any norm. Note that sublinear convergence is guaranteed with the rate indicated by
Theorem 5 since each step of the affine invariant FCMP yields at least as much improvement as the
affine invariant NNMP, Algorithm 5.

Since the update step in Algorithm 5 and the resulting upper bound on the progress in objective,
based on the curvature constant (13), we used in the proof of Theorem 5 are not enough to ensure
linear convergence, we use a different notion of curvature based on [27].

CA
f,A = sup

s∈A,x∈conv(A)
v∈S
γ∈[0,1]

y=x+γ(s−v)

2

γ2
D(y,x).

The following positive step size quantity relates the dual certificate value of the descent direction

Algorithm 6 Affine invariant AMP and PWMP

same as Algorithm 3 except for:
5: γ := 〈−∇f(xt),ρ

2dt〉
CA
f,ρ(A∪−A)

x? − x with the MP selected atom,

γ(x,x?) :=
〈−∇f(x),x? − x〉

〈−∇f(x), s(x)− v(x)〉
, (14)
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for s(x) := arg mins∈A 〈∇f(x), s〉 and v(x) := minS∈Sx arg maxs∈S 〈∇f(x), s〉 where S ∈ Sx
is the active set. We now define the affine invariant surrogate of strong convexity.

µAf,ρA := inf
x∈conv(ρA)

inf
x?∈conv(ρA)
〈∇f(x),x?−x〉<0

2

γ(x,x?)
D(x?,x).

Theorem 6. Let A ⊂ H be a bounded set containing the origin and let the objective function
f : H→R have smoothness constant CA

f,ρ(A∪−A) and strong convexity constant µAf,ρA

Then, the suboptimality of the iterates of Algorithm 3 and 4 decreases geometrically at each step in
which γ < αvt (henceforth referred to as “good steps”) as:

εt+1 ≤ (1− β) εt, (15)

where β := δ2 µAf,ρA
CA
f,ρ(A∪−A)

∈ (0, 1], εt := f(xt)− f(x?) is the suboptimality at step t and δ ∈ (0, 1]

is the relative accuracy parameter of the employed approximate LMO (Equation (3)). For AMP
(Algorithm 3), βAMP = β/2. If µAf,ρA = 0 Algorithm 3 converges with rate O(1/k(t)) where k(t) is
the number of “good steps” up to iteration t.

C Proof of Lemma 1

If x̃ ∈ cone(A) and ∇f(x̃) 6∈ TA then x̃ is a solution to minx∈cone(A) f(x).

Proof. We will prove this lemma by contradiction assuming that x? 6= x̃ and ∇f(x̃) 6∈ TA. Now, by
convexity of f we have that:

f(x?) ≥ f(x̃) + 〈∇f(x̃),x? − x̃〉

Since x? 6= x̃ we have also that f(x?) < f(x̃). Therefore:

0 < f(x̃)− f(x?) ≤ 〈−∇f(x̃),x? − x̃〉

which we rewrite as 〈∇f(x̃),x?〉 + 〈∇f(x̃),−x̃〉 < 0. Now we note that by the assumption that
∇f(x̃) 6∈ TA we have that both these inner products are non negative which is absurd. To draw this
conclusion note that x? ∈ cone(A) we have that x? =

∑
i αizi where zi ∈ A and αi ≥ 0 ∀ i.

D Sublinear Rates

Theorem’ 2. Let A ⊂ H be a bounded set with 0 ∈ A, ρ := max {‖x?‖A, ‖x0‖A, . . . , ‖xT ‖A, }
and f be L-smooth over ρ conv(A ∪ −A). Then, Algorithms 2 and 4 with x0 = 0 converges for
t ≥ 0 as

f(xt)− f(x?) ≤
4
(

2
δLρ

2 radius(A)2 + ε0

)
δt+ 4

,

where δ ∈ (0, 1] is the relative accuracy parameter of the employed approximate LMO (3).

Proof. We separately prove the convergence for the two algorithms.

non-negative MP: Recall that z̃t is the atom returned by the inexact LMO after the comparison
with − xt

‖xt‖A at the current iteration t. We distinguish the two cases in which z̃t 6= − xt
‖xt‖A (case A)

and z̃t = − xt
‖xt‖A (case B). Let us call Ā := A ∪

{
− xt
‖xt‖A

}
. Note that radius(Ā) = radius(A).

