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1 Supplementary Preliminaries

We will abuse notation, referring to both the probability distribution p and the random vector X
that it samples in {±1}V as the Ising model. That is, X ∼ p. We will subscript X as follows.
At times, we will consider a sequence of X’s at various “time steps” – we will use Xt or Xi to
denote random vectors in this sequence. Other times, we will need to consider the value of the
vector X at a particular node – we will use Xu or Xv to indicate random variables in this sequence.
Whether we index based on time step versus node should be apparent from the choice of subscript
variable, and otherwise clear from context. Occationally, we will use both: Xt,u denotes the variable
corresponding to node u in the Ising model X at some time step t. Throughout the paper we will
refer to the set Ω = {±1}V .

Definition 1. A degree-d multilinear function defined on n variables x1, . . . , xn is a polynomial
such that ∑

S⊆[n]:|S|≤d

aS
∏
i∈S

xi,

where a : 2[n] → R is a coefficient vector.

When the degree d = 1, we will refer to the function as a linear function, and when the degree
d = 2 we will call it a bilinear function. Note that since Xu ∈ {±1}, any polynomial function
of an Ising model is a multilinear function. We will use a to denote the coefficient vector of such
a multilinear function. Note that we will use permutations of the subscripts to refer to the same
coefficient, i.e., auv is the same as avu. Also we will use the term d-linear function to refer to a
multilinear function of degree d.

We say an Ising model has no external field if θv = 0 for all v ∈ V . An Ising model is
ferromagnetic if θe ≥ 0 for all e ∈ E.

We now give a formal definition of the high-temperature regime, also known as Dobrushin’s
uniqueness condition – in this paper, we will use the terms interchangeably.

Definition 2 (Dobrushin’s Uniqueness Condition). Consider an Ising model p defined on a graph
G = (V,E) with |V | = n and parameter vector ~θ. Suppose maxv∈V

∑
u6=v tanh (|θuv|) ≤ 1 − η for
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some η > 0. Then p is said to satisfy Dobrushin’s uniqueness condition, or be in the high temperature
regime. In this paper, we use the notation that an Ising model is η-high temperature to parameterize
the extent to which it is inside the high temperature regime. Note that since tanh(|x|) ≤ |x| for
all x, the above condition follows from more simplified conditions which avoid having to deal with
hyperbolic functions. For instance, either of the following two conditions:

max
v∈V

∑
u6=v
|θuv| ≤ 1− η or

βdmax ≤ 1− η

are sufficient to imply Dobrushin’s condition (where β = maxu,v |θuv| and dmax is the maximum
degree of G).

In some situations, we may use the parameter η implicitly and simply say the Ising model is in
the high temperature regime. In general, when one refers to the temperature of an Ising model, a
high temperature corresponds to small θuv values, and a low temperature corresponds to large θuv
values.

We will use the following lemma which shows concentration of measure for Lipschitz functions
on the Ising model in high temperature. It is a well-known result and can be found for instance as
Theorem 4.3 of [Cha05].

Lemma 1 (Lipschitz Concentration Lemma). Suppose that f(X1, . . . , Xn) is a function of an Ising
model in the high-temperature regime. Suppose the Lipschitz constants of f are l1, l2, . . . , ln respec-
tively. That is, ∣∣f(X1, . . . , Xi, . . . , Xn)− f(X1, . . . , X

′
i, . . . , Xn)

∣∣ ≤ li
for all values of X1, . . . , Xi−1, Xi+1, . . . , Xn and for any Xi and X ′i. Then,

Pr [|f(X)−E[f(X)]| > t] ≤ 2 exp

(
− ηt2

2
∑n

i=1 l
2
i

)
.

Note that this immediately implies sharp concentration bounds for linear functions on the Ising
model.

We will refer to elements in Ω as both states and configurations of the Ising model. The name
states will be more natural when considering Markov chains such as the Glauber dynamics. Glauber
dynamics is the canonical Markov chain for sampling from an Ising model. Glauber dynamics define
a reversible, ergodic Markov chain whose stationary distribution is identical to the corresponding
Ising model. In many relevant settings, including the high-temperature regime, the dynamics are
rapidly mixing (i.e., in O(n log n) steps) and hence offer an efficient way to sample from Ising models.
We consider the basic variant known as single-site Glauber dynamics. The dynamics are a Markov
chain defined on the set Ω. They proceed as follows:

1. Let Xt denote the state of the dynamics at time t. Start at any state X0 ∈ Ω.

2. Let N(u) be the set of neighbors of node u. Pick a node u uniformly at random and update
Xu as follows

Xt+1,u = 1 w.p.
exp

(
θu +

∑
v∈N(u) θuvXt,v

)
exp

(
θu +

∑
v∈N(u) θuvXt,v

)
+ exp

(
−θu −

∑
v∈N(u) θuvXt,v

)
Xt+1,u = −1 w.p.

exp
(
−θu −

∑
v∈N(u) θuvXt,v

)
exp

(
θu +

∑
v∈N(u) θuvXt,v

)
+ exp

(
−θu −

∑
v∈N(u) θuvXt,v

)
2



Glauber dynamics for an Ising model in the high temperature regime are fast mixing. In partic-
ular, they mix in O(n log n) steps. To be more concrete, for an Ising model p in η-high temperature,
we define

tmix =
n log n

η
, (1)

The dynamics for an Ising model in high temperature also display the cutoff phenomenon. Due to
this, we have Lemma 2.

Lemma 2. Let x0 be any starting state for the Glauber dynamics and let t∗ = (ζ + 2)tmix for some
0 ≤ d ≤ n. If Xt∗,x0 is the state reached after t∗ steps of the dynamics, then

dTV(Xt∗,x0 , p) ≤ exp (−(ζ + 1)n log n)

for all x0.

Proof. This follows in a straightforward manner from the cutoff phenomenon observed with respect
to the mixing of the Glauber dynamics in this setting. The bound on the mixing time of Glauber
dynamics for high temperature Ising models (Theorem 15.1 of [LPW09])1 gives us that to achieve
dTV(Xt, p) ≤ ε, we must run the dynamics for t = n logn+log(1/ε)

η steps. This implies, that after t∗

steps, the total variation distance ε achieved is

ε ≤ exp(−t∗η + n log n)

= exp(−(ζ + 1)n log n).

Definition 3. The Hamming distance between x, y ∈ {±1}n is defined as dH(x, y) =
∑

i∈[n] 1{xi 6=yi}.

Definition 4 (The greedy coupling). Consider two instances of Glauber dynamics associated with
the same Ising model p: X(1)

0 , X
(1)
1 , . . . and X(2)

0 , X
(2)
1 , . . .. The following coupling procedure is known

as the greedy coupling. Start chain 1 at X(1)
0 and chain 2 at X(2)

0 and in each time step t, choose
a node v ∈ V uniformly at random to update in both the runs. Let p(1) denote the probability that
the first chain sets X(1)

t,v = 1 and let p(2) be the probability that the second chain sets X(2)
t,v = 1. Let

p1 ≤ p2 be a rearrangement of the p(i) values in increasing order. Also let p0 = 0 and p3 = 1. Draw
a number x uniformly at random from [0, 1] and couple the updates according to the following rule:

If x ∈ [pl, pl+1] for some 0 ≤ l ≤ 2, set X(i)
t,v = −1 for all 1 ≤ i ≤ l and X(i)

t,v = 1 for all l < i ≤ 2.

We summarize some properties of this coupling in the following lemma, which appear in Chapter
15 of [LPW09].

Lemma 3. The greedy coupling (Definition 4) satisfies the following properties.

1. It is a valid coupling.

2. If p is an Ising model in η-high temperature, then

E
[
dH(X

(1)
t , X

(2)
t )
∣∣∣(X(1)

0 , X
(2)
0 )
]
≤
(

1− η

n

)t
dH(X

(1)
0 , X

(2)
0 ).

3. The distribution of X(1)
t , for any t ≥ 0, conditioned on X(1)

0 is independent of X(2)
0 .

1Note that Theorem 15.1 of [LPW09] uses a definition of high temperature which is less general than the one we
present here. But it can also be shown via very similar calculations to hold for our more general version of the high
temperature regime.
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1.1 Martingales

We briefly review some definitions from the theory of martingales in this section.

Definition 5. A probability space is defined by a triple (O,F , P ) where O is the possible set of
outcomes of the probability space. F is a σ-field which is a set of all measurable events of the space
and P is a function which maps events in F to probability values.

Definition 6. A sequence of random variables X0, X1, . . . , Xi, . . . on the probability space (O,F , P )
is a martingale sequence if for all i ≥ 0, E [Xi+1|Fi] = Xi.

Definition 7. A stopping time with respect to a martingale sequence defined on (O,F , P ) is a
function τ : O → {1, 2, . . .} such that {τ = n} ∈ Fn for all n. Also, P [τ =∞] > 0 is allowed.

Definition 8. Let X1, X2, . . . , Xn be a set of possibly dependent random variables. Consider any
function f(X1, X2, . . . , Xn) on them. Then the sequence {Bi}i≥1 where

Bi = E [f(X1, X2, . . . , Xn)|X1, X2, . . . , Xi] (2)

is a martingale sequence and is known as the Doob martingale of the function f(.).

A popular set of tools which have been used for showing concentration results such as McDi-
armid’s inequality come from the theory of martingales. In our proof, the following two martingale
inequalities will be useful. The first is the well-known Azuma’s inequality.

Lemma 4 (Azuma’s Inequality). Let (Ω,F , P ) be a probability space. Let F0 ⊂ F1 ⊂ F2 . . . be an
increasing sequence of sub-σ-fields of F . Let X0, X1, . . . , Xt be random variables on (Ω,F , P ) such
that Xi is Fi-measurable. Suppose they represent a sequence of martingale increments. That is,
E[Xi|Fi−1] = 0 or Si =

∑i
j=0Xj forms a martingale sequence defined on the space (Ω,F , P ). Let

K ≥ 0 be such that Pr[|Xi| ≤ K] = 1 for all i. Then for all r ≥ 0,

Pr [|St| ≥ r] ≤ 2 exp

(
− r2

tK2

)
The second inequality due to Freedman is a generalization of Azuma’s inequality. It applies when

a bound on the martingale increments |Xi| only holds until some stopping time, unlike Azuma’s,
which requires a bound on the martingale increments for all times.

Lemma 5 (Freedman’s Inequality (Proposition 2.1 in [Fre75])). Let (Ω,F , P ) be a probability space.
Let F0 ⊂ F1 ⊂ F2 . . . be an increasing sequence of sub-σ-fields of F . Let X0, X1, . . . , Xt be ran-
dom variables on (Ω,F , P ) such that Xi is Fi-measurable. Suppose they represent a sequence of
martingale increments. That is, Si =

∑i
j=0Xj forms a martingale sequence defined on the space

(Ω,F , P ). Let τ be a stopping time defined on Ω and K ≥ 0 be such that Pr[|Xi| ≤ K] = 1 for
i ≤ τ . Let vi = Var[Xi|Fi−1] and Vt =

∑t
i=0 vi. Then,

Pr[|St| ≥ r and Vt ≤ b for some t ≤ τ ] ≤ 2 exp
(
− r2

2(rK+b)

)
(3)

≡ Pr[∃t ≤ τ s.t |St| ≥ r and Vt ≤ b] ≤ 2 exp
(
− r2

2(rK+b)

)
(4)
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2 Supplementary Information for Concentration of Bilinear Func-
tions

In this section, we prove the following theorem:

Theorem 1. Consider any bilinear function fa(x) =
∑

u,v auvxuxv on an Ising model p (defined
on a graph G = (V,E) such that |V | = n) in η-high-temperature regime with no external field. Let
‖a‖∞ = maxu,v auv. If X ∼ p, then for any r ≥ 300‖a‖∞n log2 n/η + 2, we have

Pr [|fa(X)−E [fa(X)]| ≥ r] ≤ 5 exp

(
− ηr

1735‖a‖∞n log n

)
.

Note that, for the sake of convenience in our proof, this theorem is stated for bilinear functions
where all terms are of degree 2. One can immediately obtain concentration for all bilinear functions
by combining this result with concentration bounds for linear functions. Since linear functions
concentrate in a much tighter radius (O(

√
n), rather than Õ(n)), this comes at a minimal additional

cost.

Remark 1. We note that η-high-temperature is not strictly needed for our results to hold – we
only need Hamming contraction of the “greedy coupling” (see Point 2 in Lemma 3). This condition
implies rapid mixing of the Glauber dynamics (in O(n log n) steps) via path coupling (Theorem 15.1
of [LPW09]).

The organization of this section is as follows. We will first focus on proving concentration for
bilinear statistics with no external field. In Section 2.1, we state some additional preliminaries, and
describe the martingale sequence and stopping time we will consider. In Section 2.2, we prove certain
concentration properties of linear functions of the Ising model – in particular, these will be useful in
showing that the stopping time is large. In Section 2.4, we show that our martingale sequence has
bounded differences before the stopping time. In Section 2.5, we put the pieces together and prove
bilinear concentration. In Section 2.6, we discuss how to prove concentration for bilinear statistics
under an external field. Note that under an external field, not all bilinear functions of the Ising
model concentrate, and thus our statistics require appropriate recentering. In Section 2.7, we briefly
argue that the exponential behavior of the tail is inherent – for example, it could not be improved
to a Gaussian tail.

2.1 Setup

We will consider functions where ‖a‖∞ ≤ 1, Theorem 1 follows by a scaling argument. Let a ∈
[−1, 1](

V
2) and define fa : {±1}V → R as follows:

fa(x) =
∑
u,v

auvxuxv.

The quantity of interest which we would like to bound is Pr[|fa(X)−E[fa(X)]| > r] where X ∼ p
is a sample from the Ising model p. For the time being, we will focus on the setting with no external
field for ease of exposition2.

A crucial quantity to the whole discussion will be |f(X)− f(X ′)| where X ′ is obtained by taking
a single step of the Glauber dynamics associated with a high temperature Ising model p starting
from X. Define fua (X) =

∑
u6=v auvXu. These n linear functions f1a (X), . . . , fna (X) will arise as a

result of looking at |fa(X)− fa(X ′)|, as shown in the following claim:
2Concentration under an external field (with appropriate re-centering) is discussed in Section 2.6.
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Claim 1. If X ′ is obtained by taking a step of the Glauber dynamics starting from X, then

∣∣fa(X)− fa(X ′)
∣∣ =


0 w.p. p0
2
∣∣f1a (X)

∣∣ w.p. p1
...

2 |fna (X)| w.p. pn

where p0 + . . .+ pn = 1.

Proof. In each step of the Glauber dynamics, a node v is chosen uniformly at random and up-
dated according to the distribution of v conditioned on its neighbors under the Ising model. With
some probability pv0, the dynamics leave node v unchanged (i.e. update it to its current value
Xv). In this scenario, fa(X) − fa(X ′) = 0. If, on the other hand, the dynamics flip the sign of
node v, then fa(X) − fa(X ′) = (

∑
u6=v auvXu)(2Xv). Since Xv ∈ {±1},

∣∣∣(∑u6=v auvXu)(2Xv)
∣∣∣ =

2
∣∣∣∑u6=v auvXu

∣∣∣ = 2 |fva (X)|.

Next, we define a martingale sequence associated with any bilinear function fa of the Ising
model. A sufficiently strong tail inequality on the difference between the first and last terms of the
martingale will get us very close to the desired concentration result.

