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Abstract

We provide new results for noise-tolerant and sample-efficient learning algorithms
under s-concave distributions. The new class of s-concave distributions is a broad
and natural generalization of log-concavity, and includes many important additional
distributions, e.g., the Pareto distribution and t-distribution. This class has been
studied in the context of efficient sampling, integration, and optimization, but
much remains unknown about the geometry of this class of distributions and their
applications in the context of learning. The challenge is that unlike the commonly
used distributions in learning (uniform or more generally log-concave distributions),
this broader class is not closed under the marginalization operator and many such
distributions are fat-tailed. In this work, we introduce new convex geometry
tools to study the properties of s-concave distributions and use these properties
to provide bounds on quantities of interest to learning including the probability
of disagreement between two halfspaces, disagreement outside a band, and the
disagreement coefficient. We use these results to significantly generalize prior
results for margin-based active learning, disagreement-based active learning, and
passive learning of intersections of halfspaces. Our analysis of geometric properties
of s-concave distributions might be of independent interest to optimization more
broadly.

1 Introduction
Developing provable learning algorithms is one of the central challenges in learning theory. The study
of such algorithms has led to significant advances in both the theory and practice of passive and active
learning. In the passive learning model, the learning algorithm has access to a set of labeled examples
sampled i.i.d. from some unknown distribution over the instance space and labeled according to
some underlying target function. In the active learning model, however, the algorithm can access
unlabeled examples and request labels of its own choice, and the goal is to learn the target function
with significantly fewer labels. In this work, we study both learning models in the case where the
underlying distribution belongs to the class of s-concave distributions.

Prior work on noise-tolerant and sample-efficient algorithms mostly relies on the assumption that
the distribution over the instance space is log-concave [2, 22, 9, 57]. A distribution is log-concave
if the logarithm of its density is a concave function. The assumption of log-concavity has been
made for a few purposes: for computational efficiency reasons and for sample efficiency reasons.
For computational efficiency reasons, it was made to obtain a noise-tolerant algorithm even for
seemingly simple decision surfaces like linear separators. These simple algorithms exist for noiseless
scenarios, e.g., via linear programming [51], but they are notoriously hard once we have noise [25,
42, 32]; This is why progress on noise-tolerant algorithms has focused on uniform [36, 43] and
log-concave distributions [6]. Other concept spaces, like intersections of halfspaces, even have no
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computationally efficient algorithm in the noise-free settings that works under general distributions,
but there has been nice progress under uniform and log-concave distributions [44]. For sample
efficiency reasons, in the context of active learning, we need distributional assumptions in order to
obtain label complexity improvements [26]. The most concrete and general class for which prior
work obtains such improvements is when the marginal distribution over instance space satisfies
log-concavity [59, 9]. In this work, we provide a broad generalization of all above results, showing
how they extend to s-concave distributions (s < 0). A distribution with density f(x) is s-concave
if f(x)s is a concave function. We identify key properties of these distributions that allow us to
simultaneously extend all above results.

How general and important is the class of s-concave distributions? The class of s-concave
distributions is very broad and contains many well-known (classes of) distributions as special cases.
For example, when s→ 0, s-concave distributions reduce to log-concave distributions. Furthermore,
the s-concave class contains infinitely many fat-tailed distributions that do not belong to the class of
log-concave distributions, e.g., Cauchy, Pareto, and t distributions, which have been widely applied in
the context of theoretical physics and economics, but much remains unknown about how the provable
learning algorithms, such as active learning of halfspaces, perform under these realistic distributions.
We also compare s-concave distributions with nearly-log-concave distributions, a slightly broader
class of distributions than log-concavity. A distribution with density f(x) is nearly-log-concave if
for any λ ∈ [0, 1], x1, x2 ∈ Rn, we have f(λx1 + (1− λ)x2) ≥ e−0.0154f(x1)λf(x2)1−λ [9]. The
class of s-concave distributions includes many important extra distributions which do not belong to
the nearly-log-concave distributions: a nearly-log-concave distribution must have sub-exponential
tails (see Theorem 11, [9]), while the tail probability of an s-concave distribution might decay much
slower (see Theorem 1 (6)). We also note that efficient sampling, integration and optimization
algorithms for s-concave distributions have been well understood [23, 37]. Our analysis of s-concave
distributions bridges these algorithms to the strong guarantees of noise-tolerant and sample-efficient
learning algorithms.

1.1 Our Contributions

Structural Results. We study various geometric properties of s-concave distributions. These proper-
ties serve as the structural results for many provable learning algorithms, e.g., margin-based active
learning [9], disagreement-based active learning [56, 35], learning intersections of halfspaces [44],
etc. When s→ 0, our results exactly reduce to those for log-concave distributions [9, 4, 6]. Below,
we state our structural results informally:
Theorem 1 (Informal). Let D be an isotropic s-concave distribution in Rn. Then there exist closed-
form functions γ(s,m), f1(s, n), f2(s, n), f3(s, n), f4(s, n), and f5(s, n) such that
1. (Weakly Closed under Marginal) The marginal ofD over m arguments (or cumulative distribution

function, CDF) is isotropic γ(s,m)-concave. (Theorems 3, 4)
2. (Lower Bound on Hyperplane Disagreement) For any two unit vectors u and v in Rn,
f1(s, n)θ(u, v) ≤ Prx∼D[sign(u · x) 6= sign(v · x)], where θ(u, v) is the angle between u
and v. (Theorem 12)

3. (Probability of Band) There is a function d(s, n) such that for any unit vector w ∈ Rn and any
0 < t ≤ d(s, n), we have f2(s, n)t < Prx∼D[|w · x| ≤ t] ≤ f3(s, n)t. (Theorem 11)

4. (Disagreement outside Margin) For any absolute constant c1 > 0 and any function f(s, n),
there exists a function f4(s, n) > 0 such that Prx∼D[sign(u · x) 6= sign(v · x) and |v · x| ≥
f4(s, n)θ(u, v)] ≤ c1f(s, n)θ(u, v). (Theorem 13)

5. (Variance in 1-D Direction) There is a function d(s, n) such that for any unit vectors u and a in Rn
such that ‖u−a‖ ≤ r and for any 0 < t ≤ d(s, n), we have Ex∼Du,t [(a ·x)2] ≤ f5(s, n)(r2 +t2),
where Du,t is the conditional distribution of D over the set {x : |u · x| ≤ t}. (Theorem 14)

6. (Tail Probability) We have Pr[‖x‖ >
√
nt] ≤

[
1− cst

1+ns

](1+ns)/s

. (Theorem 5)

If s→ 0 (i.e., the distribution is log-concave), then γ(s,m)→ 0 and the functions f(s, n), f1(s, n),
f2(s, n), f3(s, n), f4(s, n), f5(s, n), and d(s, n) are all absolute constants.

To prove Theorem 1, we introduce multiple new techniques, e.g., extension of Prekopa-Leindler
theorem and reduction to baseline function (see the supplementary material for our techniques),
which might be of independent interest to optimization more broadly.
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Table 1: Comparisons with prior distributions for margin-based active learning, disagreement-based
active learning, and Baum’s algorithm.

Prior Work Ours
Margin (Efficient, Noise) uniform [5] log-concave [6] s-concave

Disagreement uniform [34] nearly-log-concave [9] s-concave
Baum’s symmetric [11] log-concave [44] s-concave

Margin Based Active Learning: We apply our structural results to margin-based active learning of
a halfspace w∗ under any isotropic s-concave distribution for both realizable and adversarial noise
models. In the realizable case, the instance X is drawn from an isotropic s-concave distribution and
the label Y = sign(w∗ ·X). In the adversarial noise model, an adversary can corrupt any η (≤ O(ε))
fraction of labels. For both cases, we show that there exists a computationally efficient algorithm that
outputs a linear separator wT such that Prx∼D[sign(wT · x) 6= sign(w∗ · x)] ≤ ε (see Theorems 15
and 16). The label complexity w.r.t. 1/ε improves exponentially over the passive learning scenario
under s-concave distributions, though the underlying distribution might be fat-tailed. To the best
of our knowledge, this is the first result concerning the computationally-efficient, noise-tolerant
margin-based active learning under the broader class of s-concave distributions. Our work solves
an open problem proposed by Awasthi et al. [6] about exploring wider classes of distributions for
provable active learning algorithms.
Disagreement Based Active Learning: We apply our results to agnostic disagreement-based active
learning under s-concave distributions. The key to the analysis is estimating the disagreement
coefficient, a distribution-dependent measure of complexity that is used to analyze certain types of
active learning algorithms, e.g., the CAL [24] and A2 algorithm [7]. We work out the disagreement
coefficient under isotropic s-concave distribution (see Theorem 17). By composing it with the
existing work on active learning [27], we obtain a bound on label complexity under the class of
s-concave distributions. As far as we are aware, this is the first result concerning disagreement-
based active learning that goes beyond log-concave distributions. Our bounds on the disagreement
coefficient match the best known results for the much less general case of log-concave distributions [9];
Furthermore, they apply to the s-concave case where we allow an arbitrary number of discontinuities,
a case not captured by [31].
Learning Intersections of Halfspaces: Baum’s algorithm is one of the most famous algorithms
for learning the intersections of halfspaces. The algorithm was first proposed by Baum [11] under
symmetric distribution, and later extended to log-concave distribution by Klivans et al. [44] as these
distributions are almost symmetric. In this paper, we show that approximate symmetry also holds for
the case of s-concave distributions. With this, we work out the label complexity of Baum’s algorithm
under the broader class of s-concave distributions (see Theorem 18), and advance the state-of-the-art
results (see Table 1).