Recall that in the Algorithm the step size γ is computed at each iteration via line search minimizing
the quadratic upper bound on f and no further clipping is made. The reason being that f is convex,
therefore, for t > 0 we have f(xt) ≤ f(0). Hence the minimum of f over the line between xt and
the origin must lie between these two points making clipping unnecessary.
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We start by upper bounding f on ρ conv(Ā) using smoothness as follows:

f(xt+1) ≤ min
γ∈R≥0

gxt(xt + γz̃t)

= min
γ∈[0,1]

gxt(xt + γρz̃t)

≤ min
γ∈[0,1]

f(xt) + γ〈∇f(xt), ρz̃t〉

+
L

2
γ2ρ2‖z̃t‖2

≤ min
γ∈[0,1]

f(xt) + γ〈∇f(xt), ρz̃t〉

+
L

2
γ2ρ2 radius(A)2

(16)

We now treat separately the linear term for case A and case B.

case A: We start from the definition of inexact LMO (Equation (3)). We then have:

〈∇f(xt), z̃t〉 ≤ δ〈∇f(xt), zt〉
where zt is the true minimizer of the linear problem (LMO). In other words, it holds that
〈∇f(xt), zt〉 ≤ 〈∇f(xt), z〉 ∀ z ∈ conv(Ā) due to the arg min in line 4 of Algorithm 2. Therefore,
since x? ∈ ρ conv(Ā) it holds that:

〈∇f(xt),−ρzt〉 ≥ 〈∇f(xt),−x?〉.

Using the same argument, since − xt
‖xt‖A ∈ Ā and ρ ≥ ‖xt‖A, we have that −xt ∈ ρ conv(Ā).

Therefore:

〈∇f(xt),−ρzt〉 ≥ 〈∇f(xt),xt〉.
We can now bound the linear term of in (16) as:

〈∇f(xt),−2
ρ

δ
z̃t〉 = 〈∇f(xt),−

ρ

δ
z̃t〉+ 〈∇f(xt),−

ρ

δ
z̃t〉

≥ 〈∇f(xt),−ρzt〉+ 〈∇f(xt),−ρzt〉
≥ 〈∇f(xt),xt − x?〉
≥ f(xt)− f(x?) =: εt

where in the inequalities we used the the inexact oracle definition (see Section 2), the fact that both
−xt and x? ∈ ρ conv(Ā) and convexity respectively.

case B: Using line 4 of Algorithm 2 along with the inexact oracle definition we obtain:

〈∇f(xt),−
xt
‖xt‖A

〉 ≤ δmin
z∈A
〈∇f(xt), z〉.

Therefore, since x? ∈ ρ conv(A) we can write:

〈∇f(xt),−
ρ

δ

xt
‖xt‖A

〉 ≤ min
z∈A
〈∇f(xt), ρz〉

≤ 〈∇f(xt),x
?〉

We also have 〈∇f(xt),−xt〉 ≤ 0 and ρ
δ‖xt‖A > 1, which yields:

〈∇f(xt),−xt〉 ≥ 〈∇f(xt),−
ρ

δ

xt
‖xt‖A

〉

Putting these inequalites together we obtain:

〈∇f(xt),
2

δ
ρ

xt
‖xt‖A

〉 ≥ 〈∇f(xt),xt〉+ max
z∈A
〈∇f(xt),−ρz〉

≥ 〈∇f(xt),xt〉 − 〈∇f(xt),x
?〉

≥ εt
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combining A and B By combining case A and case B we obtain:

f(xt+1) ≤ f(xt) + min
γ∈[0,1]

{
−δ

2
γεt +

γ2

2
Lρ2 radius(A)2

}
Now, subtracting f(x?) from both sides and setting C := Lρ2 radius(A)2, we get

εt+1 ≤ εt + minγ∈[0,1]

{
− δ2γεt + γ2

2 C
}

≤ εt − 2
δ′t+2δ

′εt + 1
2

(
2

δ′t+2

)2

C,

where we set δ′ := δ/2 and used γ = 2
δ′t+2 ∈ [0, 1] to obtain the second inequality. Finally, we show

by induction

εt ≤
4
(

2
δC + ε0

)
t+ 4

= 2

(
1
δ′C + ε0

)
δ′t+ 2

for t ≥ 0.