Definition 9. Let t∗ = 3tmix = 3n log n/η. Let X0 ∼ p be a sample from the Ising model p.
Consider a walk of the Glauber dynamics starting at X0 and running for t∗ steps: X0, X1, . . . , Xt∗ .
Xt∗ can be viewed as a function of all the random choices made by the dynamics up to that point.
That is, Xt∗ = h(X0, R1, . . . , Rt∗) where Ri is a random variable representing the random choices
made by the dynamics in step i. More precisely, Ri represents the realization of the random choice
of which node to (attempt to) update and a Uniform([0, 1]) random variable (based upon which we
decide whether or not to update the node’s variable). Hence fa(Xt∗) = f̃a(X0, R1, . . . , Rt∗) where
f̃a = fa ◦ h. Consider the Doob martingale associated with f̃a defined on the probability space
(O, 2O, P ) where O is the set of all possible values of the variables X0, X1, X2, . . . , Xt∗ under the
above described stochastic process and P is the function which assigns probability to events in 2O

according to the underlying stochastic process. Also consider the increasing sequence of sub-σ-fields
F0 = 2O0 ⊂ F1 = 2O1 ⊂ F2 = 2O2 ⊂ . . .Ft∗ = 2Ot∗ = 2O where Oi is the set of all possible values
of the variables X0, X1, X2, . . . , Xi. The terms in the martingale sequence are as follows.

B0 = E[f̃a(X0, R1, . . . , Rt∗)|X0] = E [fa(Xt∗)|X0]

· · ·
Bi = E[f̃a(X0, R1, . . . , Rt∗)|X0, R1, . . . , Ri] = E [fa(Xt∗)|X0, X1, . . . , Xi] (5)
· · ·

Bt∗ = f̃a(X0, R1, . . . , Rt∗) = E [fa(Xt∗)|X0, X1, . . . , Xt∗ ] = fa(Xt∗)

Since the dynamics are Markovian, we can also write Bi as follows:

Bi = E[fa(Xt∗)|Xi] ∀ 0 ≤ i ≤ t∗.

Note that we deliberately choose to skip the term E[f̃a(R1, . . . , Rt∗)] and start the martin-
gale sequence at E[f̃a(X0, R1, . . . , Rt∗)|X0] instead. This is crucial because it enables us to obtain
strong bounds on the martingale increments. We have a good understanding over the behavior
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of the difference in values of f(Xt∗) conditioned on Xi versus Xi+1 but apriori we can’t bound
|E [fa(Xt∗)|X0]−E [fa(Xt∗)]|.

At this point, we could try and apply Azuma’s inequality by bounding the martingale increments
|Bi+1 −Bi|. However, these increments can be Ω(n) in magnitude which would yield a radius of
concentration of ≈ n1.5 from Azuma’s inequality. As was remarked earlier, this is weak and we
will see how we can show a radius of concentration ≈ n by harnessing the fact that the martingale
increments are rarely, if ever, of the order Ω(n). This is because of concentration of linear functions
on the Ising model. To harness this fact, we appeal to Freedman’s inequality (Lemma 5) and the
first order of business in applying Freedman’s inequality effectively is to define a stopping time on
the martingale sequence such that two things hold:

1. The stopping time is larger than t∗ with high probability. Hence, with a good probability the
process doesn’t stop too early. The harm if the process stops too early (at t < t∗) is that we
will not be able to effectively decouple E [fa(Xt)|X0] from the choice of X0. t∗ was chosen
to be larger than the mixing time of the Glauber dynamics precisely because it allows us to
argue that E [fa(Xt∗)|X0] ≈ E [fa(Xt∗)] = E[fa(X)].

2. For all i+ 1 less than the stopping time, |Bi+1 −Bi| = O(
√
n).

With the above criterion in mind, we define a stopping time TK on the martingale sequence.

Definition 10. Consider the martingale sequence defined in Definition 9. Define the set GaK(t) to
be the following set of configurations:

GaK(t) = {xt ∈ Ω | |E[fva (Xt∗)|Xt = xt]| ≤ K and |E[fva (Xt∗−1)|Xt = xt]| ≤ K ∀ v ∈ V }⋂{
xt ∈ Ω | Pr [|fva (Xt∗)−E [fva (Xt∗)|Xt]| > K|Xt = xt] ≤ 2 exp

(
− K2

16t∗

)
∀ v ∈ V

}
(6)⋂{

xt ∈ Ω | Pr [|fva (Xt∗−1)−E [fva (Xt∗−1)|Xt]| > K|Xt = xt] ≤ 2 exp

(
− K2

16t∗

)
∀ v ∈ V

}
where E[fva (Xt)|Xt0 ], for all v ∈ V , is defined as 0 for t0 > t. Let TK : O → {0}

⋃
N be a stopping

time defined as follows:

TK = min{t∗ + 1,min
t≥0
{t |t /∈ GaK(t)}},

Note that the event {TK = t} lies in the σ-field 2Ot and hence the above definition is a valid stopping
time.

2.2 Properties of Linear Functions of the Ising Model

In this section, we prove the following lemma, concerned primarily with a particular type of con-
centration of linear functions on the Ising model.

Lemma 6. Let X0 be a sample from an Ising model p at η-high temperature with no external
field, and Xt be obtained by taking t steps along the Glauber dynamics corresponding to p with the
condition that the dynamics start at X0. For any linear function f(x) :=

∑
v∈V avxv such that

7



|av| ≤ 1, define gt(X0) = E[f(Xt)|X0]. Then the following hold for any t ≥ 0,

E[f(Xt)] = 0, (7)

Pr
[∣∣gt(X0)

∣∣ > r
]
≤ 2 exp

(
−ηr

2

8n

)
, (8)

Pr [|f(Xt)−E[f(Xt)|X0]| > K] ≤ 2 exp

(
−K

2

4t

)
. (9)

Proof. First, if X0 ∼ p, then since p is the stationary distribution of the associated Glauber chain,
Xt ∼ p as well. Hence, E[f(Xt)] = E[f(X0)] =

∑
v∈V avE[X0,v] = 0 for all t ≥ 0.

For showing the second property, we will first bound the Lipschitz constants of the function
gt(.). We denote by ~l the vector of Lipschitz constants of f(x). Since f is a linear function,
~l = [2 |a1| , . . . , 2 |av| , . . . , 2 |an|]. We have for any x, x′ such that dH(x, x′) = 1,∣∣gt(x = x1, . . . , xi, . . . , xn)− gt(x′ = x1, . . . , x

′
i, . . . , xn)

∣∣ =
∣∣E[f(Xt)|X0 = x]−E[f(X ′t)|X ′0 = x′]

∣∣
=
∣∣E[f(Xt)− f(X ′t)|X0 = x,X ′0 = x′]

∣∣ (10)

≤
∣∣∣E[(Xt −X ′t) ·~l/2|X0 = x,X ′0 = x′]

∣∣∣
≤ E

[
2dH(Xt, X

′
t)|X0 = x,X ′0 = x′

]
(11)

≤ 2. (12)

where (10) holds for any valid coupling of the two chains starting at X0 and X ′0 respectively, in
particular, we use the greedy coupling (Definition 4) here. (11) follows because |ai| ≤ 1 ∀i, and (12)
follows because the expected Hamming distance between Xt and X ′t, due to the contracting nature
of the Glauber dynamics under the greedy coupling (Lemma 3), is smaller than dH(X0, X

′
0) which

is equal to 1. Also note that E[gt(X0)] = E[f(Xt)] = 0. Hence, applying Lemma 1 to gt(x), we get

Pr
[∣∣gt(X0)

∣∣ > r
]
≤ 2 exp

(
−ηr

2

8n

)
.

Note that we could apply Lemma 1 to gt(.) because X0 was drawn from the stationary distribution
of the Glauber dynamics.

To show the third property, we will define a martingale similar to the one defined in Definition 9
and apply Azuma’s inequality to it. Consider a run of the Glauber dynamics starting at X0 ∼ p and
running for t steps. We will view Xt as a function of all the random choices made by the dynamics
up to step t∗. That is, Xt = h(X0, R1, . . . , Rt) where Ri denotes the random choices made by the
dynamics during step i. More precisely, Ri represents the realization of the random choice of which
node to (attempt to) update and a Uniform([0, 1]) random variable (based upon which we decide
whether or not to update the node’s variable). Hence f(Xt) = f̃(X0, R1, . . . , Rt) where f̃ = f ◦ h.
Consider the Doob martingale defined on f̃ :

D0 = E[f̃(X0, R1, . . . , Rt)|X0]

· · ·
Di = E[f̃(X0, R1, . . . , Rt)|X0, R1, . . . , Ri] (13)
· · ·

Dt = f̃(X0, R1, . . . , Rt)

8



Since the dynamics are Markovian, we can also write Di as follows:

Di = E[f(Xt)|Xi].

Next we will bound the increments of the above martingale and apply Azuma’s inequality to get the
desired tail bound. In the following calculation, we will use the notation x→ y where x, y ∈ {±1}n,
to denote that y is a possible transition according to a single step of the dynamics starting from x.
For any 0 ≤ i ≤ t− 1,

|Di+1 −Di| = |E [f(Xt)|Xi+1]−E [f(Xt)|Xi]| (14)
≤ max

x,y:dH(x,y)=1

∣∣E [f(Xt)|Xi+1 = x]−E
[
f(X ′t)|X ′i = y

]∣∣ (15)

= max
x,y:dH(x,y)=1

∣∣∣∣∣∣E [f(Xt)|Xi+1 = x]−
∑

y′:y→y′
Pr[y → y′]E

[
f(X ′t)|X ′i+1 = y′

]∣∣∣∣∣∣ (16)

≤ max
x,y′:dH(x,y′)≤2

∣∣E [f(Xt)|Xi+1 = x]−E
[
f(X ′t)|X ′i+1 = y′

]∣∣ (17)

= max
x,y′:dH(x,y′)≤2

∣∣E [f(Xt)− f(X ′t)|Xi+1 = x,X ′i+1 = y′
]∣∣ (18)

= max
x,y′:dH(x,y′)≤2

∣∣∣∣∣E
[∑

v

av(Xt,v −X ′t,v)|Xi+1 = x,X ′i+1 = y′

]∣∣∣∣∣
≤ max

x,y′:dH(x,y′)≤2
E
[
2dH(Xt, X

′
t)|Xi+1 = x,X ′i+1 = y′

]
≤ 2. (19)

where in (15) we relabeled the variables in the second expectation to avoid notational confusion
in the later steps of our bounding, maintaining the understanding that the sequence {X ′i, Y ′i }i has
the same distribution as {Xi, Yi}i., (18) holds for any valid coupling of the Xi and X ′i chains, in
particular, it holds for the greedy coupling between the runs (Definition 4). (19) follows from the
condition |av| ≤ 1 and the contracting nature of the Glauber dynamics (Lemma 3) under the greedy
coupling.

Hence, for all 0 ≤ i ≤ t − 1, |Di+1 −Di| ≤ 2. Azuma’s inequality applied on the martingale
sequence {Di}i≥0 yields

Pr [|Dt −D0| > K] ≤ 2 exp

(
−K

2

4t

)
=⇒ Pr [|f(Xt)−E[f(Xt)|X0]| > K] ≤ 2 exp

(
−K

2

4t

)

2.3 Showing that the Martingale Process Doesn’t Stop Too Early

As a consequence of Lemma 6, we can show that with sufficiently large probability the stopping
time TK defined above is larger than t∗, and thus Freedman’s inequality gives guarantees for all t
up to t∗ with high probability. The main lemma will be the following one, which shows that for any
t, Xt ∈ GaK(t) with high probability.

Lemma 7. For any t ≥ 0, for t∗ = 3tmix,

Pr [Xt /∈ GaK(t)] ≤ 8n exp

(
−K

2

8t∗

)
.
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Proof. Since X0 is a sample from the stationary distribution p of the dynamics, it follows from the
property of stationary distributions that Xt is also a sample from p. Hence we have, from Lemma
6, and a union bound, that

Pr [∃ v ∈ V s.t. max {|E [fva (Xt∗)|Xt]| , |E [fva (Xt∗−1)|Xt]|} > K] ≤ 4n exp

(
−ηK

2

8n

)
. (20)

Let Da
K(t) be the event defined as

Da
K(t) = {∃ v ∈ V s.t. max {|fva (Xt∗)−E [fva (Xt∗)|Xt]| , |fva (Xt∗−1)−E [fva (Xt∗−1)|Xt]|} > K}.

From Lemma 6, and a union bound, we have,

Pr [Da
K(t)] = E [Pr [Da

K(t)|Xt]] ≤ 4n exp

(
−K

2

4t∗

)
=⇒ Pr

[
Pr [Da

K(t)|Xt] > exp

(
−K

2

8t∗

)]
≤ 4n exp

(
−K

2

8t∗

)
(21)

where (21) follows from a simple application of Markov’s inequality. Hence,

Pr

[
∃ v ∈ V s.t. max {Pr [|fva (Xt∗)−E [fva (Xt∗)|Xt]| > K] ,Pr [|fva (Xt∗−1)−E [fva (Xt∗−1)|Xt]| > K]} > exp

(
−K

2

8t∗

)]
≤ Pr

[
Pr [Da

K(t)|Xt] > exp

(
−K

2

8t∗

)]
≤ 4n exp

(
−K

2

8t∗

)
. (22)

From (20) and (22), we have,

Pr [Xt /∈ GaK(t)] ≤ 4n exp

(
−K

2

8t∗

)
+ 4n exp

(
−ηK

2

8n

)
≤ 8n exp

(
−K

2

8t∗

)
.

Given Lemma 7, the proof of the stopping time being large with high probability follows by a
simple application of the union bound.

Lemma 8. For t∗ = 3tmix,

Pr [t∗ ≥ TK ] ≤ 8nt∗ exp

(
−K

2

8t∗

)
.

Proof. From Lemma 7, we have

Pr [Xt /∈ GaK(t)] ≤ 8n exp

(
−K

2

8t∗

)
=⇒ Pr[t∗ ≥ TK ] = Pr

[
t∗⋃
t=0

Xt /∈ GaK(t)

]

≤
t∗∑
t=0

Pr [Xt /∈ GaK(t)] ≤ 8t∗n exp

(
−K

2

8t∗

)
= 8nt∗ exp

(
−K

2

8t∗

)
.
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2.4 Bounding the Martingale Differences

In this section, we prove a bound on the increments Bi+1 − Bi for the Doob martingale defined in
Definition 9 which holds with probability 1 for all i+ 1 < TK . We begin by showing a bound which
holds pointwise when Xi ∈ GaK(i) and Xi+1 ∈ GaK(i+ 1) in the form of Lemma 9.

Lemma 9. Consider the Doob martingale defined in Definition 9. Suppose Xi ∈ GaK(i) and Xi+1 ∈
GaK(i+ 1). Then

|Bi+1 −Bi| ≤ 16K + 16n2 exp

(
− K2

16t∗

)
.

