
A Additional related work

The goal of this model is to design a general-purpose method for analysis of neural oscillations,
specifically an interpretable generative process via a low-dimensional embedding. In machine
learning, low-dimensional representations of the data are often used to capture underlying correlated
structures, such as topic models [8], state-space models [6], dictionary learning [40], and deep
convolutional factor analysis [12]. Due to the inherent non-linearities of oscillatory time-series, non-
linear functions are convenient choices to represent this quasi-periodic data. Gaussian processes [31]
provide a concise framework for placing prior distributions over these latent functions, and are
increasingly being used to represent expressive features through the covariance kernel, such as deep
architectures [13], convolutional factor analysis [25], or encoding arbitrary spectral densities via a
Gaussian mixture [25]. This latter kernel is known as the spectral mixture (SM) covariance kernel [39],
and a recent multi-task [11] extension of the SM kernel, known as the cross-spectral mixture (CSM)
kernel [34], encodes the full cross-spectral density between multiple output observations within the
GP framework. The CSM kernel was illustrated as an excellent tool for representing multi-output
LFP data [34].

B Multi-output Gaussian processes

A multi-output regression task includes observations from C output channels, Y = [y1, . . . ,yN] 2
RC⇥N at N time points. The data are modeled as

yn = fw(tn). (12)

A multi-output Gaussian process [31, 3] places a prior distribution over the latent function, given by

f(·) ⇠ GP(m(·),K(·, ·;✓)). (13)

where the Gaussian process is defined by the mean function m(t) 2 RC , and the covariance function
K(t, t0;✓) 2 RC⇥C . The covariance function defines how signal in f(·) covaries over channels and
time points, such that Kc,c0(tn, tn0 ;✓) , cov(fc(tn), fc0(tn0)). The mean function is often set to
equal 0. For any set of N points t = [t1, . . . , tN], the values of the function f are drawn from a
multivariate normal distribution defined by the mean vector, M(t) = [m(t1); . . . ;m(tN)] 2 RNC ,
and the covariance matrix, ⌃K(t;✓) 2 RNC⇥NC . The covariance matrix ⌃K is related to the
covariance function K in the following way:

⌃K(t;✓) =

2

64
K(t1, t1;✓) · · · K(t1, tN ;✓)

...
. . .

...
K(tN , t1;✓) · · · K(tN , tN ;✓)

3

75

The parameters ✓ may be optimized to fit these observations by maximizing the marginal likelihood

✓⇤ = argmax
✓

log p(Y |t,✓), p(Y |t,✓) = N (vec(Y);M(t),⌃K(t;✓)) , (14)

where vec(·) is a column-wise vectorization of its matrix-valued argument. The form of the covari-
ance kernel constrains the types of posterior functions that may be represented by the Gaussian
process. Recently, expressive covariance kernels have been explored [39, 38, 34] that are capable of
representing any stationary kernel while treating ✓ as expressive features of interest extracted from
the model.

C Complex Normal Formulation

Let the observed data for a single window be Y = [y1, . . . ,yN]; we drop window indexing here for
simplicity. From Eq. 7 we model the data as originating from a multivariate normal distribution.

Y ⇠ N (0,KCSFA(t, t;⇥)). (15)

We can consider the observed data, Y , to be the real portion of a complex signal, such that

Ỹ = Ỹ
r
+ jỸ

i
, Ỹ

r
= Y , {Ỹ r

, Ỹ
i} 2 RCN

, (16)

12

where superscript r and i correspond to the real and imaginary components of a vector argument and
j is the imaginary number. In such as case, we can represent the full complex vector Ỹ as a arising
from a multivariate circularly symmetric complex normal distribution.

Ỹ ⇠ CN (0, 2K̃CSFA(t, t;⇥)) (17)

K̃CSFA(t, t;⇥) =
LX

l=1

s
2
wlK̃CSM (t, t;✓l) + ⌘

�1(IN ⌦ IC) (18)

K̃CSM (t, t;✓l) =
QX

q=1

Bq ⌦ kq(t, t;µq, ⌫q), (19)

where ⌦ denotes the Kronecker product. Note that the only differences between this formulation and
that given in the main text are that K̃CSM equal to the full complex value of the sum in Eq. 19 and
that the covariance matrix in Eq. 17 is multiplied by a factor of 2.