When t = 0 we get ε0 ≤
(

1
δ′C + ε0

)
. Therefore, the base case holds. We now prove the induction

step assuming εt ≤
2( 1
δ′C+ε0)
δ′t+2 as :

εt+1 ≤
(

1− 2δ′

δ′t+2

)
εt + 1

2C
(

2
δ′t+2

)2

≤
(

1− 2δ′

δ′t+2

)
2( 1
δ′C+ε0)
δ′t+2

+ 1
2

(
2

δ′t+2

)2

C + 2
(δ′t+2)2 δ

′ε0

=
2( 1
δ′C+ε0)
δ′t+2

(
1− 2δ′

δ′t+2 + δ′

δ′t+2

)
≤ 2( 1

δ′C+ε0)
δ′(t+1)+2 .

Remembering that we set C = Lρ2 radius(A)2 concludes the proof.

Fully Corrective non-negative MP: The proof is trivial considering that:

f(xt+1) = min
x∈cone(S∪s(A,r))

f(x) (17)

≤ min
x∈cone(S∪s(A,r))

gxt(x) (18)

≤ min
γ∈R≥0

gxt(xt + γz̃t) (19)

where z̃t ∈ A∪
{
−xt
‖xt‖A

}
as the search space in Equation (18) strictly contain the one in Equation (19).

Equation (19) is also the beginning of the proof of the sublinear rate for NNMP which then concludes
the proof.

E Linear Rate

Theorem’ 3. Let A ⊂ H be a bounded set containing the origin and let the objective function
f : H→R be both L-smooth and µ-strongly convex over ρ conv(A ∪−A).

Then, the suboptimality of the iterates of Algorithm 3 decreases geometrically at each step in which
γ < αvt (henceforth referred to as “good steps”) as:

εt+1 ≤ (1− β) εt, (20)

where β := δ2 µCWidth(A)2

L diam(A)2 ∈ (0, 1], εt := f(xt)−f(x?) is the suboptimality at step t and δ ∈ (0, 1]

is the relative accuracy parameter of the employed approximate LMO (Equation (3)). For AMP
(Algorithm 3), βAMP = β/2. If µ = 0 Algorithm 3 converges with rate O(1/k(t)) where k(t) is the
number of “good steps” up to iteration t.
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Proof. Let us consider the case of PWMP.

Consider the atoms z̃t ∈ A and ṽt ∈ S selected by the LMO at iteration t. Due to the smoothness
property of f it holds that:

f(xt+1) ≤ min
γ∈R

f(xt) + γ〈∇f(xt), z̃t − ṽt〉

+
L

2
γ2‖z̃t − ṽt‖2.

for a good step (i.e. γ < αvt ). Note that this also holds for variant 0 of Algorithm 4.

We minimize the upper bound with respect to γ setting γ = − 1
L 〈∇f(xt),

z̃t−ṽt
‖z̃t−ṽt‖2 〉 . Subtracting

f(x?) from both sides and replacing the optimal γ yields:

εt+1 ≤ εt −
1

2L

〈
∇f(xt),

z̃t − ṽt
‖z̃t − ṽt‖

〉2

(21)

Now writing the definition of strong convexity, we have the following inequality holding for all
γ ∈ R:

f(xt + γ(x? − xt)) ≥ f(xt) + γ〈∇f(xt),x
? − xt〉+

γ2µ

2
‖x? − xt‖2

We now fix γ = 1 in the LHS and minimize with respect to γ in the RHS:

εt ≤
1

2µ

〈
∇f(xt),

x? − xt
‖x? − xt‖

〉2

Combining this with (21) yields:

εt − εt+1 ≥
µ

L

〈
∇f(xt),

z̃t−ṽt
‖z̃t−ṽt‖

〉2〈
∇f(xt),

x?−xt
‖x?−xt‖

〉2 εt (22)

We now use Theorem 8 to conclude the proof. For Away-steps MP the proof is trivially extended
since 2 minz∈A∪−S〈∇f(xt), z〉 ≤ minz∈A,v∈S〈∇f(xt), z − v〉. Therefore, we obtain the same
smoothness upper bound of the PWMP. The rest of the proof proceed as for PWMP with the additional
1
2 factor.