We provide lower bounds to partially show the tightness of our analysis. Our results can be potentially
applied to other provable learning algorithms as well [38, 58, 13, 57, 10], which might be of
independent interest. We discuss our techniques and other related papers in the supplementary
material.

2 Preliminary
Before proceeding, we define some notations and clarify our problem setup in this section.
Notations: We will use capital or lower-case letters to represent random variables, D to represent
an s-concave distribution, and Du,t to represent the conditional distribution of D over the set
{x : |u · x| ≤ t}. We define the sign function as sign(x) = +1 if x ≥ 0 and −1 otherwise. We
denote byB(α, β) =

∫ 1

0
tα−1(1− t)β−1dt the beta function, and Γ(α) =

∫∞
0
tα−1e−tdt the gamma

function. We will consider a single norm for the vectors in Rn, namely, the 2-norm denoted by
‖x‖. We will frequently use µ (or µf , µD) to represent the measure of the probability distribution
D with density function f . The notation ball(w∗, t) represents the set {w ∈ Rn : ‖w − w∗‖ ≤ t}.
For convenience, the symbol ⊕ slightly differs from the ordinary addition +: For f = 0 or g = 0,
{fs ⊕ gs}1/s = 0; Otherwise, ⊕ and + are the same. For u, v ∈ Rn, we define the angle between
them as θ(u, v).

2.1 From Log-Concavity to S-Concavity
We begin with the definition of s-concavity. There are slight differences among the definitions of
s-concave density, s-concave distribution, and s-concave measure.
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Definition 1 (S-Concave (Density) Function, Distribution, Measure). A function f : Rn → R+ is
s-concave, for −∞ ≤ s ≤ 1, if f(λx+ (1− λ)y) ≥ (λf(x)s + (1− λ)f(y)s)1/s for all λ ∈ [0, 1],
∀x, y ∈ Rn.2 A probability distribution D is s-concave, if its density function is s-concave. A
probability measure µ is s-concave if µ(λA+ (1− λ)B) ≥ [λµ(A)s + (1− λ)µ(B)s]1/s for any
sets A,B ⊆ Rn and λ ∈ [0, 1].

Special classes of s-concave functions include concavity (s = 1), harmonic-concavity (s = −1),
quasi-concavity (s = −∞), etc. The conditions in Definition 1 are progressively weaker as s becomes
smaller: s1-concave densities (distributions, measures) are s2-concave if s1 ≥ s2. Thus one can
verify [23]: concave (s = 1) ( log-concave (s = 0) ( s-concave (s < 0) ( quasi-concave (s =
−∞).

3 Structural Results of S-Concave Distributions: A Toolkit
In this section, we develop geometric properties of s-concave distribution. The challenge is that unlike
the commonly used distributions in learning (uniform or more generally log-concave distributions),
this broader class is not closed under the marginalization operator and many such distributions are fat-
tailed. To address this issue, we introduce several new techniques. We first introduce the extension of
the Prekopa-Leindler inequality so as to reduce the high-dimensional problem to the one-dimensional
case. We then reduce the resulting one-dimensional s-concave function to a well-defined baseline
function, and explore the geometric properties of that baseline function. We summarize our high-level
proof ideas briefly by the following figure.

	
	
	
	n-D	s-concave																									1-D	!-concave																									1-D	ℎ # = %(1 + )#)+/-	

Extension	of	
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3.1 Marginal Distribution and Cumulative Distribution Function

We begin with the analysis of the marginal distribution, which forms the basis of other geometric
properties of s-concave distributions (s ≤ 0). Unlike the (nearly) log-concave distribution where the
marginal remains (nearly) log-concave, the class of s-concave distributions is not closed under the
marginalization operator. To study the marginal, our primary tool is the theory of convex geometry.
Specifically, we will use an extension of the Prékopa-Leindler inequality developed by Brascamp and
Lieb [20], which allows for a characterization of the integral of s-concave functions.

Theorem 2 ([20], Thm 3.3). Let 0 < λ < 1, and Hs, G1, and G2 be non-negative integrable
functions on Rm such thatHs(λx+(1−λ)y) ≥ [λG1(x)s⊕(1−λ)G2(y)s]1/s for every x, y ∈ Rm.

Then
∫
Rm Hs(x)dx ≥

[
λ
(∫

Rm G1(x)dx
)γ

+ (1− λ)
(∫

Rm G2(x)dx
)γ]1/γ

for s ≥ −1/m, with
γ = s/(1 +ms).

Building on this, the following theorem plays a key role in our analysis of the marginal distribution.

Theorem 3 (Marginal). Let f(x, y) be an s-concave density on a convex set K ⊆ Rn+m with
s ≥ − 1

m . Denote by K|Rn = {x ∈ Rn : ∃y ∈ Rm s.t. (x, y) ∈ K}. For every x in K|Rn , consider
the section K(x) , {y ∈ Rm : (x, y) ∈ K}. Then the marginal density g(x) ,

∫
K(x)

f(x, y)dy is
γ-concave on K|Rn , where γ = s

1+ms . Moreover, if f(x, y) is isotropic, then g(x) is isotropic.

Similar to the marginal, the CDF of an s-concave distribution might not remain in the same class.
This is in sharp contrast to log-concave distributions. The following theorem studies the CDF of an
s-concave distribution.

Theorem 4. The CDF of s-concave distribution in Rn is γ-concave, where γ = s
1+ns and s ≥ − 1

n .

Theorem 3 and 4 serve as the bridge that connects high-dimensional s-concave distributions to
one-dimensional γ-concave distributions. With them, we are able to reduce the high-dimensional
problem to the one-dimensional one.

2When s→ 0, we note that lims→0(λf(x)
s + (1− λ)f(y)s)1/s = exp(λ log f(x) + (1− λ) log f(y)).

In this case, f(x) is known to be log-concave.
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3.2 Fat-Tailed Density
Tail probability is one of the most distinct characteristics of s-concave distributions compared to
(nearly) log-concave distributions. While it can be shown that the (nearly) log-concave distribution
has an exponentially small tail (Theorem 11, [9]), the tail of an s-concave distribution is fat, as proved
by the following theorem.

Theorem 5 (Tail Probability). Let x come from an isotropic distribution over Rn with an s-concave

density. Then for every t ≥ 16, we have Pr[‖x‖ >
√
nt] ≤

[
1− cst

1+ns

](1+ns)/s

, where c is an
absolute constant.

Theorem 5 is almost tight for s < 0. To see this, consider X that is drawn from a one-dimensional
Pareto distribution with density f(x) = (−1 − 1

s )−
1
s x

1
s (x ≥ s+1

−s ). It can be easily seen that

Pr[X > t] =
[
−s
s+1 t

] s+1
s

for t ≥ s+1
−s , which matches Theorem 5 up to an absolute constant factor.

3.3 Geometry of S-Concave Distributions
We now investigate the geometry of s-concave distributions. We first consider one-dimensional s-
concave distributions: We provide bounds on the density of centroid-centered halfspaces (Lemma 6)
and range of the density function (Lemma 7). Building upon these, we develop geometric properties
of high-dimensional s-concave distributions by reducing the distributions to the one-dimensional
case based on marginalization (Theorem 3).

3.3.1 One-Dimensional Case
We begin with the analysis of one-dimensional halfspaces. To bound the probability, a normal
technique is to bound the centroid region and the tail region separately. However, the challenge is that
the s-concave distribution is fat-tailed (Theorem 5). So while the probability of a one-dimensional
halfspace is bounded below by an absolute constant for log-concave distributions, such a probability
for s-concave distributions decays as s (≤ 0) becomes smaller. The following lemma captures such
an intuition.
Lemma 6 (Density of Centroid-Centered Halfspaces). Let X be drawn from a one-dimensional
distribution with s-concave density for −1/2 ≤ s ≤ 0. Then Pr(X ≥ EX) ≥ (1 + γ)−1/γ for
γ = s/(1 + s).

