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Abstract

Finding the maximum a-posteriori (MAP) assignment is a central task for structured
prediction. Since modern applications give rise to very large structured problem
instances, there is increasing need for efficient solvers. In this work we propose
to improve the efficiency of coordinate-minimization-based dual-decomposition
solvers by running their updates asynchronously in parallel. In this case message-
passing inference is performed by multiple processing units simultaneously without
coordination, all reading and writing to shared memory. We analyze the conver-
gence properties of the resulting algorithms and identify settings where speedup
gains can be expected. Our numerical evaluations show that this approach indeed
achieves significant speedups in common computer vision tasks.

1 Introduction

Finding the most probable configuration of a structured distribution is an important task in machine
learning and related applications. It is also known as the maximum a-posteriori (MAP) inference
problem in graphical models [Wainwright and Jordan, 2008, Koller and Friedman, 2009], and has
found use in a wide range of applications, from disparity map estimation in computer vision, to
part-of-speech tagging in natural language processing, protein-folding in computational biology and
others. Generally, MAP inference is intractable, and efficient algorithms only exist in some special
cases, such as tree-structured graphs. It is therefore common to use approximations.

In recent years, many approximate MAP inference methods have been proposed [see Kappes et al.,
2015, for a recent survey]. One of the major challenges in applying approximate inference techniques
is that modern applications give rise to very large instances. For example, in semantic image
segmentation the task is to assign labels to all pixels in an image [e.g., Zhou et al., 2016]. This can
translate into a MAP inference problem with hundreds of thousands of variables (one for each pixel).
For this reason, efficiency of approximate inference algorithms is becoming increasingly important.

One approach to dealing with the growth in problem complexity is to use cheap (but often inaccurate)
algorithms. For example, variants of the mean field algorithm have witnessed a surge in popularity
due to their impressive success in several computer vision tasks [Krdhenbiihl and Koltun, 2011]. A
shortcoming of this approach is that it is limited to a specific type of model (fully connected graphs
with Gaussian pairwise potentials). Moreover, the mean field approximation is often less accurate
than other approximations, e.g., those based on convex relaxations [Desmaison et al., 2016].

In this work we study an alternative approach to making approximate MAP inference algorithms
more efficient — parallel computation. Our study is motivated by two developments. First, current
hardware trends increase the availability of parallel processing hardware in the form of multi-core
CPUs as well as GPUs. Second, recent theoretical results improve our understanding of various
asynchronous parallel algorithms, and demonstrate their potential usefulness, especially for objective
functions that are typical in machine learning problems [e.g., Recht et al., 2011, Liu et al., 2015].
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Focusing on a smoothed objective function originating from a dual-decomposition approximation,
we present a fully asynchronous parallel algorithm for MAP inference based on block-coordinate
updates. Our approach gives rise to a message-passing procedure, where messages are computed
and updated in shared memory asynchronously in parallel by multiple processing units, with no
attempt to coordinate their actions. The reason we focus on asynchronous algorithms is because
the runtime of synchronous algorithms is dominated by the slowest worker, which may cause the
overhead from synchronization to outweigh the gain from parallelization. The asynchronous parallel
setting is particularly suitable for message-passing algorithms, like the ones we study here.

Our analysis is conducted under the bounded delay assumption, which is standard in the literature on
asynchronous optimization and matches well modern multicore architectures. It reveals the precise
relation between the delay and the expected change in objective value following an update. This
result suggests a natural criterion for adaptively choosing the number of parallel workers to guarantee
convergence to the optimal value. Additional analysis shows that speedups which are linear in the
number of processors can be expected under some conditions. We illustrate the performance of our
algorithm both on synthetic models and on a disparity estimation task from computer vision. We
demonstrate 45-fold improvements or more when compared to other asynchronous optimization
techniques.