Sublinear Convergence for µ = 0 If µ = 0 we have for PWMP:

f(xt+1) ≤ min
γ≤αvt

f(xt) + γ〈∇f(xt), z̃t − ṽt〉 (23)

+
L

2
γ2‖z̃t − ṽt‖2. (24)

which can be rewritten for a good step (i.e. no clipping is necessary) as:

εt+1 ≤ εt + minγ∈[0,1]

{
− δ2γεt + γ2

2 Lρ
2 diam(A)2

}
using the same arguments of the proof of Theorem 2. Unfortunately, αvt limits the improvement. On
the other hand, we can repeat the induction of Theorem 2 for only the good steps. Therefore:

εt+1 ≤ εt − 2
δ′t+2δ

′εt + 1
2

(
2

δ′t+2

)2

C,

where we set δ′ := δ/2, C = Lρ2 diam(A)2 and used γ = 2
δ′t+2 ∈ [0, 1] (since it is a good step this

produce a valid upper bound). Finally, we show by induction

εt ≤
4
(

2
δC + ε0

)
t+ 4

= 2

(
1
δ′C + ε0

)
δ′k(t) + 2

where k(t) ≥ 0 is the number of good steps at iteration t.
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When k(t) = 0 we get ε0 ≤
(

1
δ′C + ε0

)
. Therefore, the base case holds. We now prove the induction

step assuming εt ≤
2( 1
δ′C+ε0)
δ′k(t)+2 as :

εt+1 ≤
(

1− 2δ′

δ′k(t)+2

)
εt + 1

2C
(

2
δ′k(t)+2

)2

≤
(

1− 2δ′

δ′k(t)+2

)
2( 1
δ′C+ε0)
δ′k(t)+2

+ 1
2

(
2

δ′k(t)+2

)2

C + 2
(δ′k(t)+2)2 δ

′ε0

=
2( 1
δ′C+ε0)
δ′k(t)+2

(
1− 2δ′

δ′k(t)+2 + δ′

δ′k(t)+2

)
≤ 2( 1

δ′C+ε0)
δ′(k(t)+1)+2 .

For AFW the procedure is the same but the linear term of Equation 23 is divided by two. We proceed
as before with the only difference that we call δ′ = δ/4.

E.1 Proof sketch for linear rate convergence of FCMP

Theorem’ 3. Let A ⊂ H be a bounded set containing the origin and let the objective function
f : H→R be both L-smooth and µ-strongly convex over ρ conv(A ∪−A).

Then, the suboptimality of the iterates of Algorithm 4 decreases geometrically at each step in which
γ < αvt (henceforth referred to as “good steps”) as:

εt+1 ≤ (1− β) εt, (25)

where β := δ2 µCWidth(A)2

L diam(A)2 ∈ (0, 1], εt := f(xt)−f(x?) is the suboptimality at step t and δ ∈ (0, 1]

is the relative accuracy parameter of the employed approximate LMO (Equation (3)).

Proof. The proof is trivial noticing that:

f(xt+1) = min
x∈cone(S∪s(A,r))

f(x)

≤ min
x∈cone(S∪s(A,r))

gxt(x)

≤ min
γ≤αvt

gxt(xt + γ(zt − vt))

which is the beginning of the proof of Theorem 3. Note that there are no bad steps for variant 1. Since
we minimize f at each iteration, vt is always zero and each step is unconstrained (i.e., no bad steps).

F Pyramidal Width

Let us first recall some definitions from [28].

Directional Width

dirW (A, r) := max
s,v∈A

〈 r

‖r‖
, s− v

〉
(26)

Pyramidal Directional Width

PdirW (A, r,x) := min
S∈Sx

dirW (S ∪ {s(A, r)}, r) (27)

Where Sx := {S | S ⊂ A such that x is a proper convex combination of all the elements in S} and
s(A, r) := maxs∈A〈 r

‖r‖ , s〉.
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Pyramidal Width

PWidth(A) := min
K∈faces(conv(A))

x∈K
r∈cone(K−x)\{0}

PdirW (K ∩A, r,x)

Inspired by the notion of pyramidal width we now define the cone width of a set A.