We also study the image of a one-dimensional s-concave density. The following condition for
s > −1/3 is for the existence of second-order moment.

Lemma 7. Let g : R→ R+ be an isotropic s-concave density function and s > −1/3. (a) For all x,
g(x) ≤ 1+s

1+3s ; (b) We have g(0) ≥
√

1
3(1+γ)3/γ

, where γ = s
s+1 .

3.3.2 High-Dimensional Case
We now move on to the high-dimensional case (n ≥ 2). In the following, we will assume − 1

2n+3 ≤
s ≤ 0. Though this working range of s vanishes as n becomes larger, it is almost the broadest range
of s that we can hopefully achieve: Chandrasekaran et al. [23] showed a lower bound of s ≥ − 1

n−1
if one require the s-concave distribution to have good geometric properties. In addition, we can
see from Theorem 3 that if s < − 1

n−1 , the marginal of an s-concave distribution might even not
exist; Such a case does happen for certain s-concave distributions with s < − 1

n−1 , e.g., the Cauchy
distribution. So our range of s is almost tight up to a 1/2 factor.
We start our analysis with the density of centroid-centered halfspaces in high-dimensional spaces.

Lemma 8 (Density of Centroid-Centered Halfspaces). Let f : Rn → R+ be an s-concave density
function, and let H be any halfspace containing its centroid. Then

∫
H
f(x)dx ≥ (1 + γ)−1/γ for

γ = s/(1 + ns).

Proof. W.L.O.G., we assumeH is orthogonal to the first axis. By Theorem 3, the first marginal of f is
s/(1+(n−1)s)-concave. Then by Lemma 6,

∫
H
f(x)dx ≥ (1+γ)−1/γ , where γ = s/(1+ns).

The following theorem is an extension of Lemma 7 to high-dimensional spaces. The proofs basically
reduce the n-dimensional density to its first marginal by Theorem 3, and apply Lemma 7 to bound
the image.
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Theorem 9 (Bounds on Density). Let f : Rn → R+ be an isotropic s-concave density. Then

(a) Let d(s, n) = (1 + γ)−1/γ 1+3β
3+3β , where β = s

1+(n−1)s and γ = β
1+β . For any u ∈ Rn such that

‖u‖ ≤ d(s, n), we have f(u) ≥
(
‖u‖
d ((2− 2−(n+1)s)−1 − 1) + 1

)1/s

f(0).

(b) f(x) ≤ f(0)
[(

1+β
1+3β

√
3(1 + γ)3/γ2n−1+1/s

)s
− 1
]1/s

for every x.

(c) There exists an x ∈ Rn such that f(x) > (4eπ)−n/2.

(d) (4eπ)−n/2
[(

1+β
1+3β

√
3(1 + γ)3/γ2n−1+ 1

s

)s
− 1
]− 1

s

< f(0) ≤ (2− 2−(n+1)s)1/s nΓ(n/2)
2πn/2dn

.

(e) f(x) ≤ (2− 2−(n+1)s)1/s nΓ(n/2)
2πn/2dn

[(
1+β
1+3β

√
3(1 + γ)3/γ2n−1+1/s

)s
− 1
]1/s

for every x.

(f) For any line ` through the origin,
∫
`
f ≤ (2− 2−ns)1/s (n−1)Γ((n−1)/2)

2π(n−1)/2dn−1 .

Theorem 9 provides uniform bounds on the density function. To obtain more refined upper bound on
the image of s-concave densities, we have the following lemma. The proof is built upon Theorem 9.
Lemma 10 (More Refined Upper Bound on Densities). Let f : Rn → R+ be an isotropic s-concave
density. Then f(x) ≤ β1(n, s)(1− sβ2(n, s)‖x‖)1/s for every x ∈ Rn, where

β1(n, s) =
(2− 2−(n+1)s)

1
s

2πn/2dn
(1− s)−1/snΓ(n/2)

[(
1 + β

1 + 3β

√
3(1 + γ)3/γ2n−1+1/s

)s
− 1

]1/s

,

β2(n, s) =
2π(n−1)/2dn−1

(n− 1)Γ((n− 1)/2)
(2− 2−ns)−

1
s

[(a(n, s) + (1− s)β1(n, s)s)1+ 1
s − a(n, s)1+ 1

s ]s

β1(n, s)s(1 + s)(1− s)
,

a(n, s) = (4eπ)−ns/2
[(

1+β
1+3β

√
3(1 + γ)3/γ2n−1+1/s

)s
− 1
]−1

, γ = β
1+β , β = s

1+(n−1)s , and

d = (1 + γ)−
1
γ 1+3β

3+3β .

We also give an absolute bound on the measure of band.
Theorem 11 (Probability inside Band). Let D be an isotropic s-concave distribution in Rn. Denote
by f3(s, n) = 2(1+ns)/(1+(n+2)s). Then for any unit vector w, Prx∼D[|w ·x| ≤ t] ≤ f3(s, n)t.

Moreover, if t ≤ d(s, n) ,
(

1+2γ
1+γ

)− 1+γ
γ 1+3γ

3+3γ where γ = s
1+(n−1)s , then Prx∼D[|w · x| ≤ t] >

f2(s, n)t, where f2(s, n) = 2(2− 2−2γ)−1/γ(4eπ)−1/2

(
2

(
1+γ
1+3γ

√
3
(

1+2γ
1+γ

) 3+3γ
2γ

)γ
− 1

)−1/γ

.

To analyze the problem of learning linear separators, we are interested in studying the disagreement
between the hypothesis of the output and the hypothesis of the target. The following theorem captures
such a characteristic under s-concave distributions.
Theorem 12 (Probability of Disagreement). Assume D is an isotropic s-concave distribution in Rn.
Then for any two unit vectors u and v in Rn, we have dD(u, v) = Prx∼D[sign(u ·x) 6= sign(v ·x)] ≥

f1(s, n)θ(u, v), where f1(s, n) = c(2− 2−3α)−
1
α

[(
1+β
1+3β

√
3(1 + γ)3/γ21+1/α

)α
− 1
]− 1

α

(1 +

γ)−2/γ
(

1+3β
3+3β

)2

, c is an absolute constant, α = s
1+(n−2)s , β = s

1+(n−1)s , γ = s
1+ns .

Due to space constraints, all missing proofs are deferred to the supplementary material.

4 Applications: Provable Algorithms under S-Concave Distributions
In this section, we show that many algorithms that work under log-concave distributions behave well
under s-concave distributions by applying the above-mentioned geometric properties. For simplicity,
we will frequently use the notations in Theorem 1.

4.1 Margin Based Active Learning
We first investigate margin-based active learning under isotropic s-concave distributions in both
realizable and adversarial noise models. The algorithm (see Algorithm 1) follows a localization
technique: It proceeds in rounds, aiming to cut the error down by half in each round in the margin [8].
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Algorithm 1 Margin Based Active Learning under S-Concave Distributions
Input: Parameters bk, τk, rk, mk, κ, and T as in Theorem 16.
1: Draw m1 examples from D, label them and put them into W .
2: For k = 1, 2, ..., T
3: Find vk ∈ ball(wk−1, rk) to approximately minimize the hinge loss over W s.t. ‖vk‖ ≤ 1:

`τk ≤ minw∈ball(wk−1,rk)∩ball(0,1) `τk (w,W ) + κ/8.
4: Normalize vk, yielding wk = vk

‖vk‖
; Clear the working set W .

5: While mk+1 additional data points are not labeled
6: Draw sample x from D.
7: If |wk · x| ≥ bk, reject x; else ask for label of x and put into W .
Output: Hypothesis wT .

4.1.1 Relevant Properties of S-Concave Distributions
The analysis requires more refined geometric properties as below. Theorem 13 basically claims that
the error mostly concentrates in a band, and Theorem 14 guarantees that the variance in any 1-D
direction cannot be too large. We defer the detailed proofs to the supplementary material.
Theorem 13 (Disagreement outside Band). Let u and v be two vectors in Rn and assume that
θ(u, v) = θ < π/2. Let D be an isotropic s-concave distribution. Then for any absolute constant
c1 > 0 and any function f1(s, n) > 0, there exists a function f4(s, n) > 0 such that Prx∼D[sign(u ·
x) 6= sign(v · x) and |v · x| ≥ f4(s, n)θ] ≤ c1f1(s, n)θ, where f4(s, n) = 4β1(2,α)B(−1/α−3,3)

−c1f1(s,n)α3β2(2,α)3 ,
B(·, ·) is the beta function, α = s/(1 + (n− 2)s), β1(2, α) and β2(2, α) are given by Lemma 10.