2 Related Work

Our work is inspired by recent advances in the study of asynchronous parallel algorithms and their
successful application to various machine learning tasks. In particular, parallel versions of various
sequential algorithms have been recently analyzed, adding to past work in asynchronous parallel
optimization [Bertsekas and Tsitsiklis, 1989, Tseng, 1991]. Those include, for example, stochastic
gradient descent [Recht et al., 2011], conditional gradient [Wang et al., 2016], ADMM [Zhang and
Kwok, 2014], proximal gradient methods [Davis et al., 2016], and coordinate descent [Liu et al.,
2015, Liu and Wright, 2015, Avron et al., 2015, Hsieh et al., 2015, Peng et al., 2016, You et al., 2016].

The algorithms we study here are based on block coordinate minimization, a coordinate descent
method in which an optimal update is computed in closed form.! To the best of our knowledge, this
algorithm has yet to be analyzed in the asynchronous parallel setting. The analysis of this algorithm
is significantly more challenging compared to other coordinate descent methods, since there is no
notion of a step-size, which is carefully chosen in previous analyses to guarantee convergence [e.g.,
Liu et al., 2015, Avron et al., 2015, Peng et al., 2016]. Furthermore, in most previous papers, the
function which is being optimized is assumed to be strongly convex, or to satisfy a slightly weaker
condition [Liu et al., 2015, Hsieh et al., 2015]. In contrast, we analyze a smooth and convex MAP
objective, which does not satisfy any of these strong-convexity conditions. We focus on this particular
objective function since optimal block coordinate updates are known in this case, which is not true
for its strongly convex counterparts [Meshi et al., 2015].

We are not the first to study parallel inference methods in graphical models. Parallel variants of
Belief Propagation (BP) are proposed and analyzed by Gonzalez et al. [2011]. They present bounds
on achievable gains from parallel inference on chain graphs, as well as an optimal parallelization
scheme. However, the algorithms they propose include global synchronization steps, which often hurt
efficiency. In contrast, we focus on the fully asynchronous setting, so our algorithms and analysis
are substantially different. Piatkowski and Morik [2011] and Ma et al. [2011] also describe parallel
implementations of BP, but those again involve synchronization. We are particularly interested
in the MAP inference problem and use convergent coordinate minimization methods with a dual-
decomposition objective. This is quite different from marginal inference with BP, used in the
aforementioned works; for example, BP is not guaranteed to converge even with sequential execution.

Dual-decomposition based parallel inference for graphical models has been investigated by Choi and
Rutenbar [2012] and extended by Hurkat et al. [2015]. They study hardware implementations of
the TRW-S algorithm (a coordinate-minimization algorithm very similar to the ones we study here),
where some message computations can be parallelized. However, their parallelization scheme is quite
different from ours as it is synchronous, i.e., the messages computed in parallel have to be carefully
chosen, and it is specific to grid-structured graphs. In addition, they provide no theoretical analysis

"For a single coordinate this is equivalent to exact line search, but for larger blocks the updates can differ.



of convergence (which is not directly implied by TRW-S convergence due to different message
scheduling).

Schwing et al. [2011] and Zhang et al. [2014] also study dual-decomposition based parallel infer-
ence. They demonstrate gains when parallelizing the computation across multiple machines in a
cluster. However, their approach requires the employed processing units to run in synchrony. Parallel
MAP solvers based on subdifferential techniques [Schwing et al., 2012], have also been consid-
ered by Schwing et al. [2014] using a Frank-Wolfe algorithm. Albeit individual computations are
performed in parallel, their approach also requires a synchronous gradient step.

An alternative parallel inference approach is based on sampling algorithms [Singh et al., 2010, Wick
et al., 2010, Asuncion et al., 2011]. However, the gains in runtime observed in this case are usually
much smaller than those observed for algorithms which do not use sampling.

Our work is thus the first to propose and analyze a fully asynchronous parallel coordinate minimization
algorithm for MAP inference in graphical models.