Proof. For ease of exposition, we will refer to GaK(i) as simply Gi in the following proof.

|Bi+1 −Bi| = |E [fa(Xt∗)|Xi+1]−E [fa(Xt∗)|Xi]| (23)
=
∣∣E [fa(Xt∗)|Xi+1]−E

[
fa(X

′
t∗)
∣∣X ′i]∣∣ (24)

≤
∣∣E [fa(Xt∗)|Xi+1]−E

[
fa(X

′
t∗−1)

∣∣X ′i]∣∣+
∣∣E [fa(X ′t∗−1)∣∣X ′i]−E

[
fa(X

′
t∗)
∣∣X ′i]∣∣ (25)

≤
∣∣E [fa(Xt∗)− fa(X ′t∗−1)

∣∣Xi+1, X
′
i

]∣∣+
∣∣E [fa(X ′t∗)− fa(X ′t∗−1)∣∣X ′i]∣∣ (26)

=

∣∣∣∣∣E
[∑

v

(Xt∗,v −X ′t∗−1,v)

(∑
u

auvXt∗,u

)
+
∑
u

(Xt∗,u −X ′t∗−1,u)

(∑
v

auvX
′
t∗−1,v

)∣∣∣∣∣Xi+1, X
′
i

]∣∣∣∣∣
+
∣∣E [fa(X ′t∗)− fa(X ′t∗−1)∣∣X ′i]∣∣ (27)

≤ E

[∑
v

∣∣Xt∗,v −X ′t∗−1,v
∣∣ ∣∣∣∣∣∑

u

auvXt∗,u

∣∣∣∣∣+
∑
u

∣∣Xt∗,u −X ′t∗−1,u
∣∣ ∣∣∣∣∣∑

v

auvX
′
t∗−1,v

∣∣∣∣∣
∣∣∣∣∣Xi+1, X

′
i

]
+
∣∣E [fa(X ′t∗)− fa(X ′t∗−1)∣∣X ′i]∣∣ (28)

where in (24) we relabeled the variables in the second expectation to avoid notational confusion
in the later steps of our bounding, maintaining the understanding that the sequence {X ′i, Y ′i }i has
the same distribution as {Xi, Yi}i, in (25) we added and subtracted the term E[fa(X

′
t∗−1)|X ′i], (26)

holds for any valid coupling of the two chains, one starting at Xi+1 and the other starting at X ′i,
and both running for t∗ − 1− i steps. In particular, we use the greedy coupling between these two
runs (Definition 4). Consider the first term in (28). Since Xi+1 ∈ Gi+1, we have∣∣∣∣∣E

[∑
u

auvXt∗,u

∣∣∣∣∣Xi+1

]∣∣∣∣∣ ≤ K and (29)

Pr

[∣∣∣∣∣∑
u

auvXt∗,u −E

[∑
u

auvXt∗,u

∣∣∣∣∣Xi+1

]∣∣∣∣∣ > K

∣∣∣∣∣Xi+1

]
≤ 2 exp

(
− K2

16t∗

)
. (30)

=⇒ Pr

[∣∣∣∣∣∑
u

auvXt∗,u

∣∣∣∣∣ > 2K

∣∣∣∣∣Xi+1

]
≤ 2 exp

(
− K2

16t∗

)
. (31)

where (29) and (30) together imply (31). Similarly, we also get that

Pr

[∣∣∣∣∣∑
v

auvX
′
t∗−1,v

∣∣∣∣∣ > 2K

∣∣∣∣∣X ′i
]
≤ 2 exp

(
− K2

16t∗

)
. (32)
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Since
∑

v

∣∣Xt∗,v −X ′t∗−1,v
∣∣ |∑u auvXt∗,u| ≤ 2n2 for allXt∗ , X

′
t∗−1, and since

∑
v

∣∣Xt∗,v −X ′t∗−1,v
∣∣ =

2dH(Xt∗ , X
′
t∗−1), (31) and (32) imply that

E

[∑
v

∣∣Xt∗,v −X ′t∗−1,v
∣∣ ∣∣∣∣∣∑

u

auvXt∗,u

∣∣∣∣∣+
∑
u

∣∣Xt∗,u −X ′t∗−1,u
∣∣ ∣∣∣∣∣∑

v

auvX
′
t∗−1,v

∣∣∣∣∣
∣∣∣∣∣Xi+1, X

′
i

]
(33)

≤ E
[
4dH(Xt∗ , X

′
t∗−1)K + 4dH(Xt∗ , X

′
t∗−1)K

∣∣Xi+1, X
′
i

]
+ 8n2 exp

(
− K2

16t∗

)
(34)

≤ 8K + 8n2 exp

(
− K2

16t∗

)
, (35)

where (35) follows because of the contracting nature of Hamming distance under the greedy coupling
of the Glauber dynamics (Lemma 3).

The same bound can be proven by following the same steps for the second term in (28), com-
pleting the proof.

As a consequence of Lemma 9, we get the following two useful corollaries.

Corollary 1. Consider the martingale sequence defined in Definition 9.

Pr

[
∀ 0 < i+ 1 < TK , |Bi+1 −Bi| ≤ 16K + 16n2 exp

(
− K2

16t∗

)]
= 1.

Proof. Let κ = 16K + 16n2 exp
(
− K2

16t∗

)
.

Pr [∀ 0 < i+ 1 < TK , |Bi+1 −Bi| ≤ κ]

= 1− Pr [∃ 0 < i+ 1 < TK , |Bi+1 −Bi| > κ]

= 1− Pr [∃ 0 < i+ 1 < TK , (Xi ∈ GaK(i), Xi+1 ∈ GaK(i+ 1) and |Bi+1 −Bi| > κ)

or ((Xi /∈ GaK(i) or Xi+1 /∈ GaK(i+ 1)) and |Bi+1 −Bi| > κ)]

= 1− Pr [∃ 0 < i+ 1 < TK , (Xi ∈ GaK(i), Xi+1 ∈ GaK(i+ 1) and |Bi+1 −Bi| > κ)] (36)
= 1− 0 (37)

where (36) follows because by the definition of TK , ∀0 < i+1 < TK , (Xi ∈ GaK(i) and Xi+1 /∈ GaK(i+ 1)),
and (37) follows because Xi ∈ GaK(i), Xi+1 ∈ GaK(i+ 1) =⇒ |Bi+1 −Bi| ≤ κ (Lemma 9).

Corollary 1, will give us one of the required conditions to apply Freedman’s inequality.
As a corollary of Lemma 9, we get a bound on the variance of the martingale differences which

holds with high probability. To show it we first show Claim 2 which states that, informally, for any
time step i, with a large probability we hit an Xi such that the probability of transitioning from Xi

to an Xi+1 ∈ GaK(i+ 1) is large.

Claim 2. Denote by Na
K(i) the following set of configurations:

Na
K(i) =

{
xi ∈ Ω

∣∣∣∣Pr [Xi+1 /∈ GaK(i+ 1)|Xi = xi] ≤ exp

(
− K2

16t∗

)}
. (38)

Then,

Pr [Xi /∈ Na
K(i)] ≤ 8n exp

(
− K2

16t∗

)
.
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Proof. We have from Lemma 7, that

Pr [Xi /∈ GaK(i)] ≤ 8n exp

(
−K

2

8t∗

)
and (39)

Pr [Xi+1 /∈ GaK(i+ 1)] ≤ 8n exp

(
−K

2

8t∗

)
. (40)

From the definition of the set Na
K(i) we have,

Pr [Xi+1 ∈ GaK(i)|Xi /∈ Na
K(i)] ≤ 1− exp

(
− K2

16t∗

)
. (41)

Then we have,

1− 8n exp

(
−K

2

8t∗

)
≤ Pr [Xi+1 ∈ GaK(i)] (42)

= Pr [Xi+1 ∈ GaK(i)|Xi ∈ Na
K(i)] Pr [Xi ∈ Na

K(i)] + Pr [Xi+1 ∈ GaK(i)|Xi /∈ Na
K(i)] Pr [Xi /∈ Na

K(i)]
(43)

≤ Pr [Xi ∈ Na
K(i)] +

(
1− exp

(
− K2

16t∗

))
Pr [Xi /∈ Na

K(i)] (44)

=

(
1− exp

(
− K2

16t∗

))
+ exp

(
− K2

16t∗

)
Pr [Xi ∈ Na

K(i)] . (45)

(45) implies,

Pr [Xi ∈ Na
K(i)] ≥

exp
(
− K2

16t∗

)
− 8n exp

(
−K2

8t∗

)
exp

(
− K2

16t∗

) (46)

= 1− 8n exp

(
− K2

16t∗

)
. (47)

Lemma 10. Consider the martingale sequence defined in Definition 9. Let b =
(

16K + 16n2 exp
(
− K2

16t∗

))2
+

n4 exp
(
− K2

16t∗

)
. Denote by Na

K(i) the following set of configurations (as was defined in Claim 2):

Na
K(i) =

{
xi ∈ Ω

∣∣∣∣Pr [Xi+1 /∈ GaK(i+ 1)|Xi = xi] ≤ exp

(
− K2

16t∗

)}
. (48)

Then,

Pr [Var[Bi+1 −Bi|Fi] > b|Xi ∈ GaK(i) ∩Na
K(i)] = 0.

where Fi = 2Oi .

Proof. Since, the random variables X0, . . . , Xi together characterize every event in Fi, we have,

Var[Bi+1 −Bi|Fi] = Var[Bi+1 −Bi|X0, X1, . . . , Xi] = Var[Bi+1 −Bi|Xi] (49)
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where the last equality follows from the Markov property of the Glauber dynamics. By the definition
of Na

K(i), we have that

Var [Bi+1 −Bi|Xi ∈ GaK(i) ∩Na
K(i)] = E

[
(Bi+1 −Bi −E [Bi+1 −Bi|Xi ∈ GaK(i) ∩Na

K(i)])2
∣∣∣Xi ∈ GaK(i) ∩Na

K(i)
]

(50)

= E
[
(Bi+1 −Bi)2

∣∣∣Xi ∈ GaK(i) ∩Na
K(i)

]
(51)

≤ E
[
(Bi+1 −Bi)2

∣∣∣Xi ∈ GaK(i) ∩Na
K(i) ∩Xi+1 ∈ GaK(i+ 1)

]
+ E

[
(Bi+1 −Bi)2

∣∣∣Xi ∈ GaK(i) ∩Na
K(i) ∩Xi+1 /∈ GaK(i+ 1)

]
Pr [Xi+1 /∈ GaK(i+ 1)|Xi ∈ GaK(i) ∩Na

K(i)]

≤
(

16K + 16n2 exp

(
− K2

16t∗

))2

+ 4n4 Pr [Xi+1 /∈ GaK(i+ 1)|Xi ∈ GaK(i) ∩Na
K(i)] (52)

≤
(

16K + 16n2 exp

(
− K2

16t∗

))2

+ 4n4 exp

(
− K2

16t∗

)
, (53)

where (51) holds because E [Bi+1 −Bi|Xi = xi] = 0 for all xi since {Bi}i≥0 is a martingale, (52)
holds because Pr[|Bi+1 −Bi| ≤ 16K + 16n2 exp

(
− K2

16t∗

)
|Xi ∈ GaK(i) ∩Xi+1 ∈ GaK(i+ 1)] = 1 and

the maximum E[(Bi+1−Bi)2] can be is at most 2n2, (53) follows from Claim 2. The last inequality
implies the statement of the lemma.

2.5 Applying Freedman’s Inequality and Completing the Proof

With Lemma 9 and Lemma 10 to bound the martingale increments, and Lemma 8 to show that
the stopping time is large, we are ready to apply Freedman’s inequality on the martingale defined
in Definition 9.

Lemma 11. For all r ≥ 300n log2 n/η,

Pr [|fa(Xt∗)−E [fa(Xt∗)|X0]| ≥ r] ≤ 5 exp

(
− ηr

1734n log n

)
.

Proof. From Freedman’s inequality (Lemma 5) applied on the martingale sequence (Definition 9),
we get

Pr [∃t < TK s.t. |Bt −B0| ≥ r and Vt ≤ B] ≤ 2 exp

(
− r2

2(rK1 +B)

)
(54)

where K1 = 16K + 16n2 exp
(
− K2

16t∗

)
(Lemma 9) and Vt is defined as follows:

Vt =
t−1∑
i=0

Var [Bi+1 −Bi|Fi] . (55)

Set B = t∗
(

16K + 16n2 exp
(
− K2

16t∗

))2
+ 4t∗n4 exp

(
− K2

16t∗

)
and K =

√
r. Next, we note that if

r > 2n2, the statement of the theorem holds vacuously. From now on we handle the case when
r ≤ 2n2.

Proposition 1. If 2n2 ≥ r > 64n log2 n/η, then rK1 +B ≤ 867rn log n/η.
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Proof. We note that n ≤ r ≤ n2: the former is in the condition of the proposition statement, and
the latter is since the lemma is trivial for r > n2. Since K =

√
r, this implies

√
n ≤ K ≤ n.

We first focus on rK1. Since r ≥ 24n log2 n/η, we have that 16n2 exp
(
− K2

16t∗

)
≤ 16

√
n, and

therefore K1 ≤ 16K + 16
√
n ≤ 32K, and thus rK1 ≤ 32rK ≤ 32rt∗, where the latter inequality

follows since r ≤ 2n2 while t∗ ≥ n log n.
By a similar calculation, we have that B ≤ t∗ (8K + 8

√
n)

2
+ t∗ ≤ 257K2t∗ = 257rt∗.

Adding the two, we have that rK1 +B ≤ 289rt∗ = 867rn log n/η, as desired.

Hence, (54) becomes

Pr [∃t < TK s.t. |Bt −B0| ≥ r and Vt ≤ B] ≤ 2 exp

(
− r2

2(rK1 +B)

)
(56)

≤ 2 exp

(
− ηr

1734n log n

)
. (57)

Next we will bound, Pr [Vt∗ > B] which will be useful for obtaining the desired concentration
bound from (57).

Pr [Vt∗ > B] ≤ Pr [Vt∗ > B|∀ 0 ≤ t ≤ t∗ Xt ∈ GaK(t) ∩Na
K(t)] + Pr [∃ 0 ≤ t ≤ t∗ Xt /∈ GaK(t) ∩Na

K(t)]

≤ Pr

[
∃ 0 ≤ t < t∗ s.t. Var [Bt+1 −Bt|Xt] >

B

t∗

∣∣∣∣∀ 0 ≤ t ≤ t∗ Xt ∈ GaK(t) ∩Na
K(t)

]
(58)

+
t∗∑
t=0

(Pr [Xt /∈ GaK(t)] + Pr [Xt /∈ Na
K(t)]) (59)

≤ 0 + t∗
(

8n exp

(
−K

2

8t∗

)
+ 8n exp

(
− K2

16t∗

))
≤ 48n2 log n

η
exp

(
− K2

16t∗

)
. (60)

where (58) holds because Vt∗ > B implies that there exists a 0 ≤ t ≤ t∗ such thatVar [Bt+1 −Bt|Xt] >
B/t∗, (59) follows by an application of the union bound, and (60) follows from Lemma 10, Lemma 7
and Claim 2.

Now,

Pr [|f(Xt∗)−E [f(Xt∗)|X0]| > r] = Pr [|Bt∗ −B0| > r]

≤ Pr [|Bt∗ −B0| > r and Vt∗ ≤ B] + Pr [Vt∗ > B] (61)
≤ Pr [|Bt∗ −B0| > r and Vt∗ ≤ B and t∗ < TK ] + Pr[t∗ ≥ TK ] + Pr [Vt∗ > B] (62)
≤ Pr [(∃t ≤ t∗ s.t. |Bt −B0| > r and Vt ≤ B) and t∗ < TK ] + Pr[t∗ ≥ TK ] + Pr [Vt∗ > B] (63)
≤ Pr [∃t < TK s.t. |Bt −B0| > r and Vt ≤ B] + Pr[t∗ ≥ TK ] + Pr [Vt∗ > B]

≤ 2 exp

(
− ηr

1734n log n

)
+

24n2 log n

η
exp

(
− ηr

24n log n

)
+ Pr [Vt∗ > B] (64)

≤ 3 exp

(
− ηr

1734n log n

)
+ Pr [Vt∗ > B] (65)

≤ 3 exp

(
− ηr

1734n log n

)
+

48n2 log n

η
exp

(
− ηr

48n log n

)
(66)

≤ 5 exp

(
− ηr

1734n log n

)
. (67)

where (61) and (62) follow from the fact that Pr[A] ≤ Pr[A ∩ B] + Pr[¬B], (63) follows from
the fact that Pr[A] ≤ Pr[A ∪ B], (64) follows from (57) and from Lemma 8, (65) holds because
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r ≥ 300n log2 n/η, (66) follows from (60) and (67) again holds because r ≥ 300n log2 n/η. Note
that we have implicitly assumed that η > 1/n, since otherwise the concentration bounds obtained
are trivial.

