
A Proof of Theorem 4

We observe that the assumptions of the theorem imply that for any � 2 P(X),

�(�jj�) = sup
�2�

E�
� [�r�] = E�
�
h
�r���

i
= �c : (8)

The assumptions also imply that for any �; � 2 P(X),

�(�jj�) � E�
�
�
m��� � r���

�
� E�
�

��r��� �
= �c

Fix ��; � 2 P(X) and assume � 2M�� , i.e. E�� [v�] = E�[v�] for any � 2 �. Then

�(��jj�) = sup
�2�

E��
� [m� � r�]

= sup
�2�

E��
� [�r�]

= E��
�
h
�r

��
�

�

i
(9)

= �c : (10)

Therefore � 2 OPT�;�� .

B Proof of Theorem 5

Since by Theorem 4 we already have M�� � OPT�;�� , we only need to prove for any �� 2 P(X),

P(X) nM�� � P(X) n OPT�;�� :

Fix ��; � 2 P(X). Assume there exists �0 2 � such that E��
�[m�0 ] 6= 0. If E��
�
h
m

��
�

�

i
6= 0,

then we have E��
�
h
m

��
�

�

i
> 0. Now note that

�(��jj�) = sup
�2�

E��
� [m� � r�]
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�
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�

�

i
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�

h
m

��
�

�

i
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�

h
r
��

�

�

i
> �E��
�

h
r
��

�

�

i
= �c
= �(��jj��);

where the last equality is due to (8). Thus � 62 OPT�;�� . For the rest of the proof we assume

E��
�
h
m

��
�

�

i
= 0. Then by (6) we have r

��
�

�
E��
� [m] 6= 0. Also because ��

�

� is an interior

point of � and ��
�

� is a minimizer of � 7! E��
�[r�], by Fermat’s stationary points theorem, we have
r
��

�

�
E��
� [r] = 0. Therefore r

��
�

�
E��
� [m� r] 6= 0. Thus again by Fermat’s stationary points

theorem there exists a �0 2 � such that

E��
� [m�0 � r�0 ] > E��
�
h
m

��
�

�
� r

��
�

�

i
� E��
�

h
�r

��
�

�

i
= �c
= �(��jj��);

where the last equality is due to (8). Finally note that

�(��jj�) � E��
� [m�0 � r�0 ] > �(��jj��):
Therefore � 62 OPT�;�� . This concludes the proof.

10



C Proof of Corollary 6

Recall that by assumption f�(x) � x for any x 2 R and f�(x0) = x0 for some x0 2 int(dom f�).
Since f� is continuously differentiable on int(dom f�) necessarily we have (f�)0(x0) = 1.

For each � 2 �, let v�(x) = �T( (x); 1), m�(x; y) = v�(x)�v�(y), r�(x; y) = f�(�T( (y); 1))�
�T( (y); 1) � 0, then �(�jj�) = sup�2� E�
� [m� � r�]. v� and r� are bounded continuous
functions since both f� and  are continuous functions, �T( (x); 1) 2 dom f� for any (x; �) 2
X ��, and X is a compact set. Let ��� = (0; 0; � � � ; 0; x0), that is, a vector whose last coordinate is
x0 and 0 elsewhere. We have that for any ��; � 2 P(X)

�(��jj�) � E��
�
h
m

��
�

�
� r

��
�

�

i
= E��
�[f(x0)� x0] = 0

�(��jj��) = sup
�2�

E��
�[�r�] � 0

Thus OPT�;�� = f� : �(��jj�) = 0g 3 ��. It remains to show OPT�;�� = f� : E�� [ ]� E�[ ]g.

Because x0 is an interior point of dom f�, we have ��� is an interior point of �, due to the compactness
of X and all  i being continuous and therefore bounded continuous. Also, it is easy to see that r��� is
a constant function.

Because f�(x) � x for any x 2 R, we have that r�(x; y) � 0 for any � 2 � and x; y 2 X . On the
other hand, we have r��� (x; y) = 0 for any x; y 2 X . Therefore r��� � r� for any � 2 �. Also, it is
easy to see that E�
� [m��� ] = 0.

Now it suffices to show that � 7! E�
� [m�] and � 7! E�
� [r�] both has gradient at ��� and condition
(6) in Theorem 5 hold.

Because both  and f� are continuously differentiable and X is a compact space, according to the
Leibniz rule for differentiating an integral in general measurable spaces (see e.g., [1] ), � 7! E�
� [r�]
has gradient at ��� . Also note

r���E�
� [m] = Ex��; y�� [( (x)�  (y); 0)] = (E�[ ]� E� [ ]; 0) (11)
To verify condition (6), note that if (11) is equal to 0, then E�[ ] = E� [ ], therefore for any � 2 �,
E�
� [m�] = �T(E�[ ]� E� [ ]; 0) = 0. The proof is concluded.