Cone Width

CWidth(A) := min
K∈g-faces(cone(A))

x∈K
r∈cone(K−x)\{0}

PdirW (K ∩A, r,x)

The linear rate analysis is dominated by the fact that, similarly as in FW, many step directions are
constrained (the ones pointing outside of the cone). So these arguments are in line with [28] and the
techniques are adapted here. Lemma 7 is a minor modification of [[28], Lemma 5], see also their
Figure 3. If the gradient is not feasible, the vector with maximum inner product must lie on a facet.
Furthermore, it has the same inner product with the gradient and with its orthogonal projection on
that facet. While first proof of Lemma 7 follows [28], we also give a different proof which does not
use the KKT conditions.

Lemma 7. Let x be a reference point inside a polytope K ∈ g-faces(cone(A)) and r ∈ lin(K) is
not a feasible direction from x. Then, a feasible direction in K minimizing the angle with r lies on a
facet K′ of K that includes x:

max
e∈cone(K−x)

〈r, e

‖e‖
〉 = max

e∈cone(K′−x)
〈r, e

‖e‖
〉

= max
e∈cone(K′−x)

〈r′, e

‖e‖
〉

where r′ is the orthogonal projection of r onto lin(K′)

Proof. Let us center the problem in x. We rewrite the optimization problem as:

max
e∈cone(K),‖e‖=1

〈r, e〉

and suppose by contradiction that e is in the relative interior of the cone. By the KKT necessary
conditions we have that e? is collinear with r. Therefore e? = ±r. Now we know that r is not
feasible, therefore the solution is e? = −r. By Cauchy-Schwarz we know that this solution is
minimizing the inner product which is absurd. Therefore, e? must lie on a face of the cone. The last
equality is trivial considering that r′ is the orthogonal projection of r onto lin(K′).

Alternative proof. This proof extends the traditional proof technique of [28] to infinitely many
constraints. We also reported the FW inspired proof for the readers that are more familiar with the FW
analysis. Using proposition 2.11 of [8] (we also use their notation) the first order optimality condition
minimizing a function J in a general Hilbert space given a closed set K is that the directional
derivative computed at the optimum ū satisfy J ′(ū)v ≥ 0 ∀v ∈ T (K− ū). Let us now assume that ū
is in the relative interior of K. Then T (K − ū) = H. Furthermore, J ′(ū)v = 〈r, v〉 which is clearly
not greater or equal than zero for any element ofH.

Theorem 8 is the key argument to conclude the proof of Theorem 3 from Equation (22): we have to
bound the ratio of those inner products with the cone width.

Theorem 8. Let r = −∇f(xt), x ∈ cone(A), S be the active set and z and v obtained as in
Algorithm 3. Then, using the notation from Lemma 7:

〈r,d〉
〈r, ê〉

≥ CWidth(A) (28)

where d := z− v, ê = e
‖e‖ and e = x? − xt.
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Proof. As we already discussed we can consider x ∈ conv(A) instead of xt ∈ cone(A) since both
the cone and the set of feasible direction are invariant to a rescaling of x by a strictly positive constant.
Let us center all the vectors in x, then ê is just a vector with norm 1 in some face. As x is not
optimal, by convexity we have that 〈r, ê〉 > 0. By Cauchy-Schwartz we know that 〈r, ê〉 ≤ ‖r‖ since
〈r, ê〉 > 0 and ‖ê‖ = 1. By definition of d we have:

〈 r

‖r‖
,d〉 = max

z∈A,v∈S
〈 r

‖r‖
, z− v〉

≥ min
S⊂Sx

max
z∈A,v∈S

〈 r

‖r‖
, z− v〉

= PdirW (A, r,x).