3 Approach

In this section we formalize the MAP inference problem and present our algorithmic framework.
Consider a set of discrete variables X1, ..., Xy, and denote by x; € &; a particular assignment to
variable X; from a discrete set X;. Letr C {1,..., N} denote a subset of the variables, also known
as a region, and let R be the set of all regions that are used in a problem. Each region r € R is
associated with a local score function 6,.(z,.), referred to as a factor. The MAP inference problem is
to find a joint assignment 2 that maximizes the sum of all factor scores,

max Z 0-(z,) . (1)

reR

Consider semantic image segmentation as an example. Factors depending on a single variable denote
univariate preferences often obtained from neural networks [Chen™ et al., 2015]. Factors depending
on two or more variables encode local preference relationships.

The problem in Eq. (1) is a combinatorial optimization problem which is generally NP-hard [Shimony,
1994]. Notable tractable special cases include tree-structured graphs and super-modular pairwise
factors. In this work we are interested in solving the general form of the problem, therefore we resort
to approximate inference.

Multiple ways to compute an approximate MAP solution have been proposed. Here we employ
approximations based on the dual-decomposition method [Komodakis et al., 2007, Werner, 2010,
Sontag et al., 2011], which often deliver competitive performance compared to other approaches,
and are also amenable to asynchronous parallel execution. The key idea in dual-decomposition is
to break the global optimization problem of Eq. (1) into multiple (easy) subproblems, one for each
factor. Agreement constraints between overlapping subproblem maximizers are then defined, and the

resulting program takes the following form,”

min anx <9,«($,«)+ > (@)= 5,«c($c)> = min Zn}gx 02 (z,) . )
rTER p:r€Ep cicer TER
Here, ‘r € p’ (similarly, ‘c € 7’) represents parent-child containment relationships, often represented
as a region graph [Wainwright and Jordan, 2008], and § are Lagrange multipliers for the agreement
constraints, defined for every region r, assignment z,., and parent p : r € p. In particular, these
constraints enforce that the maximizing assignment in a parent region p agrees with the maximizing
assignment in the child region r on the values of the variables in r (which are also in p due to
containment). For a full derivation see Werner [2010] (Eq. (11)). The modification of the model

factors 6,- by the multipliers § is known as a reparameterization, and is denoted here by é,‘f for brevity.

The program in Eq. (2) is an unconstrained convex problem with a (piecewise-linear) non-smooth
objective function. Standard algorithms, such as subgradient descent, can be applied in this case
[Komodakis et al., 2007, Sontag et al., 2011], however, often, faster algorithms can be derived for a
smoothed variant of this objective function [Johnson, 2008, Hazan and Shashua, 2010, Werner, 2009,

2The problem in Eq. (2) can also be derived as the dual of a linear programming relaxation of Eq. (1).



Algorithm 1 Block Coordinate Minimization
1: Initialize: 6° =0
2: while not converged do
3:  Choose a block s at random
4 Update: ;! = argming, f(0;,0%,), and keep: S =5t
5: end while

Savchynskyy et al., 2011]. In this approach the max operator is replaced with soft-max, giving rise to

the following problem:
Inlnf Z 'ylogZeXp ( (z /7) , 3)
reR

where ~y is a parameter controlling the amount of smoothing (larger is smoother).

Algorithms: Several algorithms for optimizing either the smooth (Eq. (3)) or non-smooth (Eq. (2))
problem have been studied. Block coordinate minimization algorithms, which are the focus of our
work, are among the most competitive methods. In particular, in this approach a block of variables §,
is updated at each iteration using the values in other blocks, i.e., §_g, which are held fixed. Below we
will assume a randomized schedule, where the next block to update is chosen uniformly at random.
Other schedules are possible [e.g., Meshi et al., 2014, You et al., 2016], but this one will help to
avoid unwanted coordination between workers in an asynchronous implementation. The resulting
meta-algorithm is given in Algorithm 1.