Theorem 14 (1-D Variance). Assume that D is isotropic s-concave. For d given by Theorem 9
(a), there is an absolute C0 such that for all 0 < t ≤ d and for all a such that ‖u − a‖ ≤ r and
‖a‖ ≤ 1, Ex∼Du,t [(a · x)2] ≤ f5(s, n)(r2 + t2), where f5(s, n) = 16 + C0

8β1(2,η)B(−1/η−3,2)
f2(s,n)β2(2,η)3(η+1)η2 ,

(β1(2, η), β2(2, η)) and f2(s, n) are given by Lemma 10 and Theorem 11, and η = s
1+(n−2)s .

4.1.2 Realizable Case
We show that margin-based active learning works under s-concave distributions in the realizable case.
Theorem 15. In the realizable case, let D be an isotropic s-concave distribution in Rn.
Then for 0 < ε < 1/4, δ > 0, and absolute constants c, there is an algorith-
m (see the supplementary material) that runs in T = dlog 1

cεe iterations, requires mk =

O
(
f3 min{2−kf4f−1

1 ,d}
2−k

(
n log

f3 min{2−kf4f−1
1 ,d}

2−k
+log 1+s−k

δ

))
labels in the k-th round, and outputs

a linear separator of error at most ε with probability at least 1− δ. In particular, when s→ 0 (a.k.a.
log-concave), we have mk = O

(
n+ log( 1+s−k

δ )
)
.

By Theorem 15, we see that the algorithm of margin-based active learning under s-concave dis-
tributions works almost as well as the log-concave distributions in the resizable case, improving
exponentially w.r.t. the variable 1/ε over passive learning algorithms.

4.1.3 Efficient Learning with Adversarial Noise
In the adversarial noise model, an adversary can choose any distribution P̃ over Rn×{+1,−1} such
that the marginal D over Rn is s-concave but an η fraction of labels can be flipped adversarially. The
analysis builds upon an induction technique where in each round we do hinge loss minimization in
the band and cut down the 0/1 loss by half. The algorithm was previously analyzed in [5, 6] for the
special class of log-concave distributions. In this paper, we analyze it for the much more general
class of s-concave distributions.
Theorem 16. Let D be an isotropic s-concave distribution in Rn over x and the label y
obey the adversarial noise model. If the rate η of adversarial noise satisfies η < c0ε for
some absolute constant c0, then for 0 < ε < 1/4, δ > 0, and an absolute constan-
t c, Algorithm 1 runs in T = dlog 1

cεe iterations, outputs a linear separator wT such that
Prx∼D[sign(wT · x) 6= sign(w∗ · x)] ≤ ε with probability at least 1 − δ. The label complexity

in the k-th round is mk = O
(

[bk−1s+τk(1+ns)[1−(δ/(
√
n(k+k2)))s/(1+ns)]+τks]

2

κ2τ2
ks

2 n
(
n+ log k+k2

δ

))
,

where κ = max
{

f3τk
f2 min{bk−1,d} ,

bk−1

√
f5

τk
√
f2

}
, τk = Θ

(
f−2

1 f
−1/2
2 f3f

2
4 f

1/2
5 2−(k−1)

)
, and bk =

min{Θ(2−kf4f
−1
1 ), d}. In particular, if s→ 0, mk = O

(
n log( nεδ )(n+ log(kδ ))

)
.
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By Theorem 16, the label complexity of margin-based active learning improves exponentially over
that of passive learning w.r.t. 1/ε even under fat-tailed s-concave distributions and challenging
adversarial noise model.

4.2 Disagreement Based Active Learning
We apply our results to the analysis of disagreement-based active learning under s-concave dis-
tributions. The key is estimating the disagreement coefficient, a measure of complexity of active
learning problems that can be used to bound the label complexity [34]. Recall the definition of the
disagreement coefficient w.r.t. classifier w∗, precision ε, and distribution D as follows. For any r > 0,
define ballD(w, r) = {u ∈ H : dD(u,w) ≤ r} where dD(u,w) = Prx∼D[(u · x)(w · x) < 0].
Define the disagreement region as DIS(H) = {x : ∃u, v ∈ H s.t. (u · x)(v · x) < 0}. Let the
Alexander capacity capw∗,D = PrD(DIS(ballD(w∗,r)))

r . The disagreement coefficient is defined as
Θw∗,D(ε) = supr≥ε[capw∗,D(r)]. Below, we state our results on the disagreement coefficient under
isotropic s-concave distributions.
Theorem 17 (Disagreement Coefficient). Let D be an isotropic s-concave distribution over Rn. For
any w∗ and r > 0, the disagreement coefficient is Θw∗,D(ε) = O

( √
n(1+ns)2

s(1+(n+2)s)f1(s,n) (1− ε
s

1+ns )
)

.

In particular, when s→ 0 (a.k.a. log-concave), Θw∗,D(ε) = O(
√
n log(1/ε)).

Our bounds on the disagreement coefficient match the best known results for the much less general
case of log-concave distributions [9]; Furthermore, they apply to the s-concave case where we allow
arbitrary number of discontinuities, a case not captured by [31]. The result immediately implies
concrete bounds on the label complexity of disagreement-based active learning algorithms, e.g.,
CAL [24] and A2 [7]. For instance, by composing it with the result from [27], we obtain a bound
of Õ

(
n3/2 (1+ns)2

s(1+(n+2)s)f(s) (1− εs/(1+ns))
(

log2 1
ε + OPT 2

ε2

))
for agnostic active learning under an

isotropic s-concave distribution D. Namely, it suffices to output a halfspace with error at most
OPT + ε, where OPT = minw errD(w).

4.3 Learning Intersections of Halfspaces
Baum [11] provided a polynomial-time algorithm for learning the intersections of halfspaces w.r.t.
symmetric distributions. Later, Klivans [44] extended the result by showing that the algorithm works
under any distribution D as long as µD(E) ≈ µD(−E) for any set E. In this section, we show that it
is possible to learn intersections of halfspaces under the broader class of s-concave distributions.
Theorem 18. In the PAC realizable case, there is an algorithm (see the supplementary material) that
outputs a hypothesis h of error at most ε with probability at least 1− δ under isotropic s-concave
distributions. The label complexity is M(ε/2, δ/4, n2) + max{2m2/ε, (2/ε

2) log(4/δ)},
where M(ε, δ,m) is defined by M(ε, δ, n) = O

(
n
ε log 1

ε + 1
ε log 1

δ

)
, m2 =

M(max{δ/(4eKm1), ε/2}, δ/4, n), K = β1(3, κ)B(−1/κ−3,3)
(−κβ2(3,κ))3

3+1/κ
h(κ)d3+1/κ , d = (1 + γ)−1/γ 1+3β

3+3β ,

h(κ) =
(

1
d ((2− 2−4κ)−1 − 1) + 1

) 1
κ (4eπ)−

3
2

[(
1+β
1+3β

√
3(1+γ)3/γ22+ 1

κ

)κ
−1
]−1/κ

, β = κ
1+2κ ,

γ = κ
1+κ , and κ = s

1+(n−3)s . In particular, if s→ 0 (a.k.a. log-concave), K is an absolute constant.

5 Lower Bounds
In this section, we give information-theoretic lower bounds on the label complexity of passive and
active learning of homogeneous halfspaces under s-concave distributions.
Theorem 19. For a fixed value − 1

2n+3 ≤ s ≤ 0 we have: (a) For any s-concave distribution D in
Rn whose covariance matrix is of full rank, the sample complexity of learning origin-centered linear
separators under D in the passive learning scenario is Ω (nf1(s, n)/ε); (b) The label complexity of
active learning of linear separators under s-concave distributions is Ω (n log (f1(s, n)/ε)).
If the covariance matrix of D is not of full rank, then the intrinsic dimension is less than d. So
our lower bounds essentially apply to all s-concave distributions. According to Theorem 19, it is
possible to have an exponential improvement of label complexity w.r.t. 1/ε over passive learning by
active sampling, even though the underlying distribution is a fat-tailed s-concave distribution. This
observation is captured by Theorems 15 and 16.

6 Conclusions
In this paper, we study the geometric properties of s-concave distributions. Our work advances the
state-of-the-art results on the margin-based active learning, disagreement-based active learning, and
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learning intersections of halfspaces w.r.t. the distributions over the instance space. When s→ 0, our
results reduce to the best-known results for log-concave distributions. The geometric properties of
s-concave distributions can be potentially applied to other learning algorithms, which might be of
independent interest more broadly.

Acknowledgements. This work was supported in part by grants NSF-CCF 1535967, NSF CCF-
1422910, NSF CCF-1451177, a Sloan Fellowship, and a Microsoft Research Fellowship.
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A Our Techniques

In this section, we introduce the techniques used for obtaining our results.
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Figure 1: Isoperimetry.