Now, if r is a feasible direction from x Equation (28) is proved (note that PdirW (A, r,x) ≥
CWidth(A) as conv(A) ∈ g-faces(cone(A)) and conv(A) ∩ A = A). If r is not a feasible
direction it means that x is on a face of cone(A) and r points to the exterior of cone(A) from x. We
then project r on the faces of cone(A) containing x until it is a feasible direction. We start by lower
bounding the ratio of the two inner products replacing ê with a vector of norm 1 in the cone that has
maximum inner product with r (with abuse of notation we still call it ê). We then write:

〈r,d〉
〈d, ê〉

≥
(

max
z∈A,v∈S

〈r, z− v〉
)
·
(

max
e∈cone(A−x)

〈r, e

‖e‖
〉
)−1

Let us assume that r is not feasible but without loss of generality is in lin(A) since orthogonal
components to lin(A) does not influence the inner product with elements in lin(A). Using Lemma 7
we know that:

max
e∈cone(K−x)

〈r, e

‖e‖
〉 = max

e∈cone(K′−x)
〈r, e

‖e‖
〉

= max
e∈cone(K′−x)

〈r′, e

‖e‖
〉

Let us now consider the reduced cone cone(K′) as r ∈ lin(K′). For the numerator we obtain:

max
z∈A,v∈S

〈r, z− v〉
K′⊂A
≥ max

z∈K′
〈r, z〉+ max

v∈S
〈−r,v〉

Putting numerator and denominator together we obtain:

〈r,d〉
〈d, ê〉

≥

max
z∈K′
v∈S

〈r′, z− v〉

 · ( max
e∈cone(K′−x)

〈r′, e

‖e‖
〉
)−1

Note that S ⊂ K′. Indeed, x is a proper convex combination of the elements of S and x ∈ K′ ⊂
conv(A). Now if r′ is a feasible direction in cone(K′ − x) we obtain the cone width since cone(K′)
is a face of cone(A). If not we reiterate the procedure projecting onto a lower dimensional face K′′ .
Eventually, we will obtain a feasible direction. Since 〈r, ê〉 6= 0 we will obtain rfinal 6= 0.

Lemma 4. If the origin is in the relative interior of conv(A) with respect to its linear span, then
cone(A) = lin(A) and CWidth(A) = mDW(A).

Proof. Let us first rewrite the definition of cone width:

CWidth(A) := min
K∈g-faces(cone(A))

x∈K
r∈cone(K−x)\{0}

PdirW (K ∩A, r,x).

The minimum is over all the feasible directions of the gradient from every point in the domain. It is
not restrictive to consider r parallel to lin(A) (because the orthogonal component has no influence).
Therefore, from every point x ∈ lin(A) every r ∈ lin(A) is a feasible direction. The geometric
constant then becomes:

CWidth(A) = min
K∈g-faces(cone(A))

x∈K
r∈lin(A)\{0}

PdirW (K ∩A, r,x)
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Let us now assume by contradiction that for any K ∈ g-faces we have:
0 6∈ arg min

x∈K
min

r∈lin(A)\{0}
PdirW (K ∩A, r,x) (29)

Therefore, ∃v ∈ S such that v 6= 0 for any of the x minimizing (29). By definition, we have 0 ∈ S,
which yields maxv∈S〈r,−v〉 ≥ 0 for every r. Therefore, 〈r, z−v〉 ≥ 〈r, z〉 which is absurd because
we assumed zero was in the set of minimizers of (29). So 0 minimize the cone directional width
which yields Sx = {0} and v = 0. In conclusion we have:

CWidth(A) = min
d∈lin(A)

max
z∈A
〈 d

‖d‖
, z〉 = mDW(A)

G Affine Invariant Sublinear Rate

Theorem’ 5. Let A ⊂ H be a bounded set with 0 ∈ A, ρ := max {‖x?‖A, ‖x0‖A, . . . , ‖xT ‖A} <
∞. Assume f has smoothness constant CMP

f,ρ(A∪−A). Then, Algorithm 5 converges for t ≥ 0 as

f(xt)− f(x?) ≤
4
(

2
δC

MP
f,ρ(A∪−A) + ε0

)
δt+ 4

,

where δ ∈ (0, 1] is the relative accuracy parameter of the employed approximate LMO (3).

Proof. Recall that z̃t is the atom returned by the inexact LMO after the comparison with − xt
‖xt‖A at

the current iteration t.