Various choices of blocks give rise to different algorithms in this family. A key consideration is to
make sure that the update in line 4 of Algorithm 1 can be computed efficiently. Indeed, for several
types of blocks, efficient, oftentimes analytically computable, updates are known [Werner, 2007,
Globerson and Jaakkola, 2008, Kolmogorov, 2006, Sontag et al., 2011, Meshi et al., 2014]. To make
the discussion concrete, we next instantiate the block coordinate minimization update (line 4 in
Algorithm 1) using the smooth objective in Eq. (3) for two types of blocks.® Specifically, we use the
Pencil block, consisting of the variables 6pr(-), and the Star block, which consists of the set ¢.,-(+).
Intuitively, for the Pencil block, we choose a parent p and one of its children 7. For the Star block we
choose a region 7 and consider all of its parents.

To simplify notation, it is useful to define per-factor probability distributions, referred to as beliefs:

pr(ar) o< exp (02(ar) /) -

Using this definition, the Pencil update is performed by picking a pair of adjacent regions p, r, and
setting:

5 () = B () + v (108 1 (22) — log ik (2)) 4)

for all z,, where we denote the marginal belief i, (z,) =", . Lp (2, x;\r). Similarly, for the Star

update we pick a region r, and set:

1
Sbit(@y) = Ohe(wr) + ylog ph (1) — Pl vlog (,ur Zr) H fpr (27 )

p’irep’

forall p : r € p and all z,, where P. = |[{p : r € p}| is the number of parents of r in the region
graph. Full derivation of the above updates is outside the scope of this paper and can be found in
previous work [e.g., Meshi et al., 2014]. The variables § are sometimes called messages. Hence the
algorithms considered here belong to the family of message-passing procedures.

In terms of convergence rate, it is known that coordinate minimization converges to the optimum of
the smooth problem in Eq. (3) with rate O(1/~t) [Meshi et al., 2014].

In this work our goal is to study asynchronous parallel coordinate minimization for approximate
MAP inference. This means that each processing unit repeatedly performs the operations in lines 3-4

3Similar updates for the non-smooth case (Eq. (2)) are also known. Those are easily obtained by switching
from soft-max to max.



of Algorithm 1 independently, with minimal coordination between units. We refer to this algorithm as
APCM - for Asynchronous Parallel Coordinate Minimization. We use APCM-Pencil and APCM-Star
to refer to the instantiations of APCM with Pencil and Star blocks, respectively.

4 Analysis

We now proceed to analyze the convergence properties of the asynchronous variants of Algorithm 1.
In this setting, the iteration counter ¢ corresponds to write operations, which are assumed to be atomic.
Note, however, that in our experiments in Section 5 we use a lock-free implementation, which may
result in inconsistent writes and reads.

If there is no delay, then the algorithm is performing exact coordinate minimization. However, since
updates happen asynchronously, there will generally be a difference between the current beliefs j°
and the ones used to compute the update. We denote by k(¢) the iteration counter corresponding to
the time in which values were read. The bounded delay assumption implies that ¢t — k(¢) < 7 for
some constant 7. We present results for the Pencil block next, and defer results for the Star block to
Appendix B.

Our first result precisely characterizes the expected change in objective value following an update as
a function of the old and new beliefs. All proofs appear in the supplementary material.

Proposition 1. The APCM-Pencil algorithm satisfies:

B - f6) = 130 Y (log sV O )

T PpiTEP

Hp (1)
+ log JT\/MZ“)(@) ~uf“’(w)> ’
z, Hp (z)

wheren =Y Zp:re pLis the number of Pencil blocks, and the expectation is over the choice of
blocks.