Marginalization: Our results are inspired by isoperimetric inequality
for s-concave distributions by the work of Chandrasekaran et al. [23].
Roughly, the isoperimetry states that if two sets K1 and K2 are well-
separated, then the area B between them has large measure relative to
the measure of the two sets (see Figure 1). Results of this kind are par-
ticularly useful for margin-based active learning of halfspace [5, 4, 6]:
The algorithm proceeds in rounds, aiming to cut down the error by
half in each round in the band. Since the measure of the band is large
or even dominates, the error over the whole space decreases almost
by half in each round, resulting in exponentially fast convergence
rate. However, in order to make the analysis of such algorithms work
for s-concave distribution, we typically require more refined geomet-
ric properties than the isoperimetry as the isoperimetric inequality
states nothing about the absolute measure of band under s-concave
distributions.

The insight behind the isoperimetry is a collection of properties con-
cerning the geometry of probability density. While the geometric
properties of some classic paradigms, such as log-concave distribu-
tions (for the case of s = 0), are well-studied [49], it is typically hard to generalize those results to the
s-concave distribution, for broader range of s < 0. This is due to the fact that the class of s-concave
functions is not closed under marginalization: The marginal of an s-concave function may not be
s-concave any more. This directly restricts the possibility of applying the prior proof techniques
for log-concave distribution to the s-concave one. Furthermore, previous proofs heavily depend on
the assumption that the density is light-tailed (see Theorem 11 in [9]), which is not applicable for
probably fat-tailed s-concave distribution.

To mitigate the above concerns, we begin with a powerful tool from convex geometry by Brascamp
and Lieb [20]. This result can be viewed as an extension of celebrated Prékopa-Leindler inequality,
an integral inequality that is closely related to a number of classical inequalities in analysis and serves
as the building block of isoperimetry under the log-concave distributions [21, 22]. With this, we can
show that the marginal of any s-concave function is γ-concave, with a closed-form γ that is related
to the parameter s and the dimension of marginalization. Our analysis is tight as there exists an
s-concave function with a γ-concave marginal.

Reduction to 1-D Baseline Function: It is in general hard to study a high-dimensional s-concave
distribution. Instead, we build on the marginalization technique described above to reduce each
n-dimensional s-concave function to the one-dimensional case. Thus it suffices to investigate the
geometry of one-dimensional γ-concave functions. But there are still infinitely many such functions
in this class.

Our proofs take a novel analysis by reducing all one-dimensional γ-concave density to a certain
baseline function. The baseline function should meet two goals: (a) It represents the worst case in
the class of γ-concave functions, namely, such functions should achieve the bounds of geometric
properties of our interest; (b) The function should be easy to analyze, e.g., with closed-form moments
or integrations. Note that choosing a baseline function at the “boundary” between γ-concavity
and non-γ-concavity classes readily achieves goal (a). To achieve goal (b), we set the “template”
function as easy as h(t) = α(1 + βt)1/γ for a particular choice of parameters α and β. Such
functions have many good properties that one can exploit. First, the moments can be represented
in closed-form by the beta function. This enables us to figure out the relations among moments of
various orders explicitly and obtain a recursive inequality, which is critical for deducing the bounds of
one-dimensional geometric properties. Second, h(t) is at the “boundary” of γ-concave class: h(t)η

is not a concave function for any η < γ. Therefore, this enables us to analyze the whole class of
s-concavity by focusing on h(t). Below, we summarize our high-level proof ideas briefly.
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B Additional Related Work

Active Learning of Halfspace under Uniform Distribution: Learning halfspace has been exten-
sively studied in the past decades [16, 45, 29, 36, 52, 41, 40, 39]. Probably one of the most famous
results is the VC argument. Vapnik [54] and Blumer et al. [17] showed that any hypothesis that is
consistent with Õ(n/ε) labeled examples has error at most ε, if the VC dimension of the hypothesis
class is n. The algorithm works under any data distribution and runs in polynomial time when the
consistent hypothesis can be found efficiently, e.g., by linear programming in the realizable case.
Other algorithms such as Perception [50], Winnow [47], and Support Vector Machine [55] provide
better guarantees if the target vector has low `1 or `2 norm. All these results form the basis of passive
learning.

To explore the possibility of further improving the label complexity, several algorithms were later
proposed in the active learning literature [15, 14] under the uniform distributions [28, 30], among
which disagreement-based active learning and margin-based active learning are two typical approach-
es. In the disagreement-based active learning, the algorithm proceeds in rounds, requesting the labels
of instances in the disagreement region among the current candidate hypothesises. Cohn et al. [24]
provided the first disagreement-based active learning algorithm in the realizable case. Balcan et
al. [7] later extended such an algorithm to the agnostic setting by estimating the confidence interval
of disagreement region. The analysis technique was further generalized thanks to Hanneke [34] by
introducing the concept of disagreement coefficient, which is a new measure of complexity for active
learning problems and serves as an important element for bounding the label complexity. However,
this seminal work only focused on the disagreement coefficient under the uniform distribution.

Margin-based active learning is another line of research in the active learning literature. The algorithm
proceeds in rounds, requesting labels of examples aggressively in the margin area around the current
guess of hypothesis. Balcan et al. [8] first proposed an algorithm for margin-based active learning
under the uniform distribution in the realizable case. They also provided guarantees under the
Tsybakov noise model [53], but the algorithm is inefficient. To mitigate the issue, Awasthi et al. [3]
considered a subclass of Tsybakov noise — Massart noise [19]. The algorithm runs in polynomial
time by doing a sequence of hinge loss minimizations on the labeled instances. However, it was not
clear then whether the analysis works for other distributions instead of the uniform one.

Geometry of Log-Concave Distribution: Log-concave distribution, a class of probability distribu-
tions such that the logarithm of density function is concave, is a common generalization of uniform
distribution over the convex set [49]. Bertsimas and Vempala [12] and Kalai and Vempala [37]
noticed that efficient sampling, integration, and optimization algorithms for this distribution class rely
heavily on the good isoperimetry of density functions. Informally, a function has good isoperimetry
if one cannot remove a small-measure set from its domain and partition the domain into two disjoint
large-measure sets. The isoperimetry is commonly believed as a characteristic of good geomet-
ric properties. To see this, Lovász and Vempala [49] proved the isoperimetric inequality for the
log-concave distribution, and provided a bunch of refined geometric properties for this distribution
class. Going slightly beyond the log-concave distribution, Caramanis and Mannor [22] showed good
isoperimetry for nearly log-concave distributions, but more refined geometry was not provided there.

Active learning of halfspace under (nearly) log-concave distribution has a natural connection to the
geometry of that distribution (a.k.a. admissible distribution). The connection was first introduced
by [9], and is sufficient for the success of disagreement-based and margin-based active learning
under log-concave distribution [9]. To resolve the computational issue, Awasthi et al. [5] studied the
probability of disagreement outside the margin under the log-concave distribution, and proposed an
efficient algorithm for the challenging adversarial noise. More recently, Awasthi et al. [4] provided
stronger guarantees for efficient learning of halfspace in the Massart noise model under log-concave
distribution.
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S-Concave Distribution: The problem of extending the log-concave distribution to the broader one
for provable learning algorithms has received significant attention in recent years. Although some
efforts have been devoted to generalizing the probability distribution, e.g., to the nearly log-concave
distribution [9], the analysis is intrinsically built upon the geometry of log-concave distribution.
Moreover, to the best of our knowledge, there is no efficient, noise-tolerant active learning algorithm
that goes beyond the log-concave distribution. As a candidate extension, the class of s-concave
distributions has many appealing properties that one can exploit [23, 33]: (a) The distribution class
is much broader than the log-concave distributions as s = 0 implies the log-concavity; (b) The
s-concave function mapping from Rn to R+ has good isoperimetry if s ≥ −1/(n− 1); (c) Efficient
sampling, integration, and optimization algorithms are available for such distribution class. All these
properties inspire our work.

C Proof of Theorem 3

Theorem 3 (restated) Let f(x, y) be an s-concave density on a convex setK ⊆ Rn+m with s ≥ − 1
m .

Denote by K|Rn = {x ∈ Rn : ∃y ∈ Rm s.t. (x, y) ∈ K}. For every x in K|Rn , consider the section
K(x) , {y ∈ Rm : (x, y) ∈ K}. Then the marginal density g(x) ,

∫
K(x)

f(x, y)dy is γ-concave
on K|Rn , where γ = s

1+ms . Moreover, if f(x, y) is isotropic, then g(x) is isotropic.