We start by upper bounding f on ρ conv(Ā) using smoothness as follows:

f(xt+1) ≤ min
γ∈[0,1]

f(xt) + γ〈∇f(xt), ρz̃t〉+
γ2

2
CMP
f,ρ(A∪−A)

We now proceed bounding the linear term as done in the proof of Theorem 2 for case A and case B
obtaining:

f(xt+1) ≤ f(xt) + min
γ∈[0,1]

{
−δ

2
γεt +

γ2

2
CMP
f,ρ(A∪−A)

}
Now, subtracting f(x?) from both sides we get

εt+1 ≤ εt + minγ∈[0,1]

{
− δ2γεt + γ2

2 C
MP
f,ρ(A∪−A)

}
≤ εt − 2

δ′t+2δ
′εt + 1

2

(
2

δ′t+2

)2

CMP
f,ρ(A∪−A),

where we set δ′ := δ/2 and used γ = 2
δ′t+2 ∈ [0, 1] to obtain the second inequality. Finally, we show

by induction

εt ≤
4
(

2
δC

MP
f,ρ(A∪−A) + ε0

)
t+ 4

= 2

(
1
δ′C

MP
f,ρ(A∪−A) + ε0

)
δ′t+ 2

for t ≥ 0.

When t = 0 we get ε0 ≤
(

1
δ′C

MP
f,ρ(A∪−A) + ε0

)
. Therefore, the base case holds. We now prove the

induction step assuming εt ≤
2( 1
δ′C

MP
f,ρ(A∪−A)+ε0)
δ′t+2 as :

εt+1 ≤
(

1− 2δ′

δ′t+2

)
εt + 1

2C
MP
f,ρ(A∪−A)

(
2

δ′t+2

)2

≤
(

1− 2δ′

δ′t+2

)
2( 1
δ′C

MP
f,ρ(A∪−A)+ε0)
δ′t+2

+ 1
2

(
2

δ′t+2

)2

CMP
f,ρ(A∪−A) + 2

(δ′t+2)2 δ
′ε0

=
2( 1
δ′C

MP
f,ρ(A∪−A)+ε0)
δ′t+2

(
1− 2δ′

δ′t+2 + δ′

δ′t+2

)
≤ 2( 1

δ′C
MP
f,ρ(A∪−A)+ε0)
δ′(t+1)+2 .
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We next explore the relationship of CMP
f,ρ(A∪−A) and the smoothness parameter. Recall that f is

L-smooth with respect to a given norm ‖.‖ over a set Q if

‖∇f(x)−∇f(y)‖∗ ≤ L‖x− y‖ for all x,y ∈ Q , (30)

where ‖.‖∗ is the dual norm of ‖.‖.
Lemma 9. Assume f is L-smooth with respect to a given norm ‖.‖, over the set conv(A). Then,

CMP
f,ρ(A∪−A) ≤ Lρ

2 radius‖.‖(A)2 (31)

Proof. By the definition of smoothness of f with respect to ‖.‖,

D(y,x) ≤ L

2
‖y − x‖2.

Hence, from the definition of CMP
f,ρ(A∪−A),

CMP
f,A ≤ sup

s∈ρA,x∈conv(ρA)
γ∈[0,1]
y=x+γs

2

γ2

L

2
‖y − x‖2

= Lρ2 sup
s∈A
‖s‖2

= Lρ2 radius‖.‖(A)2 .

H Affine Invariant Linear Rate

Theorem’ 6. Let A ⊂ H be a bounded set containing the origin and let the objective function
f : H→R have smoothness constant CA

f,ρ(A∪−A) and strong convexity constant µAf,ρA

Then, the suboptimality of the iterates of Algorithm 3 and 4 decreases geometrically at each step in
which γ < αvt (henceforth referred to as “good steps”) as:

εt+1 ≤ (1− β) εt, (32)

where β := δ2 µAf,ρA
CA
f,ρ(A∪−A)

∈ (0, 1], εt := f(xt)− f(x?) is the suboptimality at step t and δ ∈ (0, 1]

is the relative accuracy parameter of the employed approximate LMO (Equation (3)). For AMP
(Algorithm 3), βAMP = β/2. If µAf,ρA = 0 Algorithm 3 converges with rate O(1/k(t)) where k(t) is
the number of “good steps” up to iteration t.