At a high-level, our derivation carefully tracks the effect of stale beliefs on convergence by sepa-
rating old and new beliefs after applying the update (see Appendix A.1). We next highlight a few
consequences of Proposition 1. First, it provides an exact characterization of the expected change in
objective value, not an upper bound. Second, as a sanity check, when there is no delay (k(t) = ¢),
the belief ratio terms (u*/1*®*)) drop, and we recover the sequential decrease in objective, which
corresponds to the (negative) Bhattacharyya divergence measure between the pair of distributions
pt(x,) and g, () [Meshi et al., 2014]. Finally, Proposition 1 can be used to dynamically set the
degree of parallelization as follows. We estimate Eq. (5) (per block) and if the result is strictly positive
then it suggests that the delay is too large and we should reduce the number of concurrent processors.

Next, we obtain an upper bound on the expected change in objective value that takes into account the
sparsity of the update.

Proposition 2. The APCM-Pencil algorithm satisfies:

t—1 d+1 d+1
B[ - £6) < L 3 {Hggx (log ““(D + max (mg ““()ﬂ ©)

d=k(t) r<d>( o p<d>( )

+ 1373 g (Z Vi () “”(xr)) : (7)

T piTrEp

This bound separates the expected change in objective into two terms: the delay term (Eq. (6)) and
the (stale) improvement term (Eq. (7)). The improvement term is always non-positive, it is equal to
the negative Bhattacharyya divergence, and it is exactly the same as the expected improvement in
the sequential setting. The delay term is always non-negative, and as before, when there is no delay
(k(t) = t), the sum in Eq. (6) is empty, and we recover the sequential improvement. Note that the
delay term depends only on the beliefs in regions that were actually updated between the read and
current write. This result is obtained by exploiting the sparsity of the updates: each message affects
only the neighboring nodes in the graph (see Appendix A.2). Similar structural properties are also
used in related analyses [e.g., Recht et al., 2011], however in other settings this involves making
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Figure 1: Simulation of APCM-Pencil on toy models. (Left) objective vs. iteration (equiv., update)
on a 3-node chain graph. The dashed lines show the same objective when iterations are divided by
the number of workers, which approximates runtime. (Middle) objective vs. iteration and vs. number
of active workers on a 3-node chain graph when adapting the number of workers. (Right) objective
vs. iteration (equiv., update) on a 6-node fully connected graph.

non-trivial assumptions (such as how training examples interact), whereas in our case the sparsity
pattern is readily available through the structure of the graphical model.

To demonstrate the hardness of our setting, we present in Appendix A.3 a case where the RHS of
Eq. (6) - (7) may be a large positive number. This happens when some beliefs are very close to 0. In
contrast, the next theorem uses the results above to show speedups under additional assumptions.

Theorem 1. Let |65 (z,.)| < M for all t,r, x,, and let ||5" — 6*||2 < B for all t. Assume that the
gradient is bounded from below as ||V f||* > ¢, and that the delay is bounded as T < J5;. Then

EL[f(2)] - £(5) < 322

This upper bound is only 2 times slower than the corresponding sequential bound (see Theorem 3 in
Meshi et al. [2014]), however, in this parallel setting we execute updates roughly 7 times faster, so
we obtain a linear speedup in this case. Notice that this rate applies only when the gradient is not
too small, so we expect to get large gains from parallelization initially, and smaller gains as we get
closer to optimality. This is due to the hardness of our setting (see Appendix A.3), and gives another
theoretical justification to adaptively reduce the number of processing units as the iterations progress.

At first glance, the assumptions in Theorem 1 (specifically, the bounds M and B) seem strong.
However, it turns out that they are easily satisfied whenever f(§') < f(0) (see Lemma 9 in Meshi
et al. [2014]) — which is a mild assumption that is satisfied in all of our experiments except some
adversarially constructed toy problems (see Section 5.1).

S Experiments

In this section we present numerical experiments to study the performance of APCM in practical MAP
estimation problems. We first simulate APCM on toy problems in Section 5.1, then, in Section 5.2,
we demonstrate our approach on a disparity estimation task from computer vision.