Proof. The proof that g(x) is isotropic is standard [49]. We now prove the first part. Let x1, x2

be any two points. Define gi(y) = f(xi, y) for i = 1, 2. So the functions gi(y) is defined on
K(xi), i = 1, 2. Now let x = λx1 + (1 − λ)x2 for λ ∈ (0, 1) and define hs(y) = f(x, y) on
K(x). Notice that for any yi ∈ K(xi), i = 1, 2, y = λy1 + (1− λ)y2 ∈ K(x). To see this, by the
convexity of the set K, the point (x, y) = λ(x1, y1) + (1− λ)(x2, y2) belongs to K. So y ∈ K(x),
i.e., λK(x1) + (1 − λ)K(x2) ⊆ K(x). Using the s-concavity of f(x, y), we have f(x, y) =

f(λ(x1, y1)+(1−λ)(x2, y2)) ≥ [λf(x1, y1)s + (1− λ)f(x2, y2)s]
1/s, which implies that hs(y) =

hs(λy1 + (1− λ)y2) ≥ [λg1(y1)s + (1− λ)g2(y2)s]
1/s. Denote by I(·) the indicator function. So

hs(λy1 + (1 − λ)y2)IK(x)(y) ≥
[
λ(g1(y1)IK(x1)(y1))s ⊕ (1− λ)(g2(y2)IK(x2)(y2))s

]1/s
. Set

Hs(y)=hs(λy1+(1−λ)y2)IK(x), G1(y1)=g1(y1)IK(x1), G2(y1) = g2(y1)IK(x2). By Theorem 2,

g(x) =

∫
Rm

Hs(y)dy =

∫
Rm

hs(y)IK(x)(y)dy ≥
[
(1−λ)

(∫
Rn
G1(y)dy

)γ
+λ

(∫
Rn
G2(y)dy

)γ]1/γ

=

[
(1− λ)

(∫
Rn
f(x1, y1)IK(x1)(y1)dy1

)γ
+ λ

(∫
Rn
f(x2, y2)IK(x2)(y2)dy2

)γ]1/γ

= [(1− λ)g(x1)γ + λg(x2)γ ]
1/γ

,

where γ = s/(1 +ms). Namely, the marginal function g(x) is γ-concave.

D Proof of Theorem 4

Similar to the marginal, the CDF of an s-concave distribution might not remain in the same class.
This is in sharp contrast with the log-concave distributions. The following lemma from [20] provides
a useful tool for our analysis of CDF, which basically claims that the measure of any s-concave
distribution is γ-concave with a closed-form γ.

Lemma 20 ([20], Cor 3.4). The density function f(x) is s-concave for s ≥ −1/n where x ∈
Rn, if and only if the corresponding probability measure µ is γ-concave for γ = s

1+ns , namely,

µ(λA + (1 − λ)B) ≥ [λµ(A)γ + (1− λ)µ(B)γ ]
1/γ , for any A,B ⊆ Rn and λ ∈ [0, 1], where

µ(A) =
∫
A
f(x)dx.

Lemma 20 is an extension of celebrated Brunn-Minkowski theorem. The following theorem concern-
ing the CDF of an s-concave distribution is a straightforward result from Lemma 20.

Theorem 4 (restated) The CDF of s-concave distribution in Rn is γ-concave, where γ = s
1+ns and

s ≥ − 1
n .
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Proof. Denote by F (x) the CDF. Applying Lemma 20 to the set A = {x : x ≤ x1} and B = {x :
x ≤ x2} and taking into account that F (x1) = µ(A), F (x2) = µ(B), and F (λx1 + (1− λ)x2) =
µ(λA+ (1− λ)B), we have the result.

E Proof of Theorem 5

Tail probability is one of the most distinct characteristic of s-concave distributions compared to the
nearly log-concavity. To study this, we first require a concentration result from [18].

Lemma 21 ([18], Thm 5.2). Let f be a Borel function on Rn and let m be a median for |f |
w.r.t. a κ-concave measure µ, where κ < 0. Then for every t > 1 such that 4δf ( 1

t ) ≤ 1, we

have µ[|f | > mt] ≤
[
1− cκ

δf ( 1
t )

]1/κ
, where c is a constant, δf (ε) = supx,y mes{t ∈ (0, 1) :

|f(tx+ (1− t)y)| ≤ ε|f(x)|}, 0 ≤ ε ≤ 1, and mes stands for the Lebesgue measure.

Now we are ready to bound the tail probability of s-concave density. While it can be shown that
the nearly log-concave distribution has an exponentially small tail (Theorem 11, [9]), the tail of
s-concave distribution is fat, as proved by the following theorem.

Theorem 5 (restated) Let x come from an isotropic distribution over Rn with an s-concave density.

Then for every t ≥ 16, we have Pr[‖x‖ >
√
nt] ≤

[
1− cst

1+ns

](1+ns)/s

, where c is an absolute
constant.

Proof. Set function f(x) in Lemma 21 as ‖x‖. Bobkov [18] claimed that δf (ε) ≤ 2ε. Also, Lemma
20 implies that the probability measure is κ = s

1+ns -concave.

By the definition of the median m, the Markov inequality, and the Jensen inequality, we have
1
2 = Pr[‖x‖ ≥ m] ≤ E‖x‖

m ≤
√

E‖x‖2
m =

√
n
m , where the last equality is due to the isotropicity

assumption. So by Lemma 21, we have that for every t ≥ 8, Pr[‖x‖ > 2
√
nt] ≤ Pr[‖x‖ > mt] ≤

[1− cst/(1 + ns)]
(1+ns)/s. Replacing t with t/2, the proof is completed.

F Proof of Lemma 6

Lemma 6 (restated) Let X be a random variable drawn from a one-dimensional distribution with
s-concave density for −1/2 ≤ s ≤ 0. Then

Pr(X ≥ EX) ≥ (1 + γ)−1/γ ,

for γ = s/(1 + s).

Proof. Without loss of generality, we assume that EX = 0 and |X| ≤ K. The general case then
follows by translation transformation and approximating a general distribution with s-concave density
by such bounded distributions.

Let G(x) = Pr(X ≤ x) be the CDF of the s-concave density. We first prove that Pr(X ≤ EX) ≥
(1 + γ)−1/γ . By Theorem 4, G(x) is γ-concave, monotone increasing such that G(x) = 0 for
x ≤ −K and G(x) = 1 for x ≥ K, where −1 ≤ γ = s

1+s ≤ 0. Notice that the assumption

of centroid 0 implies that
∫K
−K xG

′(x)dx = 0, which equivalently means
∫K
−K G(x)dx = K by

integration by parts. Our goal is to prove that G(0) ≥ (1 + γ)−1/γ .

The function Gγ is concave for γ < 0. Thus it lies above its tangent at 0. This means that
G(x) ≤ G(0)(1 + γcx)

1
γ , where c = G′(0)/G(0) > 0. We now set K large enough so that

1/c < K. Then

G(x) ≤

{
G(0)(1 + γcx)

1
γ , if x ≤ 1/c,

1, if x > 1/c.
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So

K =

∫ K

−K
G(x)dx

≤
∫ 1/c

−K
G(0)(1 + γcx)

1
γ dx+

∫ K

1/c

1dx

=
G(0)

c(γ + 1)
[(1 + γ)

1
γ+1 − (1− γcK)

1
γ+1] +K − 1

c

≤ G(0)(1 + γ)
1
γ

c
+K − 1

c
,

which implies that G(0) ≥ (1 + γ)−1/γ as claimed. Replacing X with Y = −X , we obtain the
result.

G Proof of Lemma 7

As a preliminary, we first prove the following lemma concerning the moments of s-concave distribu-
tion.
Lemma 22. Let g : R+ → R+ be an integrable function. Define Mn(g) =

∫∞
0
tng(t)dt, and

suppose it exists. Then

(a) The sequence {Mn(g) : n = 0, 1, ...} is log-convex, which means logMn(g) is convex w.r.t.
variable n, or equivalently Mn(g)Mn+2(g) ≥Mn+1(g)2 for any n ∈ N .

(b) If g is monotone decreasing, then the sequence defined by

M ′n(g) =

{
nMn−1(g), if n > 0,

g(0), if n = 0,

is log-convex.

(c) If g is s-concave (s > −1/(n+1)), then the sequence Tn(g) ,Mn(g)/B(−1/s−n−1, n+1) is
log-concave, which means log Tn(g) is concave w.r.t. n, or equivalently Tn(g)Tn+2(g) ≤ Tn+1(g)2

for any n ∈ N .

(d) If g is s-concave, then g(0)M1(g) ≤M0(g)2 1+s
1+2s .

Proof. The proofs of Parts (a) and (b) are from [49].

