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A Algorithmic description
Here we present in pseudocode the various steps of the online processing pipeline. For ease of exposition,
some details and speedup tricks used in the actual implementation have been omitted.

Algorithms S1 and S2 describe the simple greedy procedure for partitioning the components into disjoint
groups where the elements of each group do not overlap spatially with each other. This procedure is used for
updating the traces of the neurons in vector form (Alg. S3) leading to substantial speed benefits. Algorithm S4
describes the procedure of detecting and screening possible new components. Finally, Algorithm S5 describes
the process of updating the shapes, similar to [3].

Algorithm S1 DetermineGroups
Require: Spatial components matrix A, number of components K
1: G = ∅
2: for i = 1→ K do
3: G ← JoinGroups(A[:, 1 : i− 1],G, i− 1,ai)
4: end for
5: return G

Algorithm S2 JoinGroups
Require: Spatial components matrix A, current groups G, number of components K, new component a
1: NG = |G| . number of groups
2: repeat = True
3: g ← 1
4: while repeat do
5: if g ≤ NG then
6: if a>al = 0,∀l ∈ Gj then . Test for overlap with current group
7: Gg ← Gg ∪ {K + 1}
8: repeat = False
9: else

10: g ← g + 1
11: end if
12: else
13: NG ← NG + 1
14: GNG

= {K + 1} . Create a new group
15: G ← {G, GNG

} . Add to list of groups
16: repeat = False
17: end if
18: end while
19: return G
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Algorithm S3 UpdateTraces

Require: Spatial footprints matrix Ã = [A,b], current value of temporal traces c̃ = [c; f ], current data
frame y, groups G, tolerance level ε.

1: u = Ã>y
2: V = Ã>Ã
3: V = diag{V }
4: c̃old ← 0
5: while ‖c̃− c̃old‖ ≥ ε‖c̃old‖ do
6: c̃old ← c̃
7: for i = 1→ |G| do
8: c̃[Gi] = max

(
c̃[Gi] +

u[Gi]−V [Gi,:]c̃
v[Gi]

, 0
)

. (Division is pointwise)
9: end for

10: end while
11: return c̃

Algorithm S4 DetectNewComponents
Require: Spatial footprints matrix [A,b], temporal traces matrix [C; f ], current number of components K,

current state of groups G, current residual buffer Rbuf , current data frame y, sufficient statistics W,M .
Parameters: radius of Gaussian kernel τ , threshold for correlation in space θs, threshold for correlation in
time rt.

1: repeat = True
2: Rbuf ← [Rbuf [:, 1 : lb − 1],y − [A,b][C; f ][:, end]] . Update residual buffer
3: Md = Median(Rbuf)
4: Rbuf ← Rbuf −Md . Subtract median along time for every pixel
5: V ← Filter(Rbuf ,GaussianKernel(τ)) . Filter residual in space
6: E ←

∑
i V [:, i].2 . Compute energy value for each pixel

7: while repeat do
8: (ix, iy) = argmaxE . Find the point of maximum variance
9: N(ix,iy) = {(x, y) : |x− ix| ≤ τ, |y − iy| ≤ τ} . Define a neighborhood around (ix, iy)

10: [anew, cnew] = NNMF(Rbuf [N(ix,iy), :], 1) . Perform a local rank-1 NMF
11: r = Corr(anew,Mean(Rbuf)) . Compute correlation coefficient in space
12: o = Find(a>newA[N(ix,iy), :] > 0 . Find components that overlap
13: if ∃j ∈ o : Corr(cnew, C[j, t− lb + 1 : t]) > rt then
14: r ← 0 . Detect possible duplicates and stop procedure
15: end if
16: if r > θs then . New component is accepted
17: Zero-pad anew and cnew to match dimensionality
18: K ← K + 1
19: G ← JoinGroups(A,G,anew)
20: A← [A,anew]
21: C ← [C; cnew]
22: Rbuf ← Rbuf − anewcnew
23: V ← V − a2new‖cnew‖2
24: W,M ← UpdateSuffStatistics(W,M,yt, cnew) . Equation (5)
25: else
26: repeat = False
27: end if
28: end while
29: return [A,b], [C, f ],K,G, Rbuf,W,M
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Algorithm S5 UpdateShapes

Require: Sufficient statistics W,M , current value of spatial footprints Ã = [A, b], list of components to be
updated l, maximum number of iterations iterations miter

1: iter← 0
2: while iter < miter do
3: for i ∈ l do
4: p = find(Ã[:, i] > 0) . Find the pixels where component i can be non-zero

5: Ã[p, i] = max

(
Ã[p, i] +

W [p, i]− Ã[p, :]M [:, i]

M [i, i]
, 0

)
6: end for
7: iter← iter+ 1
8: end while
9: return Ã

B Dataset Details
Parietal cortex dataset: Data was obtained from the parietal cortex of a transgenic GCaMP6f-expressing
mouse during a behavioral task. Field of view was approximately 500×500 µm2 (512×512 pixels) in size
and at depth 125µm below the dura surface. Horizontal scans of the laser were performed using a resonant
galvanometer, resulting in a frame acquisition rate of 30Hz. More details can be found in [2].