We note that this statement conditions on an initial state X0. In order to remove this condi-
tioning, we must argue that after t∗ steps, the Glauber dynamics have mixed, and Xt∗ is very close
in total variation distance to the true Ising model, for any starting point x0.

We use Lemma 2 to remove the conditioning in our previous tail bound, which implies Theorem 1.

Lemma 12. For all r ≥ 300n log2 n/η + 2 and n sufficiently large,

Pr [|fa(Xt∗)−E [fa(Xt∗)]| ≥ r] ≤ 5 exp

(
− ηr

1735n log n

)
.

Proof. Since X0 ∼ p, we have that, Xt∗ ∼ p as well. From Lemma 2, we have that for t∗ = 3tmix,

dTV(Xt∗ |X0, Xt∗) ≤ exp (−2n log n)

=⇒ |E [fa(Xt∗)|X0]−E [fa(Xt∗)]| ≤ 2n2 exp(−2n log n) ≤ 2 exp(−n).

Now,

Pr [|fa(Xt∗)−E [fa(Xt∗)]| > ger] ≤ Pr [|fa(Xt∗)−E [fa(Xt∗)|X0]| ≥ r − 2 exp(−n)]

≤ 5 exp

(
− η(r − 2)

1734n log2 n

)
≤ 5 exp

(
− ηr

1735n log2 n

)
, (68)

where (68) holds for sufficiently large n.

2.6 Concentration under an External Field

Under an external field, not all bilinear functions concentrate nicely even in the high temperature
regime. This can be seen easily, for instance, in the case of fa(X) =

∑
u6=vXuXv. On an empty

graph with a uniform external field h on each node, Var(fa(X)) = c(h)n3 (where c(·) is a function
depending only on h). Hence the best scale of concentration one could hope for is at a distance n1.5

from E[fa(X)]. However, tighter concentration akin to the one we achieve when there is no external
field can be shown for classes of appropriately centered bilinear functions. We briefly describe
the reason a non-centered function such as the one above doesn’t concentrate and then argue at
a high level how a correctly ‘centered’ function has sharper tails. To see where our framework
fails when trying to show concentration of measure for arbitrary bilinear functions, let us look
at fa(X) =

∑
u6=vXuXv. Under an external field, the linear functions associated with taking

a step along the censored Glauber dynamics starting at X, are no longer zero mean. Although
linear functions still concentrate around their expectation with a radius of Õ(

√
n), the expectations

can be of the order Ω(n). Hence we can’t use concentration of linear functions to argue that
|fva (X)| ≈ O(

√
n). And the example described above shows that indeed the variance is higher

for this function and the best concentration of measure one could hope to show has tails bounds
which kick in at deviations of O(n1.5) from the mean. To get stronger tails, the fix is to center our
bilinear functions so that the linear functions arising from fa(X) − fa(X ′) are zero mean thereby
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enabling application of concentration at radius Õ(
√
n) on the quantity |fva (X)−E[fva (X)]| rather

than having to bound |fva (X)| itself. There are multiple ways to achieve this. We present two simple
and natural ways of doing so in Theorem 2.

Theorem 2 (Concentration of Measure for Bilinear Functions Under an External Field). 1. Bilinear
functions on the Ising model of the form fa(X) =

∑
u,v auv(Xu −E[Xu])(Xv −E[Xv]) satisfy

the following inequality at high temperature. There exist absolute constants c and c′ such that,
for r ≥ cn log2 n/η,

Pr [|fa(X)−E[fa(X)]| ≥ r] ≤ 4 exp

(
− r

c′n log n

)
.

2. Bilinear functions on the Ising model of the form fa(X
(1), X(2)) =

∑
u,v auv(X

(1)
u −X(2)

u )(X
(1)
v −

X
(2)
v ), where X(1), X(2) are two i.i.d samples from the Ising model, satisfy the following inequal-

ity at high temperature. There exist absolute constants c and c′ such that, for r ≥ cn log2 n/η,

Pr
[∣∣∣fa(X(1), X(2))−E[fa(X

(1), X(2))]
∣∣∣ ≥ r] ≤ 4 exp

(
− r

c′n log n

)
.

Proof. Since most of the proof follows along similar lines as that of the case with no external
field, we briefly sketch the outline and highlight the major differences here. The calculations are
straightforward to verify. The first step would be to prove a version of Lemma 6 for linear functions
in the case of external field with the main difference being that wherever we had f(x) =

∑
v avxv

before, we replace it with f(x) =
∑

v av(xv − E[Xv]). With this replacement it can be seen that
the lemma follows in the presence of an external field. Next, we proceed to define a martingale
sequence in the same way as was done in the case without external field. The linear functions
in the stopping time definition are now replaced with their centered versions (i.e. are made zero
mean). When studying the martingale differences we end up having to bound the difference in the
expected value of our function at some future time t∗, conditioning on starting at two different
starting states X and X ′, where X ′ is obtained by doing one step of the Glauber dynamics from X.
For the first style of centered functions listed in the theorem statement, if we unravel our bounding
procedure we end up needing to bound functions of the form

∣∣∣2∑u6=v auv(Xu −E[Xu])
∣∣∣ for different

v’s. The linear function inside the absolute value is zero mean and hence we can bound it in absolute
value with high probability using concentration of measure for linear functions. Similarly, for the
second style of functions in the theorem statement, we end up needing to bound functions of the
form

∣∣∣2∑u6=v auv(X
(1)
u −X(2)

u )
∣∣∣ which again are zero mean, and we can still use concentration of

measure of linear functions to bound them. The rest of the proof follows in the same way as in the
case without external field.

2.7 An Exponential Tail is Inherent for Bilinear Statistics

In this section, we show that our tail bound of Theorem 1 is asymptotically tight upto a log n factor
in the radius of concentration. Informally this means that exponential tails are the best one could
hope to get for bilinear functions and sharper tails, (e.g. a Gaussian tail: exp(−r2/n2)), can’t be
obtained. The tightness will follow from the following theorem which shows that the tail given by
the Chernoff bound is asymptotically tight for sums of bounded i.i.d. random variables.
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Theorem 3. (Folklore) Let X1, . . . , Xn be i.i.d. samples from Ber(1/2) and let g(X) =
∑n

i=1Xi.
Then for any r > 0,

Pr [g(X)−E[g(X)] > r] ≥ exp

(
−9r2

n

)
,

Pr [g(X)−E[g(X)] < −r] ≥ exp

(
−9r2

n

)
.

One possible proof of the above theorem follows by the application of Stirling’s inequalities.
Now, consider the bilinear function f(X) =

∑
u6=vXuXv on an Ising model on an empty graph.

Hence for each u, (Xu + 1)/2 ∼ Ber(1/2) independently. Note that E[f(X)] = 0.

2f(X) =

(∑
u

Xu

)2

− n

=⇒ Pr [|f(X)| > r] ≥ Pr [f(X) > r]

= Pr

[∣∣∣∣∣∑
u

Xu

∣∣∣∣∣ >√r/2 + n

]
= Pr

[∣∣∣∣∣∑
u

Xu + 1

2
− n

2

∣∣∣∣∣ >
√
r/2 + n

2

]

≥ exp

(
−9(r/2 + n)

4n

)
≥ exp(−9/4) exp

(
− 9r

8n

)
,

where the last inequality follows from Theorem 3. This shows that the tail bound obtained from
Theorem 1 is asymptotically nearly-tight (up to a O(log n) factor in the radius of concentration and
O(1/ log n) factor in the exponent of the tail bound).

3 Supplementary Information for Concentration of Multilinear Func-
tions

In this section, we prove the following theorem:

Theorem 4. Consider any degree-d multilinear function

fa(x) =
∑

U⊆V :|U |=d

aU
∏
u∈U

xu

on an Ising model p (defined on a graph G = (V,E) such that |V | = n) in η-high-temperature regime
with no external field. Let ‖a‖∞ = maxU⊆V :|U |=d |aU |. There exist constants C1 = C1(d) > 0 and
C2 = C2(d) > 0 depending only on d, such that if X ∼ p, then for any r ≥ C1‖a‖∞(n log2 n/η)d/2,
we have

Pr [|fa(X)−E [fa(X)]| > r] ≤ 2 exp

(
− ηr2/d

C2‖a‖2/d∞ n log n

)
.

Note that, like our bilinear theorem statement, this statement is phrased for multilinear functions
of degree exactly equal to d. This is for convenience of notation in our proof. A general purpose
theorem for all degree-d multilinear functions can be obtained by simply partitioning the terms
based on their degree, and applying this theorem for each degree from 1 to d. This will not incur
significant costs in the concentration bound, as the terms of order lower than d have much tighter
radii of concentration. Similar to Remark 1, our theorem statement still holds under the weaker
assumption of Hamming contraction.
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Remark 2. The bound presented in Theorem 4 is asymptotically tight up to an Od(logd n) factor in
the radius of concentration and a O(1/ log n) factor in the exponent of the tail bound. This can be
shown via an argument similar to that employed in Section 2.7. In particular, for an Ising model on
an empty graph (where each node is completely independent of the others), we have for the d-linear
function f(x) =

∑
U⊆V :|U |=d

∏
u∈U xu, the following inequality for a big enough constant C(d)

Pr [|f(X)−E [f(X)]| > r] ≥ 2 exp

(
− r2/d

C(d)n

)
.

In Section 3.1 we state some lemmata and definitions. We then show a bound on the expected
value of d-linear functions on the Ising model in high temperature (Section 3.2). We proceed by
showing our main result (Theorem 5) in Section 3.3. This result requires us to relate the expected
values and tail probabilities of hybrid terms to those of non-hybrid terms, which we do as Theorem 6
in Section 3.4.

3.1 Setup

We will now proceed with the setup of our argument for concentration of d-linear functions.
Recall from Claim 1 the linear functions that arose when looking at the difference in the value of

a bilinear function due to a step of the Glauber dynamics. In a similar vein, we define a family F da
of multilinear functions on the Ising model of degree ≤ d− 1 associated with any d-linear function
fa(x).

Definition 11.

F da =
d−1⋃
l=0

Fa(l) where (69)

F da (l) = {fv1,v2,...,vd−l
a | ∀ distinct v1, v2, . . . , vd−l ∈ V } and (70)

fv1,v2,...,vka (x) =
∑

u1,u2,...,ud−k∈V \{v1,v2,...,vk}

au1u2...ud−kv1v2...vkXu1Xu2 . . . Xud−k
. (71)

In the set of functions defined above, the degree d − 1 functions arise (up to scaling) from
looking at the difference in values of fa(X) when a single step of the Glauber dynamics is taken.
More generally, the degree l − 1 functions in the definition arise when looking at the difference in
values of a degree l function from F da (l) when a single step of the Glauber dynamics is taken.

We will also need to generalize the greedy coupling (Definition 4) used in Section 2 to couple
two runs of the Glauber dynamics. The generalization will provide a way of coupling an arbitrary
number of runs of the Glauber dynamics on a common Ising model p.

Definition 12 (The k-Greedy Coupling). Given an Ising model p in high temperature, for any
k > 0, consider the following process: Let x(1)0 , x

(2)
0 , . . . , x

(k)
0 ∈ Ω be k starting configurations. Run k

instances of the Glauber dynamics associated with p with the ith instance starting at state X(i)
0 = x

(i)
0 .

Let the sequence of states observed in the ith run of the dynamics be X(i)
0 , X

(i)
1 , X

(i)
2 , . . .. Couple

the k runs in the following way: At each time step t choose a vertex v ∈ V uniformly at random
to update in all of the k runs. Let pi denote the probability that the ith Glauber dynamics instance
sets X(i)

t,v = 1. Let p1 ≤ p2 ≤ . . . pk be a rearrangement of the pi values in increasing order. Also
let p0 = 0 and pk+1 = 1. Draw a number x uniformly at random from [0, 1] and couple the updates
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according to the following rule:

If x ∈ [pl, pl+1] for some 0 ≤ l ≤ k, set X(i)
t,v = −1 for all 1 ≤ i ≤ l and X(i)

t,v = 1 for all l < i ≤ k.

We call this coupling the generalized greedy coupling of the k runs or the k-greedy coupling.

Now we list some properties the generalized greedy coupling (Definition 12) satisfies.

Lemma 13 (Properties of the k-Greedy Coupling). The k-Greedy coupling (Definition 12) is a
valid coupling of k runs of Glauber dynamics with the following properties.

1. If X(i)
0 ∼ p, then X

(i)
t ∼ p for all t ≥ 0 and for all 1 ≤ i ≤ k.

2. If p is an Ising model in η-high temperature, for any pair of runs i 6= j,

E
[
dH(X

(i)
t , X

(j)
t )
∣∣∣(X(i)

0 , X
(j)
0 )
]
≤
(

1− η

n

)t
dH(X

(i)
0 , X

(j)
0 ).

That is, the joint distribution of any two of the runs is a greedy coupling as described in
Definition 4.

3. For any pair of runs i 6= j, the distribution of X(i)
t , for any t ≥ 0, conditioned on X

(i)
0 is

independent of X(j)
0 .

Proof. First we will argue that the k-greedy coupling is a valid coupling. Consider the marginal
distribution of any one of the k runs: X(j)

0 , X
(j)
1 , . . .. The process of generating X(j)

t+1 from X
(j)
t

corresponds precisely to a step of the Glauber dynamics. Firstly, the sampling of a node among
all choices is common to all runs and hence also to run j. Secondly, the update probabilities for
the selected node are exactly what Glauber dynamics would have prescribed. Hence, it is a valid
coupling of the k runs. Since p is the stationary distribution corresponding to all the k runs,
X

(i)
0 ∼ p =⇒ X

(i)
t ∼ p for all t ≥ 0. We will now argue that any pair of runs i 6= j are coupled

according to the greedy coupling of Definition (4). Since the node to be updated in any step is
chosen to be the same for all runs it is also the same for runs i and j. Moreover, the updates of the
selected node in runs i and j are coupled in precisely the same way as they were under the greedy
coupling. Hence, the k-greedy coupling is a greedy coupling for any pair of runs i and j. Hence,
from Lemma 3, we have

E
[
dH(X

(i)
t , X

(j)
t )
∣∣∣(X(i)

0 , X
(j)
0 )
]
≤
(

1− η

n

)t
dH(X

(i)
0 , X

(j)
0 ).

Also from Lemma 3, we have that the distribution of X(i)
t , for any t ≥ 0, conditioned on X

(i)
0 is

independent of X(j)
0 .

The k-greedy coupling we have defined above will be useful in showing the following property
about the concentration of the Hamming distance between two greedily coupled runs which is stated
as Lemma 14.