5.1 Synthetic Problems

To better understand the behavior of APCM, we simulate the APCM-Pencil algorithm sequentially as
follows. We keep a set of ‘workers,” each of which can be in one of two states: ‘read’ or ‘update.’
In every step, we choose one of the workers at random using a skewed distribution to encourage
large delays: the probability of sampling a worker w is p,, = €"%» /3" e"*w’, where s,, is sampled
uniformly in [0, 1], and x = 5. If the worker is in the ‘read’ state, then it picks a message uniformly
at random, makes a local copy of the beliefs, and moves to state ‘update.” Else, if the worker wakes
up in state ‘update,’ then it computes the update from its local beliefs, writes the update to the global
beliefs, and goes back to state ‘read.” This procedure creates delays between the read and write steps.

Our first toy model consists of 3 binary variables and 2 pairwise factors, forming a chain graph. This
model has a total of 4 messages. Factor values are sampled uniformly in the range [—5, 5]. In Fig. 1
(left) we observe that as the number of workers grows, the updates become less effective due to stale
beliefs. Importantly, it takes 40 workers operating on 4 messages to observe divergence. We don’t
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Figure 2: For v = 1 and an 8 state model, we illustrate the convergence behavior of our approach
compared to HOGWILD!, for a variety of MRF configurations (2, 4, 8), and different number of
iterations (200, 400). Different number of threads are used for each configuration.

Algorithm 2 HOGWILD! A single update
1: Choose aregion r € R at random
2: Update: 6pr(zr) —= nepir(x) forall z,.,p:r € p
Orc(xe) += nepir(zc) forall ze,c:c €7

expect a setting with more workers than messages to be observed in practice. We also adaptively
change the number of workers as suggested by our theory, which indeed helps to regain convergence.
Fig. 1 (middle) shows how the number of workers decreases as the objective approaches the optimum.

Our second toy model consists of 6 binary variables forming a fully connected graph. This model has
30 messages. In this setting, despite stale beliefs due to a skewed distribution, Fig. 1 (right) shows
that APCM is convergent even with 40 active workers. Hypothetically assuming 40 workers to run in
parallel yields a significant speedup when compared to a single thread, as is illustrated by the dashed
lines in Fig. 1.

5.2 Disparity Estimation

We now proceed to test our approach on a disparity estimation task, a more realistic setup. In our
case, the employed pairwise graphical model, often also referred to as a pairwise Markov random
field (MRF), is grid structured. It has 144 x 185 = 26, 640 unary regions with 8 states and is a
downsampled version from Schwing et al. [2011]. We use the temperature parameter v = 1 for the
smooth objective (Eq. (3)). We compare our APCM-Star algorithm to the HOGWILD! approach
[Recht et al., 2011], which employs an asynchronous parallel stochastic gradient descent method —
summarized in Algorithm 2, where we use the shorthand pi,(xc) = >, pr(2c, 2. \C). We refer

the reader to Appendix C in the supplementary material for additional results on graphical models
with larger state space size and for results regarding the non-smooth update obtained for v = 0. In
short, those results are similar to the ones reported here.

No synchronization is used for both HOGWILD! and our approach, i.e., we allow inconsistent
reads and writes. Hence our optimization is lock-free and each of the threads is entirely devoted to
computing and updating messages. We use one additional thread that constantly monitors progress
by computing the objective in Eq. (3). We perform this function evaluation a fixed number of times,
either 200 or 400 times. Running for more iterations lets us compare performance in the high-accuracy
regime. During function evaluation, other threads randomly and independently choose a region r and
update the variables d.,.(-), i.e., we evaluate the Star block updates of Eq. (5). Our choice is motivated
by the fact that Star block updates are more overlapping compared to Pencil updates, as they depend
on more variables. Therefore, Star blocks are harder to parallelize (see Theorem 2 in Appendix B).