D DFT Approximation

The computational costs associated with calculating gradients in a CSFA model with a large number
of parameters can be quite high, due to the fact that a matrix inversion is necessary for gradient
calculation (see [31]). As originally described in [34], the computational costs of the CSM model
can be significantly decreased by approximating the covariance matrices associated with all spectral
Gaussian kernels (see Sec. 2.1) as circulant matrices. We let Kql be the covariance matrix associated
with the q

th spectral Gaussian kernel in the l
th factor at time points t. By definition, Kql is a

symmetric Toeplitz matrix, such that it is uniquely identified by its first column, c. We get a circulant
matrix approximation of Kql by generating a new first column, c̃, by reflecting the first bN

2 + 1c
elements of c to the last dN

2 +1e. The resulting matrix, K̃ql, is diagonalizable by the discrete Fourier
transform (DFT) in the following way. Letting U be the N ⇥N unitary DFT matrix, and � be the
sampling period associated with time points t, we have

U †
K̃qlU = ⇤K̃ql

= diag(��1
S(!)), (20)

where ! is the vector of frequencies corresponding to the DFT transformation over t, and S(·) is the
power spectral density associated with c̃. In this way, we only need to perform computation on the
diagonal matrix ⇤K̃ql

, rather than on the full matrix Kql. As the sampling rate and window length
approach infinity there is no error in approximating Kql with K̃ql [34], due to sufficient resolution of
the DFT frequency bins.

CSFA can take advantage of the same approximation, when formulated in the following way. Letting
Z denote the DFT of the observed data, we have

Z ⇠ CN (0, 2⌃(!,!;⇥)) (21)

⌃(!,!;⇥) = (IC ⌦U)†K̃CSFA(t, t;⇥)(IC ⌦U) (22)

⇡ ⌘
�1(IN ⌦ IC) +

LX

l=1

s
2
l

QX

q=1

Bql ⌦⇤K̃ql
(!;µql, ⌫ql). (23)

This approximation results in a covariance matrix, ⌃, that is block diagonal, significantly reducing
the cost of the matrix inversion necessary for computing gradients.

E Artificial Dataset Parameterization

To generate our synthetic dataset we generated random draws from a CSFA model with 4 channels
and 3 latent factors, each factor containing a single spectral Gaussian component. The parameters for
the original CSFA model from which the data were generated are given in Table 2. We simulated
5000 time windows of 5s sampled at 500Hz. For each window two of the scores were nonzero. The
non-zero scores were independently drawn from a uniform distribution, then normalized such that the
sum of squared scores for each window added to one. This normalization scheme gives approximately
unit variance for the signal in each window.

13

Factor Spectral
Gaussian

Mean (Hz)

Spectral
Gaussian
Variance
(Hz

2)

Channel
Weights

Channel
Shifts

1 6 1 [e2.25 e2 0 0] [0 0 0 �⇡/2]
2 6 1 [0 0 e

2
e
1.75] [0 0 0 ⇡/2]

3 10 1 [e e e e] [0 ⇡/4 ⇡/2 3⇡/4]

Table 2: Parameter values for simulated CSFA dataset

F Comparison Methods

To provide a comparison of our method we describe two alternative approaches to classifying side
information using the power and cross spectra. Just like CSFA, we divide the recording in to a series
of time windows. In the first comparison method, the true power spectrum for each channel is simply
estimated by taking the magnitude of the signal in the Fourier domain. In the second method, we
estimate the power spectra for each channel, and coherence for each pair of channels, independently
using Welch’s method [37], a non-parametric method for obtaining a denoised estimate of the power
spectra. Letting F equal the number of frequencies used and C equal the number of channels, this
gives us a high dimensional (F ⇤ (C + 1) ⇤ C/2) representation of the brain dynamics for each
window (ignoring directionality). This dimensionality is reduced for both comparison methods using
PCA. The number of factors used in each model was chosen from among {10,20,30} using the same
cross-validation scheme as described in section 2.3 for the CSFA hyperparameters.

An advantage of these methods is that the computational cost is lower than CSFA. However, these
methods lose the interpretability of CSFA. First, there are no constraints between the estimates
(variations in cross spectra are independent from the other channels). The factors are not sparsified in
any way, which means that every factor involves every frequency in every channel. This means that
interpreting the factors requires interpreting a combination of every frequency and coherence. This
contrasts with CSFA where, by using parametric spectral Gaussian distributions and coregionalization
matrices, the few parameters have strong significance.

G Code Repository

A public repository of code for running the CSFA and dCSFA models in MATLAB is available at

https://github.com/neil-gallagher/CSFA

.

14

	Introduction
	Model Description
	Cross-Spectral Mixture Kernel
	Cross-Spectral Factor Analysis
	Inference
	Discriminative CSFA
	Handling Missing Channels

	Results
	Synthetic Data
	Mouse Data
	Visualization

	Discussion and Conclusion
	Additional related work
	Multi-output Gaussian processes
	Complex Normal Formulation
	DFT Approximation
	Artificial Dataset Parameterization
	Comparison Methods
	Code Repository