Lemma 14. Let x0, y0 ∈ Ω be two configurations for a high temperature Ising model p on n nodes.
Let {Xt}t≥0, {Yt}t≥0 be two runs of Glauber dynamics associated with p, coupled greedily with X0 =
x0, Y0 = y0. Then, for any integer t > 0 and any real K > 0,

Pr [|dH(Xt, Yt)−E [dH(Xt, Yt)|X0, Y0]| > K|X0 = x0, Y0 = y0] ≤ 2 exp

(
−K

2

16t

)
.
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Proof. We will use Azuma’s inequality (Lemma 4). Consider the Doob martingale associated with
dH(Xt, Yt) (similar to that of Definition 9)but now defined using the greedily coupled dynamics),
parameterized by x0, y0. The ith term in the martingale sequence is Hi = E [dH(Xt, Yt)|Xi, Yi]
(where we have used the Markovian property of the Glauber dynamics). We look at |Hi+1 −Hi|
for any 0 < i+ 1 ≤ t.

|Hi+1 −Hi| = |E [dH(Xt, Yt)|Xi+1, Yi+1]−E [dH(Xt, Yt)|Xi, Yi]| (72)
≤
∣∣E [dH(Xt, Yt)|Xi+1, Yi+1]−E

[
dH(X ′t−1, Y

′
t−1)|X ′i, Y ′i

]∣∣ (73)
+ |E [dH(Xt, Yt)|Xi, Yi]−E [dH(Xt−1, Yt−1)|Xi, Yi]| (74)
≤
∣∣E [dH(Xt, Yt)− dH(X ′t−1, Y

′
t−1)|Xi+1, Yi+1, X

′
i, Y

′
i

]∣∣+ 2 (75)
≤ E

[∣∣dH(Xt, Yt)− dH(X ′t−1, Y
′
t−1)

∣∣ |Xi+1, Yi+1, X
′
i, Y

′
i

]
+ 2

≤ E
[∣∣dH(Xt, X

′
t−1) + dH(Yt, Y

′
t−1)

∣∣ |Xi+1, Y
′
i+1, X

′
i, Y

′
i

]
+ 2 (76)

≤ 4 (77)

where (73) and (74) follows by adding and subtracting the term E [dH(Xt−1, Yt−1)|Xi, Yi] to the dif-
ference inside the absolute value. We have also renamedE [dH(Xt−1, Yt−1)|Xi, Yi] asE

[
dH(X ′t−1, Y

′
t−1)|X ′i, Y ′i

]
in (73) to avoid notational confusion in the later steps of our bounding, maintaining the under-
standing that the sequence {X ′t, Y ′t }t has the same distribution as {Xt, Yt}t. The first term in
(75) bounds the term of (73) for any valid coupling of the two greedily coupled probability spaces,
namely {Xt, Yt}t≥i and {X ′t, Y ′t }t≥i. Here we couple them using the 4-greedy coupling (Defini-
tion 12). Also, by triangle inequality, E[|dH(Xt, Yt) − dH(Xt−1, Yt−1)||Xi, Yi] ≤ E[dH(Xt, Xt−1) +
dH(Yt, Yt−1)|Xi, Yi] ≤ 2. Hence (75) follows. Similarly, (76) follows because

∣∣dH(Xt, Yt)− dH(X ′t−1, Y
′
t−1)

∣∣ ≤
dH(Xt, X

′
t−1)+dH(Yt, Y

′
t−1) and (77) follows because E[dH(Xt, X

′
t−1)|Xi+1, X

′
i] ≤ dH(Xi+1, X

′
i) ≤ 1

(Lemma 3) and similarly E[dH(Yt, Y
′
t−1)|Yi+1, Y

′
i ] ≤ dH(Yi+1, Y

′
i ) ≤ 1.

Hence by Azuma’s inequality applied on the martingale sequence from 0 to t, we get

Pr
[∣∣dH(Xt, X

′
t)−E

[
dH(Xt, X

′
t)|X0, X

′
0

]∣∣ > K
∣∣X0 = x0, X

′
0 = x′0

]
≤ 2 exp

(
−K

2

16t

)
.

3.2 Bounding Marginals of an Ising Model in High Temperature

The goal of this section will be to obtain a bound on the expected values of the d-linear functions
under consideration when computed over a sample from a high temperature Ising model. We start
by bounding the marginals of ferromagnetic Ising models (θuv ≥ 0 for all u, v). We will show later,
using a generalization of the Fortuin-Kastelyn (FK) model, that this suffices to yield the result for
non-ferromagnetic Ising models as well. The FK model connects bond percolation with the Ising
model and offers powerful tools to show stochastic domination inequalities which will enable us to
bound the marginals of the Ising model. We assume familiarity with the FK model as described in
Chapter 10 of [RAS15].

Lemma 15. Consider a ferromagnetic Ising model p (θuv ≥ 0 for all (u, v) ∈ E) at high temperature.
Let d be a positive integer. We have

∑
u1,...,ud

E

[
d∏
i=1

Xui

]
≤ 2

(
4nd log n

η

)d/2
.
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Proof. We have, (∑
v∈V

Xv

)d
=

∑
u1,...,ud∈V

d∏
i=1

Xui (78)

=⇒ E

[ ∑
u1,...,ud

d∏
i=1

Xui

]
= E

(∑
v

Xv

)d . (79)

Since we are in high temperature, we have from Lemma 1 Pr [|
∑

vXv| > K] ≤ 2 exp
(
−ηK2

8n

)
. Since

the maximum value of
∑

vXv = n, we have for all K > 0,

E

(∑
v

Xv

)d ≤ Kd + 2nd exp

(
−ηK

2

8n

)
. (80)

Setting K = 2
√
nd log n/η we get,

E

[ ∑
u1,...,ud

d∏
i=1

Xui

]
= E

(∑
v

Xv

)d ≤ 2

(
4nd log n

η

)d/2
. (81)

For any Ising model p on graph G = (V,E) with parameter vector represented by θ, we associate
a ferromagnetic Ising model denoted by p+ defined on the same graph G where all the edges retain
their magnitude but are now forced to be ferromagnetic interactions. That is, |θpuv| = θp

+

uv for all
u, v. We have the following relation between the marginals of p and those of p+.

Lemma 16. Consider any Ising model p defined on G = (V,E). Consider any subset of k nodes
{u1, . . . , uk} ⊆ V . Then,

Ep [Xu1Xu2 . . . Xuk ] ≤ Ep+ [Xu1Xu2 . . . Xuk ] .

Proof. If k is odd, then the quantities on the LHS and RHS are both 0 and hence the Lemma
holds. To handle the case when k is even, we consider a generalization of the FK model to possible
non-ferromagnetic Ising model. This generalization is discussed in detail, for instance, in Newman’s
paper [New90]. The generalization retains many nice properties of the FK model. In particular,
when k is even, Ep

[∏k
i=1Xui

]
= Pr [Xu1 , Xu2 , . . . , Xuk belong to same cluster ] still holds. Equa-

tion (20) in Section 5 of [New90] notes that the percolation measure associated with any Ising model
is stochastically dominated by the measure associated with its corresponding ferromagnetic Ising
model. A consequence of this stochastic dominance, noted in homework problem 3 in the chapter
on Phase Transitions by Griffiths in [DS71], is the desired inequality

Ep [Xu1Xu2 . . . Xuk ] ≤ Ep+ [Xu1Xu2 . . . Xuk ] .

Lemma 17. Consider any Ising model p defined on G = (V,E). Consider any subset of k nodes
{u1, . . . , uk} ⊆ V . Then,

|Ep [Xu1Xu2 . . . Xuk ]| ≤ Ep+ [Xu1Xu2 . . . Xuk ] .
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Proof. If we show that −Ep [Xu1Xu2 . . . Xuk ] ≤ Ep+ [Xu1Xu2 . . . Xuk ], then together with Lemma
16 we get the desired result. To show the above inequality we build an Ising model p̃ and apply
Lemma 16 to it. p̃ is defined as follows. The set of vertices V on which p is defined is augmented
with k dummy vertices, ũ1, ũ2, . . . , ũk and the set of edges E is augmented by the addition of the
set of edges Ẽ:

Ẽ = {(ui, ũi) for i = 1, 2, . . . , k} .

The parameters for the new edges are all set to +∞ except for the edge (u1, ũ1) whose parameter
is set to −∞. Under this construction, we have that

Ep̃ [Xũ1Xũ2 . . . Xũk ] = −Ep [Xu1Xu2 . . . Xuk ] . (82)

From Lemma 16, we have

Ep̃ [Xũ1Xũ2 . . . Xũk ] ≤ Ep̃+ [Xũ1Xũ2 . . . Xũk ] (83)

And since all edges of the form (ui, ũi) for i = 1, 2, . . . , k have a parameter of +∞ under p̃+, we
have

Ep̃+ [Xũ1Xũ2 . . . Xũk ] = Ep̃+ [Xu1Xu2 . . . Xuk ] (84)

Finally, we observe that this construction doesn’t change the values of any of the original marginals.
In particular,

Ep̃+ [Xu1Xu2 . . . Xuk ] = Ep+ [Xu1Xu2 . . . Xuk ] . (85)

(82),(83),(84) and (85) combined give us the desired result.

Lemma 15 together with Lemma 17 gives Corollary 2.

Corollary 2. Consider any Ising model p at high temperature. Let d be a positive integer. We have∣∣∣∣∣ ∑
u1,...,ud

Ep[Xu1Xu2 . . . , Xud ]

∣∣∣∣∣ ≤ 2

(
4nd log n

η

)d/2
.

Proof. We have, ∣∣∣∣∣ ∑
u1,...,ud

Ep[Xu1Xu2 . . . , Xud ]

∣∣∣∣∣ ≤ ∑
u1,...,ud

|Ep[Xu1Xu2 . . . , Xud ]|

≤
∑

u1,...,ud

Ep+ [Xu1Xu2 . . . , Xud ] ≤ 2

(
4nd log n

η

)d/2
.

3.3 Main Theorem Statement for d-Linear Functions

We are now ready to show concentration of measure for d-linear functions. First, we define a notion
of a ‘good’ set of configurations corresponding to a d-linear function fa(x) similar to how it was
defined in Section 2. Doing so will help us define a stopping time for the martingale sequence we
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consider later on in the argument. For any multilinear function fa(x) of degree d, K > 0, and
t1 ≥ t, define the set Ga,dK (t1, t) to be the following set of configurations:

Ga,d
K (t1, t) =

{
xt ∈ Ω

∣∣∣ ∀1 ≤ l ≤ d− 1, ∀f ∈ F d
a (l) max{|E[f(Xt1)|Xt = xt]| , |E[f(Xt1−1)|Xt = xt]|} ≤ Kl/(d−1)

}
⋂{

xt

∣∣∣∣ ∀1 ≤ l ≤ d− 1, ∀f ∈ F d
a (l) Pr

[
|f(Xt1)−E [f(Xt1)|Xt]| > Kl/(d−1)

∣∣∣Xt = xt

]
≤ 2 exp

(
−K

2/(d−1)

c1(l)t1

)}
(86)⋂{

xt

∣∣∣∣ ∀1 ≤ l ≤ d− 1, ∀f ∈ F d
a (l) Pr

[
|f(Xt1−1)−E [f(Xt1−1)|Xt]| > Kl/(d−1)

∣∣∣Xt = xt

]
≤ 2 exp

(
−K

2/(d−1)

c1(l)t1

)}
where E[f(Xt1)|Xt], is defined as 0 for t > t1 for any function f and c1(l) > 0 is a function of l
which is sufficiently large. The definition may seem complicated at this moment but its usefulness
will become more apparent once we delve into the proof of Theorem 5.

Ga,dK (t1, t) was deliberately constructed so as to satisfy the following layering property which will
be very useful in the inductive argument of Theorem 5. The following corollary is immediate from
the definition of Ga,dK (t1, t).

Corollary 3. Suppose fa(x) is a d-linear function and x ∈ Ga,dK (t1, t). For any v ∈ V , let av

represent the coefficient vector of the (d − 1)-linear function fva (x). Then x ∈ Ga
v ,d−1
K̂

(t1, t) where
K̂ = K(d−2)/(d−1).

We will obtain the desired concentration bound by showing that the following set of statements
hold for any d-linear function fa(Xt∗) (where d is a constant) with bounded coefficients (‖a‖∞ ≤ 1).
To show Statement (1) of Theorem 5, we will use Theorem 6.

Theorem 5. Consider an Ising model p in the η-high temperature regime. Let tmix = n log n/η
denote the mixing time of the Glauber dynamics associated with p. Let fa : Ω → R be any d-linear
function for some d ≥ 1, such that fa(x) =

∑
u1,u2,...,ud

au1u2...udxu1xu2 . . . xud where a ∈ [−1, 1](
V
d).

Let 2tmix ≤ t∗ ≤ (n+ 1)tmix.

1. Let X0 ∼ p. Consider a run of the Glauber dynamics associated with p running for t∗ steps:
X0, X1, . . . , Xt∗. For any 0 ≤ t0 ≤ t∗, there exist c(d), c2(d) > 0 which are increasing functions
of d only, such that, for any r > c(d)(n log2 n/η)d/2, we have,

Pr [|fa(Xt∗)−E[fa(Xt∗)|Xt0 ]| ≥ r] ≤ 2 exp

(
− r2/d

c2(d)t∗

)
.

2. If X ∼ p is a sample from the Ising model, there exist c(d), c3(d) > 0 which are increasing
functions of d only, such that, for any r > c(d)(n log2 n/η)d/2,

Pr [|fa(X)−E[fa(X)]| ≥ r] ≤ 2 exp

(
− r2/dη

c3(d)n log n

)
.

3. For any 0 ≤ t0 ≤ t∗, there exist c(d), c4(d) > 0 which are increasing functions of d alone, such
that, for any r > c(d)(n log2 n/η)d/2,

Pr [|E [fa(Xt∗)|Xt0 ]| ≥ r] ≤ 2 exp

(
− r2/d

c4(d)t∗

)
.
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Proof. The proof will proceed by induction on d.
Base Case d = 1: Statement 1 follows from Statement 3 of Lemma 6. Statement 2 of the Theorem
follows immediately from Lemma 1 applied to linear functions. Statement 3 follows from Statement
2 of Lemma 6. Hence, we have shown that Theorem 5 holds when d = 1.

Inductive Hypothesis: Suppose the statements of the theorem hold for some d > 1. We will now
show that they hold for d+ 1.
Statement 1: We aim to show this statement for d + 1-linear functions. We will use Freedman’s
inequality in a similar manner as was done in Section 2. We begin by defining a martingale sequence
associated with fa(x).

Definition 13 (The d-Linear Martingale Sequence). Let X0 ∈ Ω = {±1}n be a starting state.
Consider a walk of the Glauber dynamics starting at X0 and running for t∗ steps: X0, X1, . . . , Xt∗ .
Xt∗ can be viewed as a function of all the random choices made by the dynamics up to that point.
That is, Xt∗ = h(X0, R1, . . . , Rt∗) where Ri is a random variable representing the random choices
made by the dynamics in step i. Hence fa(Xt∗) = f̃a(X0, R1, . . . , Rt∗) where f̃a = fa ◦ h. Consider
the Doob martingale associated with f̃a defined on the probability space (O, 2O, P ) where O is the
set of all possible values of the variables X0, X1, X2, . . . , Xt∗ under the Glauber dynamics and P is
the function which assigns probability to events in 2O according to the underlying Glauber dynamics.
Also consider the increasing sequence of sub-σ-fields 2O0 ⊂ 2O1 ⊂ 2O2 ⊂ . . . 2Ot∗ = 2O where Oi is
the set of all possible values to the variables X0, X1, X2, . . . , Xi under the Glauber dynamics. The
terms in the martingale sequence are as follows:

B0 = E
[
f̃a(X0, R1, . . . , Rt∗)

∣∣∣X0

]
· · ·

Bi = E[f̃a(X0, R1, . . . , Rt∗)|X0, R1, . . . , Ri] (87)
· · ·

Bt∗ = f̃a(X0, R1, . . . , Rt∗)

Since the dynamics are Markovian, we can also write Bi as follows:

Bi = E[fa(Xt∗)|Xi] ∀ 0 ≤ i ≤ t∗.

Next, we define a stopping time TK on the above martingale sequence. The definition generalizes
the stopping time defined in Section 2 by requiring that many conditional expectations are small
together.

Definition 14 (Stopping Time for d-linear functions). Consider the martingale sequence defined in
Definition 13. Let TK : O → {0}

⋃
N be a stopping time defined as follows:

TK = min{min
t≥0

{
t
∣∣∣t /∈ Ga,d+1

K (t∗, t)
}
, t∗ + 1}.

Note that the event {TK = t} lies in the σ-field 2Ot and hence the above definition is a valid stopping
time.