To assess the performance of our technique we use pairwise graphical models of different densities.
In particular, we use a ‘connection width’ of 2, 4, or 8. This means we connect variables in the grid by
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Figure 3: Speedup w.r.t. single thread obtained for a specific number of threads for our approach
(a) and HOGWILD! (b), using a variety of MRF neighborhoods (2, 4, 8), and different number of
iterations (200, 400). Speedups are shown for v = 1 and 8 states. (c) shows the speedup of our
method compared to HOGWILD!.

pairwise factors, if their /.-norm distance is less than 2, 4, or 8. A ‘connection width’ of 2 is often
also referred to as 8-neighborhood, because a random variable is connected to its eight immediate
neighbors. A ‘connection width’ of 4 or 8 connects a random variable to 48 or 224 neighboring
variables respectively. Hence, the connectivity of the employed graphical model is reasonably dense
to observe inconsistent reads and writes. At the same time our experiments cover connection densities
well above many typical graphical models used in practice.

Convergence: In a first experiment we investigate the convergence behavior of our approach and
the HOGWILD! implementation for different graphical model configurations. We examine the
behavior when using one to 46 threads, where the number of threads is not adapted, but remains
fixed throughout the run. The stepsize parameter, necessary in the case of HOGWILD!, is chosen
to be as large as possible while still ensuring convergence (following Recht et al. [2011]). Note
that our approach is hyper-parameter free. Hence no tuning is required, which we consider an
important practical advantage. We also evaluated HOGWILD! using a diminishing stepsize, but
found those results to be weaker than the ones reported here. Also note that a diminishing stepsize
introduces yet another hyper-parameter. Our results are provided in Fig. 2 for v = 1 and 8 states
per random variable. We assess different MRF configurations (2, 4, 8 connectivity), and iterations
(200, 400). Irrespective of the chosen setup, we observe monotone convergence even with 46 threads
at play for both approaches. In neither of our configurations do we observe any instability during
optimization. As expected, we also observe the exact minimization employed in our approach to
result in significantly faster descent than use of the gradient (i.e., HOGWILD!). This is consistent
with the comparison of these methods in the sequential setting.

Thread speedup: In our second experiment we investigate the speedup obtained when using an
increasing number of threads. To this end we use the smallest dual value obtained with a single thread
and illustrate how much faster we are able to obtain an identical or better value when using more than
one thread during computation. The results for all the investigated graphical model configurations
are illustrated in Fig. 3 (a) for our approach and in Fig. 3 (b) for HOGWILD!. In these figures, we
observe very similar speedups across different graphical model configurations. We also observe that
our approach scales just as well as the gradient based technique does.

HOGWILD! speedup: In our third experiment we directly compare HOGWILD! to our approach.
More specifically, we use the smallest dual value found with the gradient based technique using a
fixed number of threads, and assess how much faster the proposed approach is able to find an identical
or better value when using the same number of threads. We show speedups of our approach compared
to HOGWILD! in Fig. 3 (c). Considering the results presented in the previous paragraphs, speedups
are to be expected. In all cases, we observe the speedups to be larger when using more threads.
Depending on the model setup, we observe speedups to stabilize at values around 45 or higher.

In summary, we found our asynchronous optimization technique to be a compelling practical approach
to infer approximate MAP configurations for graphical models.



6 Conclusion

We believe that parallel algorithms are essential for dealing with the scale of modern problem instances
in graphical models. This has led us to present an asynchronous parallel coordinate minimization
algorithm for MAP inference. Our theoretical analysis provides insights into the effect of stale
updates on the convergence and speedups of this scheme. Our empirical results show the great
potential of this approach, achieving linear speedups with up to 46 concurrent threads.

Future work may include improving the analysis (possibly under additional assumptions), particularly
the restriction on the gradients in Theorems 1 and 2. An interesting extension of our work is to derive
asynchronous parallel coordinate minimization algorithms for other objective functions, including
those arising in other inference tasks, such as marginal inference. Another natural extension is to
try our algorithms on MAP problems from other domains, such as natural language processing and
computational Biology, adding to our experiments on disparity estimation in computer vision.
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