D Proof of Theorem 10

We first need a standard result in functional analysis. A brief proof is provided for completeness.
Lemma 13. If X is a compact metric space, then P(X) is weak-* compact.

Proof. By the Banach-Alaoglu theorem, the following closed unit ball is weak-* compact.
f� 2 rca(X) : j�j(X) � 1g : (12)

Since the constant function 1 is in C(X). The following set is weak-* closed.
f� 2 rca(X) : �(X) = 1g = f� 2 rca(X) : h1; �i = 1g: (13)

We also claim that
f� 2 rca(X) : �(A) � 0 for every Borel set in Xg =

\
f2C+(X)

f� 2 rca(X) : hf; �i � 0g ; (14)

which is weak-* closed. To justify the claim, on one hand, the l.h.s. is clearly a subset of the r.h.s.;
on the other hand, to show the r.h.s. is also a subset of the l.h.s., consider a � 2 rca(X) with a
Borel set A such that �(A) < 0 (i.e., � is not in the l.h.s.), then by Lusin’s Theorem the measurable
function 1A can be approximated by functions in C(X) in the sense that for any � > 0, there exists a
f� 2 C(X) such that

jE�[1A]� E�[f�]j < �;

Choose � = j�(A)j
2 we get a function f 0� = max(f�;0) in C(X) such that E�[f 0�] � 0. This means �

is not in the r.h.s. Note that
P(X) = (12) \ (13) \ (14):

Since the intersection of a compact subset and a closed subset is a compact subset, we conclude that
P(X) is weak-* compact.
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Now we can start the main proof. We equip P(X) with the weak-* topology. Let �� 2 P(X).
Note that the function �(��jj�) is the supremum of a family of affine continuous functions on P(X),
therefore �(��jj�) is lower semi-continuous on P(X). Note that by Lemma 13, P(X) is compact.
Therefore by Weierstrass extreme value theorem, �(��jj�) attains its minimual value on P(X),
therefore OPT�;�� 6= ;.

Let (�n) be a sequence in P(X). Assume �(��jj�n) ! inf�0 �(�
�jj�0), we need to show that

in the quotient space Q = P(X)=OPT�;�� , ([�n]) converges to OPT�;�� . Let N be any open
neighbourhood of OPT�;�� in Q. We need to show that ([�n]) is eventually in N .

First we show that Q n N is compact. By Lemma 13, P(X) is compact. Since Q is a quotient space
of P(X), Q is compact. Observe that Q n N is a closed subset of Q, therefore Q n N is compact.

Recall that �(��jj�) is lower semi-continuous on P(X). Now observe that �(��jj�) is also a function
on Q, and since Q is a quotient space of P(X), �(��jj�) is also lower semi-continuous on Q. By
Weierstrass extreme value theorem, there exists [�0] 2 Q n N such that

�(��jj[�0]) = inf
[�]2QnN

�(��jj[�])

Since OPT�;�� 62 Q n N , we have [�0] 6= [OPT�;�� ]. Therefore �(��jj[�0]) > inf� �(�
�jj�). Recall

that �(��jj[�n])! inf� �(�
�jj�), �(��jj[�n]) will be eventually less than �(��jj[�0]). This means

([�n]) will eventually be in N .

E Proof of Corollary 12

It is known that for nice spaces (e.g., bounded and closed subset of a Euclidean space), the variational
(GAN-style) formulation of f -divergences using bounded continuous functions is equivalent to the
original definition [15]. Therefore we them interchangeably. [2] already showed that total variation is
equivalent to JS divergence and they are not equivalent to the Wasserstein distance. These two are
also known to be equivalent to the squared Hellinger distance by noticing that

�Hellinger(�jj�) � �TV(�jj�) �
q

2�Hellinger(�jj�):

Both KL and Reverse-KL divergence are stronger than total variation by Pinsker’s inequality. They
are in fact strictly stronger than total variation. Let �� = U(0; 1), �n = U(1=n; 1 + 1=n), where
U(a; b) is the uniform distribution on (a; b). Note �KL(�

�jj�n) = �Reverse-KL(�
�jj�n) = +1 for any n

while �TV(�
�jj�n)! 0. We can also show they are not comparable with each other by considering

�n = U(0; 1 � 1=n) and �n = U(0; 1 + 1=n) while �� is still U(0; 1). The same examples also
show they are strictly weaker than the trivial divergence.

It is also known that �Wasserstein and �MMD metrize the weak-* topology of P(X) if X is a compact metric
space (see, e.g., [12]), therefore by Theorem 10 they are in the equivalence class of the weakest strict
adversarial divergences.

It remains to show the trivial divergence is stronger than any strict adversarial divergence. Any
sequence �n converging to �� under the trivial divergence is eventually ��, therefore trivially
converges under any other strict adversarial divergence.
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