(c) The intuition behind the proof is to choose a baseline s-concave function h which is at the
“boundary" between the family of s-concave function and that of the non s-concave function. We
show that h satisfies the equation

Tn(h)Tn+2(h) = T 2
n+1(h). (1)

Then by the facts that h is at the “boundary" and g is any s-concave function, we have

Tn+1(h) ≤ Tn+1(g). (2)

The conclusion follows from (1) and (2), and from our choice of h such that Tn(h) = Tn(g) and
Tn+2(h) = Tn+2(g), by adjusting the slope and intercept of the linear function.

Formally, let h(t) = β(1 + γt)1/s be the above-mentioned baseline s-concave function (β, γ > 0)
such that

Mn(h) = Mn(g) and Mn+2(h) = Mn+2(g)

(This holds because there are two parameters β, γ and two equations). That means∫ ∞
0

tn(h(t)− g(t))dt = 0 and
∫ ∞

0

tn+2(h(t)− g(t))dt = 0.

Then it follows that the graph of h must intersect the graph of g at least twice. Since g is s-concave,
which implies the uni-modality, the graphs of h and g intersect exactly at two points 0 ≤ a < b.
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Moreover, h ≤ g in the interval [a, b] and h ≥ g outside the interval. That is to say, (t− a)(t− b)
has the same sign as h− g. Thus∫ ∞

0

(t− a)(t− b)tn(h(t)− g(t))dt ≥ 0.

Namely,

0 =

∫ ∞
0

tn+2(h(t)− g(t))dt+ ab

∫ ∞
0

tn(h(t)− g(t))dt ≥ (a+ b)

∫ ∞
0

tn+1(h(t)− g(t))dt.

This implies that

Mn+1(h) =

∫ ∞
0

tn+1h(t)dt ≤
∫ ∞

0

tn+1g(t)dt = Mn+1(g).

Since

Mn(h) =

∫ ∞
0

tnβ(1 + γt)1/sdt = B(−1/s− n− 1, n+ 1)
β

γn+1

for s > −1/(n+ 1), we have

Mn(g)

B(−1/s− n− 1, n+ 1)

Mn+2(g)

B(−1/s− n− 3, n+ 3)
=

Mn(h)

B(−1/s− n− 1, n+ 1)

Mn+2(h)

B(−1/s− n− 3, n+ 3)

=
β

γn+1
· β

γn+3

=

(
Mn+1(h)

B(−1/s− n− 2, n+ 2)

)2

≤
(

Mn+1(g)

B(−1/s− n− 2, n+ 2)

)2

,

as desired.

(d) The proof is almost the same as that of Part (c). Let h(t) = β(1 +γt)1/s be an s-concave function
(β, γ > 0) such that

h(0) = g(0) and M1(h) = M1(g).

So the graphs of h and g intersect exactly at two points 0 and a > 0, and hence∫ ∞
0

t(t− a)t−1(h(t)− g(t))dt ≥ 0.

That means

0 =

∫ ∞
0

t(h(t)− g(t))dt ≥ a
∫ ∞

0

(h(t)− g(t))dt,

or equivalently,
M0(h) ≤M0(g).

Note that h(0)M1(h) = M0(h)2 1+s
1+2s by (G). Then the conclusion follows by the fact

g(0)M1(g) = h(0)M1(h) = M0(h)2 1 + s

1 + 2s
≤M0(g)2 1 + s

1 + 2s
.

Now we are ready to prove Lemma 7.

Lemma 7 (restated) Let g : R→ R+ be an isotropic s-concave density function and s > −1/3.

(a) For all x, g(x) ≤ 1+s
1+3s .

(b) We have g(0) ≥
√

1
3(1+γ)3/γ

, where γ = s
s+1 .
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Proof. (a) Let z be the maximum point of function g. Intuitively, if the value of the function g
evaluated at z is too large, the corresponding distribution has a small deviation from z (Second part
of the proof below). However, the moment property of Lemma 22 restricts that the second moment
cannot be too small (First part of the proof below), which leads to a contradiction.

Formally, suppose that g(z) > 1+s
1+3s . Define

Mi =

∫ ∞
z

(x− z)ig(x)dx, and Ni =

∫ z

−∞
(z − x)ig(x)dx.

By the isotropicity of function g, we have

M0 +N0 = 1, N1 −M1 = z, M2 +N2 = 1 + z2.

Thus

M2 +N2 = (M0 +N0)2 + (M1 −N1)2

= (M0 −M1)2 + (N0 −N1)2 + 2(M0N0 −M1N1) + 2(M0M1 +N0N1)

≥ 2(M0M1 +N0N1),

where the last inequality holds since, by Lemma 22 (d), we have M1 ≤ M2
0

g(z)
1+s
1+2s ≤M

2
0 ≤M0 and

N1 ≤ N2
0

g(z)
1+s
1+2s ≤ N

2
0 ≤ N0.

On the other hand, by Lemma 22 (c) (d),

M2 ≤
2M2

1

M0

1 + 2s

1 + 3s
≤ 2M1M0

g(z)

1 + s

1 + 3s
< 2M1M0,

and similarly, N2 < 2N1N0. That means

M2 +N2 < 2(M0M1 +N0N1),

and we obtain a contradiction.

(b) The proof is by Lemma 22 (b) which lower bounds g(0) by the second order moment of g, which
is 1 according to isotropicity.

Specifically, without lose of generality, assume that g(x) is monotone decreasing for x ≥ 0 (otherwise
consider g(−x), since function g is uni-modal). Define g0 as the restriction of g to the non-negative
semi-line. Then by Lemma 22 (b), we have

M ′1(g0)3 ≤M ′0(g0)2M ′3(g0),

which implies

g(0) ≥

√
M0(g0)3

3M2(g0)
.

Note that M2(g0) ≤M2(g) = 1, and by Lemma 6,

M0(g0) =

∫ ∞
0

g(t)dt = Pr[X ≥ EX] ≥ (1 + γ)−1/γ .

Thus we have

g(0) ≥

√
1

3(1 + γ)3/γ
,

where γ = s/(1 + s).

H Proof of Theorem 9

Theorem 9 (restated) Let f : Rn → R+ be an isotropic s-concave density.

(a) Let d = (1 + γ)−1/γ 1+3β
3+3β , where β = s

1+(n−1)s and γ = β
1+β . For any u ∈ Rn such that

‖u‖ ≤ d, we have f(u) ≥
(
‖u‖
d ((2− 2−(n+1)s)−1 − 1) + 1

)1/s

f(0).
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(b) f(x) ≤ f(0)
[(

1+β
1+3β

√
3(1 + γ)3/γ2n−1+1/s

)s
− 1
]1/s

for every x (s ≥ − 1
2n+3 ).

(c) There exists an x ∈ Rn such that f(x) > (4eπ)−n/2.

(d) We have (4eπ)−n/2
[(

1+β
1+3β

√
3(1 + γ)3/γ2n−1+1/s

)s
− 1
]−1/s

< f(0) ≤

(2− 2−(n+1)s)1/s nΓ(n/2)
2πn/2dn

.

(e) f(x) ≤ (2− 2−(n+1)s)1/s nΓ(n/2)
2πn/2dn

[(
1+β
1+3β

√
3(1 + γ)3/γ2n−1+1/s

)s
− 1
]1/s

for every x.

(f) For any line ` through the origin,
∫
`
f ≤ (2− 2−ns)1/s (n−1)Γ((n−1)/2)

2π(n−1)/2dn−1 .

Proof. (a) Formally, suppose that the conclusion does not hold true, i.e., there is a point u such that
‖u‖ = t ≤ d and f(u) <

(
t
d ((2− 2−(n+1)s)−1 − 1) + 1

)1/s
f(0). Define v = d

t u and note that
0 ≤ t

d ≤ 1. Therefore, by the s-concavity of f , we have

f(u) = f

(
t

d
v +

(
1− t

d

)
0

)
≥
[
t

d
f(v)s +

(
1− t

d

)
f(0)s

]1/s

,

which together with f(u) <
(
t
d ((2− 2−(n+1)s)−1 − 1) + 1

)1/s
f(0) implies f(v) < (2 −

2−(n+1)s)−1/sf(0). Let H be a hyperplane supporting the convex set {x ∈ Rn : f(x) ≥ f(v)}
through the point v (the convexity follows from the s-concavity of f ). Define an orthogonal coordi-
nate system in which the hyperplane is parallel to coordinate plane so that it can be represented as
x1 = a for some 0 < a ≤ d. Thus f(x) < (2− 2−(n+1)s)−1/sf(0) for any x such that x1 ≥ a. We
will prove that this implies that the 1-dimensional marginal is not flat.

Denote by g the first marginal of the n-dimensional function f . Then g is isotropic and β = s
1+(n−1)s -

concave by Theorem 3, and g(x) ≤ 1+β
1+3β for all x by Lemma 7 (a). We prove that

g(2b) <
g(b)

4

for any b ≥ a, which means that the 1-dimensional function is not flat. To see this, by the s-concavity
of function f , we have that, for every x such that x1 ≥ a,

f(2x)s ≥ 2f(x)s − f(0)s > 2−(n+1)sf(x)s.