Hippocampal dataset: Data was obtained from the hippocampus of a transgenic GP2.11 (Thy1-
GCaMP3) mouse generated by the Janelia Farms GENIE Project (Jackson Labs, C57BL/6J-Tg(Thy1-
GCaMP3)GP2.11Dkim/J). FOV was approximately 500×500 µm2, of size 512 × 512 pixels, cropped to 483
× 492 pixels after rigid registration and removal of empty border lines. Horizontal scans of the laser were
performed using a resonant galvanometer, resulting in a frame acquisition rate of 30Hz. More details can be
found in [1].

C Supplementary Movie
Evolution of the OnACID algorithm on toy simulated data: Top. Raw movie (left). Denoised movie
reconstructed from all components (middle). Noiseless ground truth (right). Bottom. Residual movie (left).
Inferred (middle) and ground truth (right) spatial components. A 64×64 pixel FOV containing 35 artifical
neurons was simulated for this example. Movie is truncated in time for space reasons.

D Simulation details
We generated a dataset of size 256×256 pixels and duration T = 2000 frames containing N = 400 neurons.
The neural centers {c}N1 were generated using a Halton sequence to cover the space uniform pseudo-randomly.

The unnormalized neural shapes were modeled as the difference of two 2D-Gaussians.

ã(x) = exp

(
−1

2
(x− c)>diag

(
σ−1x , σ−1y

)
(x− c))

)
(1)

− k exp
(
−1

2
(x− c)>diag

(
(0.75σx)

−1, (0.75σy)
−1) (x− c))

)
(2)

where x denotes the position of the considered pixel. To incorporate heterogeneity the standard-deviation
σx and σy in x- and y-direction of the wider Gaussian was drawn i.i.d. uniform randomly from the interval
[2.5, 3.5]. These values were multiplied by 0.75 to obtain the standard-deviation of the smaller subtracted
Gaussian. The magnitude k of the subtracted Gaussian was drawn i.i.d. uniform randomly from the interval
[0.2, 0.8] for each neuron.
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A correct false positive false negative B correct false positive false negative

Figure S1: Simulated data. Detected components in batch mode. A) Full data B) Short initial batch.

The spike train s of each neuron was drawn from a homogeneous Poisson process. The neural firing rate
was 0.5 Hz and the frame rate 30 Hz. The calcium traces C were obtained by convolving the spike trains S
with an exponentially decaying kernel with time constant 1 s.

The background B was modeled as rank 1 term, where the temporal and spatial component were each
drawn from a Kronecker Gaussian process with RBF kernel. The temporal length scale was 300 frames and
the spatial length scale 50 pixels. Finally, the simulated raw data is the sum of background B and neural
contribution AC corrupted by Gaussian noise, Y ∼ N (B +AC, 0.22).
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Figure S2: Simulated data. Traces of three neurons selected by time of detection. Upper traces show demixed
(red), denoised (orange, green) and ground truth (blue) calcium fluorescence. Lower traces show deconvolved
neural activity using the same coloring scheme.
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E Detailed comparison between OnACID and manual annotations
for the hippocampal 2-photon dataset

In the following pages, Figures S3-S8 show the detailed matches and mismatches between OnACID and the
two manual annotations, as well as the two manual annotations against each other.

Online (white) vs Labeler 1 (red) matches

Figure S3: Matches between OnACID (white) and Labeler 1 (red).
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Online (white) vs Labeler 1 (red) mis-matches

Figure S4: Mismatches between OnACID (white) and Labeler 1 (red).
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Online (white) vs Labeler 2 (red) matches

Figure S5: Matches between OnACID (white) and Labeler 2 (red).
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Online (white) vs Labeler 2 (red) mis-matches

Figure S6: Mismatches between OnACID (white) and Labeler 2 (red).
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Labeler 1 (red) vs Labeler 2 (white) matches

Figure S7: Matches between Labeler 1 (red) and Labeler 2 (white). The two labelers annotated the dataset
independently and have a high degree of matching (F1 = 0.89). The contour shapes are also similar for both
annotators, as expected from the labeling process using the ImageJ Cell Wand tool.
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Labeler 1 (red) vs Labeler 2 (white) mis-matches

Figure S8: Mismatches between Labeler 1 (red) and Labeler 2 (white).
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F Detailed comparison between OnACID and manual annotations
for the parietal cortex 2-photon dataset

In the following pages, Figures S9-S14 show the detailed matches and mismatches between OnACID and the
two manual annotations, as well as the two manual annotations against each other.

Online (white) vs Labeler 1 (red) matches

Figure S9: Matches between OnACID (white) and Labeler 1 (red).
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Online (white) vs Labeler 1 (red) mis-matches

Figure S10: Mismatches between OnACID (white) and Labeler 1 (red).
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Online (white) vs Labeler 2 (red) matches

Figure S11: Matches between OnACID (white) and Labeler 2 (red).
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Online (white) vs Labeler 2 (red) mis-matches

Figure S12: Mismatches between OnACID (white) and Labeler 2 (red).
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Labeler 1 (red) vs Labeler 2 (white) matches

Figure S13: Matches between Labeler 1 (red) and Labeler 2 (white).
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Labeler 1 (red) vs Labeler 2 (white) mis-matches

Figure S14: Mismatches between Labeler 1 (red) and Labeler 2 (white).
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