Using the induction hypothesis, we will show that the stopping time defined above is large with
a good probability for the parameter range which is of interest to us.
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Lemma 18. For any t ≥ 0, t∗ ≤ (n + 1)tmix, there exists c(d) > 0 such that, for any K >
c(d)(n log2 n/η)d/2,

Pr
[
Xt /∈ Ga,d+1

K (t∗, t)
]
≤ 8dnd+1 exp

(
− K2/d

2c1(d)t∗

)
,

where c1(d) is as defined in (86).

Proof. For any 1 ≤ k ≤ d+ 1, and v1, v2, . . . , vk ∈ V , let EK(v1, v2, . . . , vk) be the following event:

EK(v1, v2, . . . , vk) = max {|E[fv1,v2,...,vka (Xt∗)|Xt = xt]| , |E[fv1,v2,...,vka (Xt∗−1)|Xt = xt]|} > K(d+1−k)/d.

Since X0 is a sample from the stationary distribution p of the dynamics, it follows from the property
of stationary distributions that Xt is also a sample from p. Hence we have, from the induction
hypothesis, Statement 3 for multilinear functions of degree ≤ d, and a union bound, that for any
1 ≤ k ≤ d+ 1, v1, v2, . . . , vk ∈ V , and for K > c(d)(n log2 n/η)d/2,

Pr [ EK(v1, v2, . . . , vk)] ≤ 4 exp

(
− K2/d

c4(d+ 1− k)t∗

)
(88)

From (88) and a union bound, we get

Pr [ ∃1 ≤ k ≤ d+ 1 and v1, v2, . . . , vk ∈ V s.t. EK(v1, v2, . . . , vk)]

≤
d+1∑
k=1

4nk exp

(
− K2/d

c4(d+ 1− k)t∗

)
≤ 4dnd+1 exp

(
− K2/d

c4(d+ 1)t∗

)
. (89)

For any 1 ≤ k ≤ d+ 1, v1, v2, . . . , vk ∈ V , let DK(v1, v2, . . . , vk) denote the following event:

DK(v1, v2, . . . , vk) = max {|fv1,v2,...,vka (Xt∗)−E [fv1,v2,...,vka (Xt∗)|Xt]| ,
|fv1,v2,...,vka (Xt∗−1)−E [fv1,v2,...,vka (Xt∗−1)|Xt]|} > K(d+1−k)/d.

Let Da
K(t, k) be the event defined as

Da
K(t, k) = ∃ v1, v2, . . . , vk ∈ V such that DK(v1, v2, . . . , vk).

From the inductive hypothesis, Statement 1 for multilinear functions of degree (d + 1 − k)(≤ d),
and a union bound, we have,

Pr [Da
K(t, k)] = E [Pr [Da

K(t, k)|Xt]] ≤ 4nk exp

(
− K2/d

c2(d+ 1− k)t∗

)

=⇒ Pr

[
Pr [Da

K(t, k)|Xt] > exp

(
− K2/d

c1(d+ 1− k)t∗

)]
≤ 4nk exp

(
− K2/d

2c2(d+ 1− k)t∗

)
(90)

=⇒ Pr

[
d+1⋃
k=1

Pr [Da
K(t, k)|Xt] > exp

(
− K2/d

c1(d+ 1− k)t∗

)]
≤

d+1∑
k=1

4nl exp

(
− K2/d

2c2(d+ 1− k)t∗

)

≤ 4dnd+1 exp

(
− K2/d

2c2(d)t∗

)
(91)
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where (90) follows from Markov’s inequality (and holds for sufficiently large c2(d)) and (91) follows
from a union bound. Hence,

Pr

[
d+1⋃
k=1

∃ v1, v2, . . . , vk ∈ V | Pr[DK(v1, v2, . . . , vk)] > exp

(
− K2/d

c1(d+ 1− k)t∗

)]

≤ Pr

[
d+1⋃
k=1

Pr [Da
K(t, k)|Xt] > exp

(
− K2/d

c1(d+ 1− k)t∗

)]
≤ 4dnd+1 exp

(
− K2/d

2c2(d)t∗

)
. (92)

From (89) and (92), we have,

Pr
[
¬Ga,d+1

K (t∗, t)
]
≤ 4dnd+1 exp

(
− K2/d

c4(d)t∗

)
+ 4dnd+1 exp

(
− K2/d

2c2(d)t∗

)
≤ 8dnd+1 exp

(
− K2/d

2c2(d)t∗

)

Lemma 19. For t∗ ≤ (n+ 1)tmix, there exists c(d) > 0 such that, for any K > c(d)(n log2 n/η)d/2,

Pr [t∗ ≥ TK ] ≤ 8dt∗nd+1 exp

(
− K2/d

2c2(d)t∗

)
,

where c2(d) is as defined in Theorem 5.

Proof. From Lemma 18, we have,

Pr
[
Xt /∈ Ga,d+1

K (t∗, t)
]
≤ 8dnd+1 exp

(
− K2/d

2c2(d)t∗

)

=⇒ Pr[t∗ ≥ TK ] = Pr

[
t∗⋃
t=0

Xt /∈ Ga,d+1
K (t∗, t)

]

≤
t∗∑
t=0

Pr
[
Xt /∈ Ga,d+1

K (t∗, t)
]
≤ 8dt∗nd+1 exp

(
− K2/d

2c2(d)t∗

)
.

Now we will argue that the increments of the martingale are bounded up until stopping time.

Lemma 20. Consider the Doob martingale defined in Definition 9. Suppose Xi ∈ Ga,d+1
K (t∗, i) and

Xi+1 ∈ Ga,d+1
K (t∗, i+ 1). For K > c(d)(n log2 n/η)d/2, and a large enough constant c5,

|Bi+1 −Bi| ≤ 2d2c5K.
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Proof. For ease of exposition, we will refer to Ga,d+1
K (t∗, i) as simply Gi in the following proof.

|Bi+1 −Bi| = |E [fa(Xt∗)|Xi+1]−E [fa(Xt∗)|Xi]| (93)
≤ max

x,y:dH(x,y)=1,
x∈Gi+1,y∈Gi

|E [fa(Xt∗)|Xi+1 = x]−E [fa(X ′t∗)|X ′i = y]| (94)

≤ max
x,y:dH(x,y)=1,
x∈Gi+1,y∈Gi

∣∣E [fa(Xt∗)|Xi+1 = x]−E
[
fa(X ′t∗−1)

∣∣X ′i = y
]∣∣+

∣∣E [fa(X ′t∗−1)
∣∣X ′i = y

]
−E [fa(X ′t∗)|X ′i = y]

∣∣
(95)

≤ max
x,y:dH(x,y)=1,
x∈Gi+1,y∈Gi

∣∣E [fa(Xt∗)− fa(X ′t∗−1)
∣∣Xi+1 = x,X ′i = y

]∣∣ (96)

+ max
x,y:dH(x,y)=1,
x∈Gi+1,y∈Gi

∣∣E [fa(X ′t∗−1)− fa(X ′t∗)
∣∣X ′i = y

]∣∣ (97)

where in (94) we relabeled the variables in the second expectation to avoid notational confusion in
the later steps of our bounding, maintaining the understanding that the sequence {X ′i, Y ′i }i has the
same distribution as {Xi, Yi}i, in (95) we added and subtracted the term E[fa(X

′
t∗−1)|X ′i = y], (96)

holds for any valid coupling of the two chains, one starting at Xi+1 and the other starting at X ′i,
and both running for t∗ − 1− i steps. In particular, we use the greedy coupling between these two
runs (Definition 4). Consider (96).

(96) = max
x,y:dH(x,y)=1,
x∈Gi+1,y∈Gi

∣∣∣∣∣∣E
 ∑
u1,...,ud

d∏
e=1

Xt∗,ue

∑
ud+1

au1u2...ud+1
(Xt∗,ud+1

−X ′t∗−1,ud+1
)

+

+
∑

u1,...,ud−1,ud+1

d−1∏
e=1

Xt∗,ue
X ′t∗−1,ud+1

(∑
ud

au1u2...ud+1
(Xt∗,ud

−X ′t∗−1,ud
)

)
+ . . .

+
∑

u2,...,ud+1

d+1∏
e=2

X ′t∗−1,ue

(∑
u1

au1u2...ud+1

(
Xt∗,u1

−X ′t∗−1,u1

))∣∣∣∣∣∣Xi+1 = x,X ′i = y

∣∣∣∣∣∣
≤ max

x,y:dH(x,y)=1,
x∈Gi+1,y∈Gi

E

∑
ud+1

∣∣∣Xt∗,ud+1
−X ′t∗−1,ud+1

∣∣∣ ∣∣∣∣∣ ∑
u1,...,ud

au1u2...ud+1

d∏
e=1

Xt∗,ue

∣∣∣∣∣
+
∑
ud

∣∣Xt∗,ud
−X ′t∗−1,ud

∣∣ ∣∣∣∣∣∣
∑

u1,...,ud−1,ud+1

au1u2...ud+1

d−1∏
e=1

Xt∗,ueX
′
t∗−1,ud+1

∣∣∣∣∣∣+ . . .

+
∑
u1

∣∣Xt∗,u1 −X ′t∗−1,u1

∣∣ ∣∣∣∣∣∣
∑

u2,u3,...,ud+1

au1u2...ud+1

d+1∏
e=2

X ′t∗−1,ue

∣∣∣∣∣∣
∣∣∣∣∣∣Xi+1 = x,X ′i = y

 (98)

We see the hybrid terms arise in (98). A generic term in (98) looks as follows:

E

∑
ul

∣∣Xt∗,ul
−X ′t∗−1,ul

∣∣ ∣∣∣∣∣∣
∑

u1,u2,...,ul−1,ul+1,...,ud+1

au1u2...ud+1

l−1∏
e=1

Xt∗,ue

d+1∏
e=l+1

X ′t∗−1,ue

∣∣∣∣∣∣
∣∣∣∣∣∣Xi+1 = x,X ′i = y


(99)
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Since x ∈ Gi+1 and y ∈ Gi, from Statements 1 and 2 of Theorem 6∣∣∣∣∣∣E
 ∑
u1,u2,...,ul−1,ul+1,...,ud+1

au1u2...ud+1

l−1∏
e=1

Xt∗,ue

d+1∏
e=l+1

X ′t∗−1,ue

∣∣∣∣∣∣Xi+1 = x,X ′i = y

∣∣∣∣∣∣ ≤ dK and (100)

Pr

∣∣∣∣∣∣
∑

u1,u2,...,ul−1,ul+1,...,ud+1

au1u2...ud+1

l−1∏
e=1

Xt∗,ue

d+1∏
e=l+1

X ′t∗−1,ue
−

E

 ∑
u1,u2,...,ul−1,ul+1,...,ud+1

au1u2...ud+1

l−1∏
e=1

Xt∗,ue

d+1∏
e=l+1

X ′t∗−1,ue

∣∣∣∣∣∣Xi+1, X
′
i

∣∣∣∣∣∣ > K

∣∣∣∣∣∣Xi+1 = x,X ′i = y

 ≤ 2 exp

(
− K2/d

c6(d)t∗

)
,

(101)

where c6(d) is the constant function in Statement 2 of Theorem 6. (100) and (101) together with
the Hamming contraction property of the greedy coupling (Lemma 3) imply, there exists a constant
c5 > 0, such that, for K > c(d)(n log2 n/η)d/2,

(99) ≤ c5dK =⇒ (98) ≤ c5d2K. (102)

Now, we consider (97) and bound it using the same approach as was used to bound (96).

(97) = max
y∈Gi

∣∣∣∣∣∣E
 ∑
u1,...,ud

d∏
e=1

X ′t∗,ue

∑
ud+1

au1u2...ud+1
(X ′t∗,ud+1

−X ′t∗−1,ud+1
)

+ (103)

+
∑

u1,...,ud−1,ud+1

d−1∏
e=1

X ′t∗,ue
X ′t∗−1,ud+1

(∑
ud

au1u2...ud+1
(X ′t∗,ud

−X ′t∗−1,ud
)

)
+ . . .

+
∑

u2,...,ud+1

d+1∏
e=2

X ′t∗−1,ue

(∑
u1

au1u2...ud+1

(
X ′t∗,u1

−X ′t∗−1,u1

))∣∣∣∣∣∣X ′i = y

∣∣∣∣∣∣
≤ max

y∈Gi

E

∑
ud+1

∣∣∣X ′t∗,ud+1
−X ′t∗−1,ud+1

∣∣∣ ∣∣∣∣∣ ∑
u1,...,ud

au1u2...ud+1

d∏
e=1

X ′t∗,ue

∣∣∣∣∣
+
∑
ud

∣∣X ′t∗,ud
−X ′t∗−1,ud

∣∣ ∣∣∣∣∣∣
∑

u1,...,ud−1,ud+1

au1u2...ud+1

d−1∏
e=1

X ′t∗,ue
X ′t∗−1,ud+1

∣∣∣∣∣∣ . . .
+
∑
u1

∣∣X ′t∗,u1
−X ′t∗−1,u1

∣∣ ∣∣∣∣∣∣
∑

u2,u3,...,ud+1

au1u2...ud+1

d+1∏
e=2

X ′t∗−1,ue

∣∣∣∣∣∣
∣∣∣∣∣∣X ′i = y

 (104)

where in (103) we have used Statement 3 of Lemma 3. A generic term in (104) looks as follows:

E

∑
ul

∣∣X ′t∗,ul
−X ′t∗−1,ul

∣∣ ∣∣∣∣∣∣
∑

u1,u2,...,ul−1,ul+1,...,ud+1

au1u2...ud+1

l−1∏
e=1

X ′t∗,ue

d+1∏
e=l+1

X ′t∗−1,ue

∣∣∣∣∣∣
∣∣∣∣∣∣X ′i = y

 (105)
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Since y ∈ Gi, from the definition of Gi and the fact that dH(X ′t∗ , X
′
t∗−1) ≤ 1 we have that,∣∣∣∣∣∣E

 ∑
u1,u2,...,ul−1,ul+1,...,ud+1

au1u2...ud+1

l−1∏
e=1

X ′t∗,ue

d+1∏
e=l+1

X ′t∗−1,ue

∣∣∣∣∣∣X ′i = y

∣∣∣∣∣∣ ≤ 2K and (106)

Pr

∣∣∣∣∣∣
∑

u1,u2,...,ul−1,ul+1,...,ud+1

au1u2...ud+1

l−1∏
e=1

X ′t∗,ue

d+1∏
e=l+1

X ′t∗−1,ue
−

E

 ∑
u1,u2,...,ul−1,ul+1,...,ud+1

au1u2...ud+1

l−1∏
e=1

X ′t∗,ue

d+1∏
e=l+1

X ′t∗−1,ue

∣∣∣∣∣∣X ′i
∣∣∣∣∣∣ > 2K

∣∣∣∣∣∣X ′i = y

 ≤ 2 exp

(
− (2K)2/d

c1(d)t∗

)
.

(107)

(106) and (107) together with the property that dH(X ′t∗ , X
′
t∗−1) ≤ 1 imply that for c5 sufficiently

large and K > c(d)(n log2 n/η)d/2,

(105) ≤ c5dK =⇒ (104) ≤ c5d2K. (108)

Hence we get that, when Xi ∈ Gi and Xi+1 ∈ Gi+1,

|Bi+1 −Bi| ≤ 2c5d
2K. (109)

As a consequence of Lemma 20, we get the following two useful corollaries.

Corollary 4. Consider the martingale sequence defined in Definition 13.

Pr
[
∀ 0 < i+ 1 < TK , |Bi+1 −Bi| ≤ 2c5d

2K
]

= 1.

Proof. Let κ = 2c5d
2K.