Proof. Let us first consider the PWMP update. Using the definition of CA
f,ρ(A∪−A) we upper-bound

f on ρ conv(A) as follows

f(xt+1) ≤ min
γ∈[0,1]

f(xt) + γ〈∇f(xt), ρz̃t − ρṽt〉

+
γ2

2
CA
f,ρ(A∪−A)

= min
γ∈R

f(xt) + γ〈∇f(xt), ρz̃t − ρṽt〉

+
γ2

2
CA
f,ρ(A∪−A)

= f(xt)−
ρ2

2CA
f,ρ(A∪−A)

〈∇f(xt), z̃t − ṽt〉2 .

This upper bound holds for Algorithm 6 every time ργ < αv as ργ minimizing the RHS of the first
equality coincides with the update of Algorithm 5 Line 5. The first equality holds as CA

f,ρ(A∪−A)
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is defined on ρ conv(A) and ρ conv(A) contains all iterates by definition, so that the unconstrained
minimum lies in [0, 1] assuming ργ < αv.

Using εt = f(x?)− f(xt), we can lower bound the error decay as

εt − εt+1 ≥
ρ2

2CA
f,ρ(A∪−A)

〈∇f(xt), z̃t − ṽt〉2 . (33)

Starting from the definition of µAf,ρA we get,

γ(xt,x
?)2

2
µAf,ρA ≤ f(x?)− f(xt)− 〈∇f(xt),x

? − xt)〉
= −εt
+ γ(xt,x

?)〈−∇f(xt), s(xt)− v(x)〉,

which gives

εt ≤ −γ(xt,x
?)2

2
µAf,ρA

+ γ(xt,x
?)〈−∇f(xt), s(xt)− v(x)〉 (34)

≤ 〈−∇f(xt), s(xt)− v(x)〉2

2µAf,ρA

=
〈−∇f(xt), ρ(z̃t − ṽt)〉2

2δ2µAf,ρA
(35)

where the last inequality is by the quality of the approximate LMO as used in the algorithm, as
defined in (3).

Combining equations (33) and (35), we have

εt − εt+1 ≥ δ2
µAf,ρA

CA
f,ρ(A∪−A)

εt,

which proves the claimed result. The proof for AMP and FCMP follows directly using the same
argument used in the proof of Theorem 3. The upper bound used in the FCMP is the affine invariant
notion of smoothness. The proof steps for the sublinear convergence is the same as the one of
Theorem 3 replacing C with CA

f,ρ(A∪−A).

Lemma 10. If f is µ strongly convex over the domain conv(ρA) with respect to some arbitrary
cholsen norm ‖ · ‖, then

µAf,ρA ≥ µCWidth(A)
2

Proof. From the strong convexity:

µAf,ρA = inf
x∈conv(ρA)

inf
x?∈conv(ρA)
〈∇f(x),x?−x〉<0

2

γ(x,x?)
D(x?,x)

≥ inf
x,x?∈conv(ρA),
〈−∇f(x),x?−x〉>0

µ

(
〈−∇f(x), s(x)− v(x)〉
〈−∇f(x), x?−x

‖x?−x‖A 〉

)2

≥ µCWidth(A)
2

where in the last inequality we used Theorem 8.

The proof for away-steps uses the same argument we used in the norm based rate.

Lemma 11. Assume f is L-smooth with respect to a given norm ‖.‖, over the set conv(A). Then,

CA
f,ρ(A∪−A) ≤ Lρ

2 diam‖.‖(A)2 (36)
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Proof. By the definition of smoothness of f with respect to ‖.‖,

D(y,x) ≤ L

2
‖y − x‖2.

Hence, from the definition of CMP
f,ρ(A∪−A),

CMP
f,A ≤ sup

s∈ρA,x∈conv(ρA)
v∈S
γ∈[0,1]

y=x+γ(s−v)

2

γ2

L

2
‖y − x‖2

= Lρ2 sup
x∈conv(ρA)

s∈A
v∈S

‖s− v‖2

= Lρ2 diam‖.‖(A)2 .
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