Pr [∀ 0 < i+ 1 < TK , |Bi+1 −Bi| ≤ κ]

= 1− Pr [∃ 0 < i+ 1 < TK , |Bi+1 −Bi| > κ]

= 1− Pr
[
∃ 0 < i+ 1 < TK ,

(
Xi ∈ Ga,d+1

K (t∗, i), Xi+1 ∈ Ga,d+1
K (t∗, i+ 1) and |Bi+1 −Bi| > κ

)
or
((
Xi /∈ Ga,d+1

K (t∗, i) or Xi+1 /∈ Ga,d+1
K (t∗, i+ 1)

)
and |Bi+1 −Bi| > κ

)]
= 1− Pr [∃ 0 < i+ 1 < TK , (Xi ∈ GaK(i), Xi+1 ∈ GaK(i+ 1) and |Bi+1 −Bi| > κ)] (110)
= 1− 0 (111)

where (110) follows because by the definition of TK , Pr [∃ 0 < i+ 1 < TK , (Xi /∈ GaK(i) or Xi+1 /∈ GaK(i+ 1))] =
0, and (111) follows because Xi ∈ GaK(i), Xi+1 ∈ GaK(i+ 1) =⇒ |Bi+1 −Bi| ≤ κ (Lemma 20).

Corollary 4 will give us one of the required conditions to apply Freedman’s inequality.
As a corollary of Lemma 20, we get a bound on the variance of the martingale differences which

holds with high probability and to show it we first show Claim 3 which states that, informally, for
any time step i, with a large probability we hit an Xi such that the probability of transitioning
from Xi to an Xi+1 ∈ GaK(i+ 1) is large.
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Claim 3. Denote by Na,d+1
K (t∗, i) the following set of configurations:

Na,d+1
K (t∗, i) =

{
xi ∈ Ω

∣∣∣∣∣Pr
[
Xi+1 /∈ Ga,d+1

K (t∗, i+ 1)
∣∣∣Xi = xi

]
≤ exp

(
− K2/d

4c2(d)t∗

)}
. (112)

Then,

Pr
[
Xi /∈ Na,d+1

K (t∗, i)
]
≤ 8dnd+1 exp

(
− K2/d

4c2(d)t∗

)
.

Proof. We have from Lemma 18, that

Pr
[
Xi /∈ Ga,d+1

K (t∗, i)
]
≤ 8dnd+1 exp

(
− K2/d

2c2(d)t∗

)
and (113)

Pr
[
Xi+1 /∈ Ga,d+1

K (t∗, i+ 1)
]
≤ 8dnd+1 exp

(
− K2/d

2c2(d)t∗

)
. (114)

From the definition of the set Na,d+1
K (t∗, i) we have,

Pr
[
Xi+1 ∈ Ga,d+1

K (t∗, i)|Xi /∈ Na,d+1
K (t∗, i)

]
≤ 1− exp

(
− K2/d

4c2(d)t∗

)
. (115)

Then we have,

1− 8dnd+1 exp

(
− K2/d

2c2(d)t∗

)
≤ Pr

[
Xi+1 ∈ Ga,d+1

K (t∗, i)
]

(116)

= Pr
[
Xi+1 ∈ Ga,d+1

K (t∗, i)|Xi ∈ Na,d+1
K (t∗, i)

]
Pr
[
Xi ∈ Na,d+1

K (t∗, i)
]

+ Pr
[
Xi+1 ∈ Ga,d+1

K (t∗, i)|Xi /∈ Na,d+1
K (t∗, i)

]
Pr
[
Xi /∈ Na,d+1

K (t∗, i)
]

(117)

≤ Pr
[
Xi ∈ Na,d+1

K (t∗, i)
]

+

(
1− exp

(
− K2/d

4c2(d)t∗

))
Pr
[
Xi /∈ Na,d+1

K (t∗, i)
]

(118)

=

(
1− exp

(
− K2/d

4c2(d)t∗

))
+ exp

(
− K2/d

4c2(d)t∗

)
Pr
[
Xi ∈ Na,d+1

K (t∗, i)
]
. (119)

(119) implies,

Pr
[
Xi ∈ Na,d+1

K (t∗, i)
]
≥

exp
(
− K2/d

4c2(d)t∗

)
− 8dnd+1 exp

(
− K2/d

2c2(d)t∗

)
exp

(
− K2/d

4c2(d)t∗

) (120)

= 1− 8dnd+1 exp

(
− K2/d

4c2(d)t∗

)
. (121)

As a corollary of Lemma 20, we get a bound on the variance of the martingale differences which
holds with high probability.
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Lemma 21. Consider the martingale sequence defined in Definition 13. Denote by Na,d+1
K (t∗, i)

the following set of configurations:

Na,d+1
K (t∗, i) =

{
xi ∈ Ω

∣∣∣∣∣Pr
[
Xi+1 /∈ Ga,d+1

K (t∗, i+ 1)
∣∣∣Xi = xi

]
≤ exp

(
− K2/d

4c2(d)t∗

)}
. (122)

Let b = (c5d
2K/2)2 + n2d+2 exp

(
− K2/d

4c2(d)t∗

)
where c5 is the constant from Lemma 20. Then,

Pr
[
Var[Bi+1 −Bi|Fi] > b

∣∣∣Xi ∈ Ga,d+1
K (t∗, i) ∩Na,d+1

K (t∗, i)
]

= 0.

where Fi = 2Oi .

Proof. Since, the random variables X0, . . . , Xi together characterize every event in Fi, we have,

Var[Bi+1 −Bi|Fi] = Var[Bi+1 −Bi|X0, X1, . . . , Xi] = Var[Bi+1 −Bi|Xi] (123)

where the last equality follows from the Markov property of the Glauber dynamics. By the definition
of Na,d+1

K (t∗, i), we have that

Pr [Xi+1 /∈ GaK(i+ 1)|Xi ∈ Na
K(i)] ≤ exp

(
− K2/d

4c2(d)t∗

)
. (124)

This implies that,

Pr [Xi+1 ∈ GaK(i+ 1) and Xi ∈ GaK(i)|Xi ∈ GaK(i) and Xi ∈ Na
K(i)] ≥ 1− exp

(
− K2/d

4c2(d)t∗

)
(125)

=⇒ Pr
[
|Bi+1 −Bi| < c5d

2K
∣∣∣Xi ∈ Ga,d+1

K (t∗, i) ∩Na,d+1
K (t∗, i)

]
≥ 1− exp

(
− K2/d

4c2(d)t∗

)
(126)

=⇒ Var
[
Bi+1 −Bi

∣∣∣Xi ∈ Ga,d+1
K (t∗, i) ∩Na,d+1

K (t∗, i)
]
≤ (c5d

2K/2)2 + n2d+2 exp

(
− K2/d

4c2(d)t∗

)
(127)

where (126) follows from Lemma 20, and (127) follows from the law of total variance and from the
fact that Var(X) ≤ (b − a)2/4 when X ∈ [a, b] with probability 1. The last inequality implies the
statement of the lemma.

With Lemma 20 and Lemma 21 to bound the martingale increments, and Lemma 19 to show
that the stopping time is large, we are ready to apply Freedman’s inequality on the martingale
defined in Definition 13 to yield Lemma 22.

Lemma 22. For any 0 ≤ t0 ≤ t∗, there exists c(d) > 0 which is a function of d alone, such that for
any r > c(d+ 1)(n log2 n/η)(d+1)/2,

Pr [|fa(Xt∗)−E [fa(Xt∗)|Xt0 ]| ≥ r] ≤ 4 exp

(
− r2/(d+1)

c2(d+ 1)t∗

)
.
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Proof. From Freedman’s inequality (Lemma 5) applied on the martingale sequence (Definition 13)
starting from t0, we get

Pr [∃t < TK s.t. |Bt −Bt0 | ≥ r and Vt ≤ B] ≤ 2 exp

(
− r2

2(rK1 +B)

)
(128)

where K1 ≤ c5d2K (Lemma 20) and Vt is defined as follows:

Vt =

t−1∑
i=0

Var [Bi+1 −Bi|Fi] . (129)

SetB = t∗(c5d
2K/2)2+t∗n2d+2 exp

(
− K2/d

4c2(d)t∗

)
andK = rd/(d+1). Then we have, rK1 = c5d

2K(2d+1)/d ≤
c5d

2K2n where the last inequality holds because r ≤ nd+1 which in turn implies K ≤ nd. Similarly,
since r ≥ c(d + 1)(n log2 n/η)(d+1)/2, we have K ≥ c(d + 1)d/(d+1)(n log2 n/η)d/2. Combined with
the fact that t∗ ≤ (d + 1)n log n/η, this implies that t∗n2d+2 exp

(
− K2/d

4c2(d)t∗

)
≤ t∗ for a sufficiently

large value of c(d+ 1). This in turn implies that B ≤ t∗c25d4K2/2.
Hence (128) becomes,

Pr [∃t < TK s.t. |Bt −B0| ≥ r and Vt ≤ B] ≤ 2 exp

(
− r2

2(c5d2K2n+ t∗c25d
4K2/2)

)
≤ 2 exp

(
− r2

3c25d
4K2t∗

)
. (130)

Next we will bound, Pr [Vt∗ > B] which will be useful for obtaining the desired concentration
bound from (57).

Pr [Vt∗ > B] ≤ Pr
[
Vt∗ > B

∣∣∣∀ 0 ≤ t ≤ t∗ Xt ∈ Ga,d+1
K (t∗, t) ∩Na,d+1

K (t∗, t)
]

+ Pr
[
∃ 0 ≤ t ≤ t∗ Xt /∈ Ga,d+1

K (t∗, t) ∪Na,d+1
K (t∗, t)

]
≤ Pr

[
∃ 0 ≤ t < t∗ s.t. Var [Bt+1 −Bt|Xt] > B/t∗

∣∣∣∀ 0 ≤ t ≤ t∗ Xt ∈ Ga,d+1
K (t∗, t) ∩Na,d+1

K (t∗, t)
]

(131)

+
t∗∑
t=0

(
Pr
[
Xt /∈ Ga,d+1

K (t∗, t)
]

+ Pr
[
Xt /∈ Na,d+1

K (t∗, t)
])

(132)

≤ 0 + (t∗ + 1)

(
8dnd+1 exp

(
− K2/d

2c1(d)t∗

)
+ 8dnd+1 exp

(
− K2/d

4c2(d)t∗

))
≤ 16(d+ 2)2nd+2 log n

η
exp

(
− K2/d

4c2(d)t∗

)
.

(133)

where (131) holds because Vt∗ > B implies that there exists a 0 ≤ t ≤ t∗ such thatVar [Bt+1 −Bt|Xt] >
B/t∗, (132) follows by an application of the union bound, and (133) follows from Lemma 21,
Lemma 18 and Claim 3.
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Now,

Pr [|f(Xt∗)−E [f(Xt∗)|Xt0 ]| ≥ r] = Pr [|Bt∗ −B0| ≥ r]
≤ Pr [|Bt∗ −B0| ≥ r and Vt∗ ≤ B] + Pr [Vt∗ > B] (134)
≤ Pr [|Bt∗ −B0| ≥ r and Vt∗ ≤ B and t∗ < TK ] + Pr[t∗ ≥ TK ] + Pr [Vt∗ > B] (135)
≤ Pr [(∃t ≤ t∗ s.t. |Bt −B0| ≥ r and Vt ≤ B) and t∗ < TK ] + Pr[t∗ ≥ TK ] + Pr [Vt∗ > B]

(136)

≤ Pr [∃t < TK s.t. |Bt −B0| ≥ r and Vt ≤ B] + Pr[t∗ ≥ TK ] + Pr [Vt∗ > B]

≤ 2 exp

(
− r2

3c25d
4K2t∗

)
+ 8dt∗nd+1 exp

(
− r

2/(d+1)

2c2(d)t∗

)
+ Pr [Vt∗ > B] (137)

≤ 3 exp

(
− r2

3c25d
4K2t∗

)
+ Pr [Vt∗ > B] (138)

≤ 3 exp

(
− r2

3c25d
4K2t∗

)
+

16(d+ 2)2nd+2 log n

η
exp

(
− K2/d

4c2(d)t∗

)
(139)

≤ 2 exp

(
− r2/(d+1)

c2(d+ 1)t∗

)
(140)

where (134) and (135) follow from the fact that Pr[A] ≤ Pr[A ∩ B] + Pr[¬B], (136) follows from
the fact that Pr[A] ≤ Pr[A ∪ B], (137) follows from (130) and from Lemma 19, (138) holds for a
sufficiently large c(d+ 1) because r > c(d+ 1)(n log2 n/η)(d+1)/2, (139) follows from (133) and (140)
again holds for a sufficiently large c(d + 1), c2(d + 1), because r > c(d + 1)(n log2 n/η)(d+1)/2 and
K = rd/(d+1). Note that we have implicitly assumed that η > 1/n, since otherwise the concentration
bounds obtained are trivial.

Statement 2: This statement will follow from Statement 1 applied to the case t0 = 0 together
with an application of the mixing time properties of the Glauber dynamics. Set t∗ = (d + 2)tmix.
From Lemma 2, we have that

dTV(Xt∗ |X0, p) ≤ exp (−(d+ 1)n log n)

=⇒ |E [fa(Xt∗)|X0]−E [fa(Xt∗)]| ≤ 2nd+1 exp(−(d+ 1)n log n) ≤ 2 exp(−n). (141)

Hence,

Pr [|fa(Xt∗)−E [fa(Xt∗)]| ≥ r] ≤ Pr [|fa(Xt∗)−E [fa(Xt∗)|X0]| > r − 2 exp(−n)] (142)

≤ 4 exp

(
−(r − 2)2/(d+1)

c2(d+ 1)t∗

)
(143)

≤ 2 exp

(
− ηr2/(d+1)

c3(d+ 1)n log n

)

(142) follows from (141), (143) follows from Lemma 22 and (144) holds for a sufficiently large con-
stant c3(d).
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Statement 3: This follows from Corollary 2, and Statements 2, 1 of the theorem. Indeed, since
Xt∗ ∼ p, we have for any r > c(d+ 1)(n log2 n/η)(d+1)/2,

Pr [|E[fa(Xt∗)|Xt0 ]−E[fa(Xt∗)]| ≥ r] (144)
≤ Pr [|fa(Xt∗)−E[fa(Xt∗)]| ≥ r/2] + [|fa(Xt∗)−E[fa(Xt∗)|Xt0 ]| ≥ r/2] (145)

≤ 2 exp

(
− ηr2/(d+1)

41/(d+1)c3(d)n log n

)
+ 2 exp

(
− r2/(d+1)

41/(d+1)c2(d+ 1)t∗

)
(146)

≤ 2 exp

(
− r2/(d+1)

c7(d+ 1)t∗

)
. (147)

where (145) follows because |E[fa(Xt∗)|Xt0 ]−E[fa(Xt∗)]| ≥ r =⇒ |fa(Xt∗)−E[fa(Xt∗)|Xt0 ]| ≥
r/2 or |fa(Xt∗)−E[fa(Xt∗)]| ≥ r/2, (146) follows from Statements 2 and 1 respectively and (147)
holds for a sufficiently large constant c7(d+ 1). Since Xt∗ ∼ p, from Corollary 2, and from the fact
that r > c(d+ 1)(n log2 n/η)(d+1)/2 we get that |E[fa(Xt∗)]| ≤ 2(4n(d+ 1) log n/η)(d+1)/2 ≤ r/2 for
c(d+ 1) sufficiently large. This implies in turn that,

Pr [|E[fa(Xt∗)|Xt0 ]| ≥ r] ≤ Pr [|E[fa(Xt∗)|Xt0 ]−E[fa(Xt∗)]| ≥ r/2] (148)

≤ 2 exp

(
− r2/(d+1)

41/(d+1)c7(d+ 1)t∗

)
≤ 2 exp

(
− r2/(d+1)

c4(d+ 1)t∗

)
, (149)

for a sufficiently large constant c4(d+ 1). This shows the theorem holds by induction.

Note that a straightforward corollary of Theorem 5 is the desired statement for concentration
of d-linear functions.

3.4 Supplementary Theorem Statement for Hybrid Functions

Theorem 6. Let p be an Ising model in the η-high temperature regime. Let tmix = n log n/η denote
the mixing time of the Glauber dynamics associated with p. Let fa(x) =

∑
u1,u2,...,ud

au1u2...udxu1xu2 . . . xud
be a d-linear function. Let Ga,dK (t1, t) be the ‘good’ set associated with fa(.) as defined in (86). Addi-
tionally, define Ga,0K (t1, t) = {±1}n. Also let 2tmix ≤ t∗ ≤ (n+ 1)tmix, 0 ≤ t0 ≤ t∗ and let x(1)t0 be a
starting state such that x(1)t0 ∈ G

a,d
K (t∗, t0). Let x

(2)
t0

be a state obtained by taking a step of the Glauber
dynamics starting from x

(1)
t0

. Suppose we also have that x(2)t0 ∈ G
a,d
K (t∗, t0). Consider the 2 runs of

the Glauber dynamics associated with p with the jth run starting at X(j)
t0

= x
(j)
t0

respectively, and
coupled together using the greedy coupling (Definition 4). Denote the state of run j at time t ≥ t0

by X(j)
t . Consider any l-linear function from F da (l): fv1,v2,...,vd−l

a . Denote its coefficient vector by α.
That is,

f
v1,v2,...,vd−l
a (x) =

∑
u1,u2,...,ul

αu1u2...ulxu1xu2 . . . xul .

Note that αu1u2...ul = au1,u2,...,ul,v1,v2,...,vd−l
. For each f

v1,v2,...,vd−l
a we define an associated class

of hybrid functions defined over the concatenated states from the two runs of Glauber dynamics
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described above as follows:

f
v1,v2,...,vd−l
a

(
x(1:2)

)
=

∑
u1,u2,...,ul

αu1u2...ulx
(1)
u1 x

(1)
u2 . . . x

(1)
ul1
x(2)ul1+1

x(2)ul (150)

=
∑

u1,u2,...,ul

αu1u2...ul

2∏
b=1

lb∏
e=1

x(b)u(b−1)l1+e
(151)

where l2 = l − l1. Then, the following two statements hold for all 0 ≤ l ≤ d − 1, and for any
f ∈ F da (l), there exist constants c(d), c6(l) such that:

1. For any K > c(d)(n log2 n/η)(d−1)/2∣∣∣E [f (X(1:2)
t∗

)∣∣∣X(j)
t0 = x

(j)
t0 for j = 1, 2

]∣∣∣ ≤ (l + 1)Kl/(d−1).

2. For any K > c(d)(n log2 n/η)(d−1)/2,

Pr
[∣∣∣f (X(1:2)

t∗

)
−E

[
f
(
X

(1:2)
t∗

)∣∣∣X(j)
t0 for j = 1, 2

]∣∣∣ > Kl/(d−1)
∣∣∣X(j)

t0 = x
(j)
t0 for j = 1, 2

]
≤ 2 exp

(
−K

2/(d−1)

c6(l)t∗

)
.

Proof. The proof will proceed by induction on l.

Base Cases: l = 0, 1: When l = 0, the functions under consideration are all just constant functions
and hence both the statements hold immediately. Consider the next case l = 1 as well. In this case
the functions are linear and hence no hybrid terms can arise. The statements of the theorem follow
immediately from the definition of Ga,dK (t∗, t0).

We will assume the statements of the theorem hold for some 1 < l < d − 1. And proceed to
show them for l + 1.
Induction Step for Statement 1: We will begin with Statement 1. We wish to show it for l+ 1-
linear hybrid functions. At a high level, we will try to express any hybrid function of degree l + 1
as a non-hybrid function of degree l + 1 plus functions which resemble hybrid functions of degree l
multiplied with the Hamming distance between the two runs at time t∗. The definition of the ‘good’
set will allow us to bound the conditional expectation of the non-hybrid function of degree l+1. The
inductive hypothesis together with Hamming contraction properties will help us bound the other
functions. The total number of such functions we will encounter is poly(d) and hence we incur
a constant factor (poly(d)) loss in the final bound. Consider any function f

v1,v2,...,vd−l−1
a

(
x(1:2)

)
from the family F da (l + 1) with coefficient vector α. We will show the statement by inducting on
l2 = l + 1 − l1. For a given degree l + 1 and a certain value of l2 the inductive claim is as follows.
For any K > c(d)(n log2 n/η)(d−1)/2,∣∣∣∣∣∣E

 ∑
u1,u2,...,ul+1

αu1u2...ul+1

2∏
b=1

lb∏
e=1

X
(b)
t∗,usb+e

∣∣∣∣∣∣X(j)
t0

= x
(j)
t0

for j = 1, 2

∣∣∣∣∣∣ ≤ (l2 + 1)K(l+1)/(d−1). (152)

As a base case consider the scenario when l2 = 0. Then the function under consideration is a vanilla
non-hybrid l+1-linear function from F da (l+1) and the statement holds by the definition of Ga,dK (t0).
Suppose the statement holds for some l2. We will show that it holds for any l + 1-linear hybrid
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function in F da (l + 1) with l2 + 1 terms coming from the 2nd run. Then the LHS of Statement 1 is
of the form,∣∣∣∣∣∣E
 ∑
u1,u2,...,ul+1

αu1u2...ul+1

l1−1∏
e=1

X
(1)
t∗,ue

l+1∏
e=l1

X
(2)
t∗,ue

∣∣∣∣∣∣X(j)
t0

= x
(j)
t0

for j = 1, 2

∣∣∣∣∣∣
≤

∣∣∣∣∣∣E
 ∑
u1,u2,...,ul+1

αu1u2...ul+1

l1−1∏
e=1

X
(1)
t∗,ue

l∏
e=l1

X
(2)
t∗,ueX

(1)
t∗,ul+1

∣∣∣∣∣∣X(j)
t0

= x
(j)
t0

for 1 ≤ j ≤ 2

∣∣∣∣∣∣ (153)

+

∣∣∣∣∣∣E
∑
ul+1

(
X

(2)
t∗,ul+1

−X(1)
t∗,ul+1

) ∑
u1,u2,...,ul

αu1u2...ulul+1

l1−1∏
e=1

X
(1)
t∗,ue

l∏
e=l1

X
(2)
t∗,ue

∣∣∣∣∣∣X(j)
t0

= x
(j)
t0

for j = 1, 2

∣∣∣∣∣∣ .
(154)

We have, by the inductive hypothesis, Statement 1 for functions in F da (l+ 1) with l2 terms from
the second run that,

(153) ≤ l2K(l+1)/(d−1). (155)

Similarly, from the inductive hypothesis for functions in F da (l), Statements 1, 2 and Corollary 3, we
have∣∣∣∣∣∣E

 ∑
u1,u2,...,ul

αu1u2...ulul+1

l1−1∏
e=1

X
(1)
t∗,ue

l∏
e=l1

X
(2)
t∗,ue

∣∣∣∣∣∣X(j)
t0

= x
(j)
t0

for j = 1, 2

∣∣∣∣∣∣ ≤ (l + 1)K l/(d−1), (156)

Pr

∣∣∣∣∣∣
∑

u1,u2,...,ul

αu1u2...ulul+1

l1−1∏
e=1

X
(1)
t∗,ue

l∏
e=l1

X
(2)
t∗,ue−

E

 ∑
u1,u2,...,ul

αu1u2...ulul+1

l1−1∏
e=1

X
(1)
t∗,ue

l∏
e=l1

X
(2)
t∗,ue

∣∣∣∣∣∣X(j)
i for j = 1, 2

∣∣∣∣∣∣ > K l/(d−1)

∣∣∣∣∣∣X(j)
t0

= x
(j)
t0

for j = 1, 2


≤ 2 exp

(
−K

2/(d−1)

c6(d)t∗

)
. (157)

Putting together (156) and (157) with the Hamming contraction properties for any pair of runs
in the coupled dynamics and the fact that (154) ≤ 2nl+1 always (similar to how it was shown in
Section 2), we get

(154) ≤ (l + 1)K l/(d−1) + 4nl+1 exp

(
−K

2/(d−1)

c6(d)t∗

)
≤ K(l+1)/(d−1) (158)

where the last inequality holds because K > c(d)(n log2 n/η)(d−1)/2. (155) and (158) together imply
the desired bound for the case l2 + 1. Hence this proves Statement 1 for l + 1-linear functions.

Induction Step for Statement 2: Next we look at Statement 2 for l+ 1-linear hybrid functions
in F da (l+1). The high level approach is similar to that used above in the proof for Statement 1. We
will try to express any hybrid function of degree l+ 1 as a non-hybrid function of degree l+ 1 plus
functions which resemble hybrid functions of degree l multiplied with the Hamming distance between
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the two runs at time t∗. To bound the probability of deviation of the non-hybrid function we use
the definition of the ‘good’ set and to bound the probability of deviation of the other functions we
appeal to the induction hypothesis and Hamming contraction properties. We incur an additional
factor which is exp(d) in the final bound (recall that we are treating d as fixed). Consider any
function fv1,v2,...,vd−l−1

a (x) from the family F da (l + 1). Denote its coefficient vector by α. That is,
αu1u2...ulul+1

= au1u2...ul+1v1v2...vd−l−1
. We again induct on l2, the number of terms in the function

corresponding to the second run of the Glauber dynamics. Given an l+ 1-linear f ∈ F da (l+ 1) with
coefficient vector α, the inductive claim for the class of hybrid functions associated with f with a
certain value of l2 is as follows:

Pr
[∣∣∣f (X(1:2)

t∗

)
−E

[
f
(
X

(1:2)
t∗

)∣∣∣X(j)
t0
∀ 1 ≤ j ≤ 2

]∣∣∣ > K(l+1)/(d−1)
∣∣∣X(j)

t0
= x

(j)
t0
∀ 1 ≤ j ≤ 2

]
≤ 2 exp

(
− K2/(d−1)

c8(l + 1 + l2)t∗

)
, (159)

where c8(l) is an increasing function of l. As a base case consider the scenario when l2 = 0. Then
the function under consideration is a vanilla non-hybrid l+ 1-linear function from F da (l+ 1) and the
statement holds by the definition of Ga,dK (t0). Suppose the statement holds for some l2 > 0. We will
show that it holds for any l+ 1-linear function from F da (l+ 1) with number of terms corresponding
to the second run equal to l2 + 1. Consider the LHS of the statement for any such function:

Pr

∣∣∣∣∣∣
∑

u1,u2,...,ul+1

αu1u2...ul+1

l1−1∏
e=1

X
(1)
t∗,ue

l+1∏
e=l1

X
(2)
t∗,ue

−E

 ∑
u1,u2,...,ul+1

αu1u2...ul+1

l1−1∏
e=1

X
(1)
t∗,ue

l+1∏
e=l1

X
(2)
t∗,ue

∣∣∣∣∣∣X(j)
t0 ∀ 1 ≤ j ≤ 2

∣∣∣∣∣∣ > K(l+1)/(d−1)

∣∣∣∣∣∣X(j)
t0 = x

(j)
t0 ∀ 1 ≤ j ≤ 2


(160)

≤ Pr

∣∣∣∣∣∣
∑

u1,u2,...,ul+1

αu1u2...ul+1

l1−1∏
e=1

X
(1)
t∗,ue

l∏
e=l1

X
(2)
t∗,ue

X
(1)
t∗,ul+1

−E
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We have, by the inductive hypothesis for l + 1-linear functions in F da (l + 1) with l2 terms from the
1st run that,
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. (163)
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From the property of the ‘good’ set Ga,dK (t0) (Corollary 3), and the inductive hypothesis, State-
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WhenK > c(d)(n log2 n/η)(d−1)/2, (164) and (165) together with the Hamming contraction property
of the coupled dynamics (Lemma 3) imply that
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Note this follows since (l + 1)K l/d ≤ K(l+1)/(d−1)/2 when K > c(d)(n log2 n/η)(d−1)/2 and c(d) is
sufficiently large.

From Lemma 14 we have, for any K1 > 2,

Pr

∣∣∣∣∣∣
∑
ul+1

(
X

(2)
t∗,ul+1

−X(1)
t∗,ul+1

)∣∣∣∣∣∣ > K1

∣∣∣∣∣∣X(j)
t0

= x
(j)
t0
∀ 1 ≤ j ≤ 2

 (168)

≤ Pr
[
dH(X

(2)
t∗ , X

(1)
t∗ ) > K1/2

∣∣∣X(j)
t0

= x
(j)
t0
∀ 1 ≤ j ≤ 2

]
(169)
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where (170) follows because t∗ − t0 ≤ t∗, and E[dH(X
(1)
t∗ , X

(2)
t∗ )|X(j)

t0
= x

(j)
t0
∀ 1 ≤ j ≤ 2] ≤ 1. Now,
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set K1 = K1/(d−1)/2. Applying (170) for these parameter values, we get,
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(173) with (163) implies

(160) ≤ (n+ 1) exp
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+ 2 exp
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(174)

for sufficiently large c8(.). This gives the desired bound for l + 1-linear functions in F da (l + 1) with
l2 + 1 terms from the second run. By induction, this proves Statement 2 for all 1 ≤ l ≤ d− 1 and
all functions from F da (l).

4 Additional details about Experiments

4.1 Details about synthetic experiments

Our departures from the null hypothesis are generated in the following manner, parameterized by
some parameter τ ∈ [0, 1]. The grid is initialized by setting each node independently to be −1 or
1 with equal probability. We then iterate over the nodes in column major order. For the node
x at position (i, j), we select a node y at one of the following positions uniformly at random:
(i, j+ 1), (i, j+ 2), (i+ 1, j+ 1), (i+ 1, j), (i+ 2, j), (i+ 1, j− 1). Then, with probability τ , we set y
to have the same value as x. We imagine this construction as a type of social network model, where
each individual tries to convert one of his nearby connections in the network to match his signal,
and is successful with probability τ .

4.2 Details about experiments on Last.fm dataset

We report additional statistics extracted from the Last.fm dataset [CBK11].
The network has n = 1892 and 17632 artists. There are m = 12717 edges, with an average

degree of 13.443. There are 92834 user-listened artist relations, where the artists listed for a user
is truncated at 50. On average, 5.265 users listened to each artist, but we focus on artists who had
significatly more listens (∼ 400 or more).
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(a) Our deviation from the null
with τ = 0.04

(b) A sample from the Ising
model with θ = 0.035

Figure 1: A visual comparison between the null and a deviation from the null

(a) MCMC Z1 for Lady Gaga (b) MCMC Z2 for Lady Gaga

Figure 2: MCMC Statistics for Lady Gaga

Artist # of favorites MPLE h MPLE θ Z1 Z2 Reject Z1? Reject Z2?
Lady Gaga 611 −0.481 0.0700 9017.3 106540 Yes Yes

Britney Spears 522 −0.6140 0.0960 10585 119560 Yes Yes
Rihanna 484 −0.715 0.1090 11831 126750 Yes Yes

The Beatles 480 −0.3550 0.0310 2157.8 22196 No No
Katy Perry 473 −0.6150 0.0890 8474 90762 Yes Yes
Madonna 429 −0.5400 0.0860 4580.9 40395 Yes No

Avril Lavigne 417 −0.5580 0.1020 5145.9 48639 Yes Yes
Christina Aguilera 407 −0.7810 0.1060 9979.8 101210 Yes Yes

Muse 400 −0.5430 0.0160 923.55 6911 No No
Paramore 399 −0.4530 0.0480 2047.1 18119 Yes Yes
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(a) MCMC Z1 for The Beatles (b) MCMC Z2 for The Beatles

Figure 3: MCMC Statistics for The Beatles
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