Namely, f(2x) < 2−(n+1)f(x). Hence

g(2b) =

∫
(x1=2b)

f(x)dx2...dxn < 2−(n+1)2n−1

∫
(x1=b)

f(x)dx2...dxn =
g(b)

4
.

So ∫ ∞
a

g(y)dy =

∫ 2a

a

g(y)dy +

∫ ∞
2a

g(y)dy <

∫ 2a

a

g(y)dy +
1

2

∫ ∞
a

g(y)dy.

Namely, by Lemma 7 (a), ∫ ∞
a

g(y)dy < 2

∫ 2a

a

g(y)dy ≤ 2a
1 + β

1 + 3β
.

So ∫ ∞
0

g(y)dy =

∫ a

0

g(y)dy +

∫ ∞
a

g(y)dy < 3a
1 + β

1 + 3β
≤ 3d

1 + β

1 + 3β
= (1 + γ)−1/γ ,

which leads to a contradiction with Lemma 6.

(b) If f(w) ≤ f(0) for every w, then the conclusion holds true. Otherwise, let w be the point
such that f(w) > f(0). Let H0 be the hyperplane through 0 which supports the convex set
{x ∈ Rn : f(x) ≥ f(0)}. By defining an orthogonal system, we may set H0 as the hyperplane
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x1 = 0, and so f(x) ≤ f(0) for any x such that x1 = 0. Define g, which is a β = s
1+(n−1)s -concave

function, as the first marginal of function f . Denote by Ht the hyperplane x1 = t. Without loss of
generality, we assume that w ∈ Hb with b > 0.

Let x be any point on H0 and x′ be the intersection between line segment [x,w] and Hb/2. Then by
the s-concavity of f and f(x) ≤ f(0) for x ∈ H0, we have

f(x′) ≥
[

1

2
f(x)s +

1

2
f(w)s

]1/s

≥
(

1

2

)1/s

f(x)

[
1 +

(
f(w)

f(0)

)s]1/s

.

Thus

g(b/2) =

∫
(x1=b/2)

f(x)dx2...dxn ≥
1

2n−1+1/s

[
1 +

(
f(w)

f(0)

)s]1/s

g(0).

By Lemma 7 (a) (b), we have

1 + β

1 + 3β
≥ g(b/2) ≥ 1

2n−1+1/s

[
1 +

(
f(w)

f(0)

)s]1/s
√

1

3(1 + γ)3/γ
,

where γ = β/(1 + β). Note that s ≥ − 1
2n+3 implies 1+β

1+3β 2n−1+1/s
√

3(1 + γ)3/γ < 1. So

f(w) ≤ f(0)

[(
1 + β

1 + 3β

√
3(1 + γ)3/γ2n−1+1/s

)s
− 1

]1/s

.

(c) The proof of Part (c) follows from [49].

(d) The proof of lower bound follows from Parts (b) and (c).

For the upper bound, by Part (a), we have

1 =

∫
Rn
f(x)dx ≥

∫
‖x‖≤d

f(x)dx ≥ dnvol(Bn−1)(2− 2−(n+1)s)−1/sf(0),

where vol(Bn−1) represents the volume of n− 1-dimensional unit ball. So

f(0) ≤ (2− 2−(n+1)s)1/s

dnvol(Bn−1)
= (2− 2−(n+1)s)1/snΓ(n/2)

2πn/2dn
.

(e) The proof of (e) follows from Parts (b) and (d).

(f) Define an orthogonal coordinate system in which ` is the xn-axis. Let h be the marginal of
function f over first n− 1 variables, namely,

h(x1, ..., xn−1) =

∫
f(x1, ..., xn−1, xn)dxn.

Then ∫
`

f = h(0) ≤ (2− 2−ns)1/s (n− 1)Γ((n− 1)/2)

2π(n−1)/2dn−1
.

I Proof of Lemma 10

Lemma 10 (restated) Let f : Rn → R+ be an isotropic s-concave density. Then f(x) ≤ β1(n, s)(1−
sβ2(n, s)‖x‖)1/s for every x ∈ Rn, where

β1(n, s) = (2− 2−(n+1)s)
1
s

1

2πn/2dn
(1−s)− 1

snΓ(n/2)

[(
1 + β

1 + 3β

√
3(1 + γ)3/γ2n−1+1/s

)s
−1

]1/s

,

and

β2(n, s) =
2π(n−1)/2dn−1

(n− 1)Γ((n− 1)/2)
(2− 2−ns)−1/s [(a+ (1− s)β1(n, s)s)1+1/s − a1+1/s]s

β1(n, s)s(1 + s)(1− s)
,
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d = (1 + γ)−
1
γ 1+3β

3+3β , β = s
1+(n−1)s , γ = β

1+β , a =

(4eπ)−
ns
2

[(
1+β
1+3β

√
3(1 + γ)3/γ2n−1+1/s

)s
−1
]−1

.

Proof. We first note that when ‖x‖ ≤ 1/β2, β1(1−sβ2‖x‖)1/s ≥ β1(1−s)1/s ≥ f(x) by Theorem
9 (e). So the conclusion holds.

We now assume that there is a point v such that ‖v‖ > 1/β2 but f(v) > β1(1− sβ2‖v‖)1/s. Denote
by [0, v] the line segment between the origin 0 and the point v, and let ` be the line through v and 0.
We will prove that ∫

`

f > (2− 2−ns)1/s (n− 1)Γ((n− 1)/2)

2π(n−1)/2dn−1
,

which leads to a contradiction with Theorem 9 (f). Let x be the convex combination of points 0 and
v, i.e., x = (1 − ‖x‖/‖v‖)0 + (‖x‖/‖v‖)v, where 0 ≤ ‖x‖ ≤ ‖v‖. Then by the s-concavity of f
and Theorem 9 (d),

f(x) ≥
[(

1− ‖x‖
‖v‖

)
f(0)s +

‖x‖
‖v‖

f(v)s
]1/s

>

[
f(0)s +

‖x‖
‖v‖

f(v)s
]1/s

>

[
f(0)s +

‖x‖
‖v‖

βs1 − sβs1β2‖x‖
]1/s

> [f(0)s + (1− s)βs1β2‖x‖]1/s

>

{
(4eπ)−ns/2

[(
1 + β

1 + 3β

√
3(1 + γ)3/γ2n−1+1/s

)s
− 1

]−1

+ (1− s)βs1β2‖x‖

}1/s

.

Thus∫
`

f ≥
∫

[0,v]

f =

∫ ‖v‖
0

{
(4eπ)−ns/2

[(
1 + β

1 + 3β

√
3(1 + γ)3/γ2n−1+1/s

)s
−1

]−1

+(1− s)βs1β2r

}1/s

dr

>

∫ 1/β2

0

{
(4eπ)−ns/2

[(
1 + β

1 + 3β

√
3(1 + γ)3/γ2n−1+1/s

)s
−1

]−1

+(1− s)βs1β2r

}1/s

dr

≥ (2− 2−ns)1/s (n− 1)Γ((n− 1)/2)

2π(n−1)/2dn−1
.

So the proof is completed.

J Proof of Theorem 11

Theorem 11 (restated) Let D be an isotropic s-concave distribution in Rn. Denote by f3(s, n) =
2(1 + ns)/(1 + (n+ 2)s). Then for any unit vector w,

Pr
x∼D

[|w · x| ≤ t] ≤ f3(s, n)t. (3)

Moreover, if t ≤ d =
(

1+2γ
1+γ

)− 1+γ
γ 1+3γ

3+3γ where γ = s
1+(n−1)s , then

Pr
x∼D

[|w · x| ≤ t] > f2(s, n)t, (4)

where f2(s, n) = 2(2− 2−2γ)−1/γ(4eπ)−1/2

(
2

(
1+γ
1+3γ

√
3
(

1+2γ
1+γ

) 3+3γ
2γ

)γ
− 1

)−1/γ

.
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Proof. Define an orthogonal coordinate system in which w is an axis. Then the distribution of w · x
is equal to the first marginal of the distribution D, with isotropic γ = s

1+(n−1)s -concave density g by
Theorem 3. According to the upper bound given by Lemma 7 (a),

Pr
x∼D

[|w · x| ≤ t] =

∫ t

−t
g(x)dx ≤ 1 + γ

1 + 3γ

∫ t

−t
dx = 2

1 + ns

1 + (n+ 2)s
t.

We now prove the later part of the theorem by a similar argument. By Theorem 9 (a) (d), for
1-dimensional γ-concave density f(u) and ‖u‖ ≤ d, we have

f(u) ≥ (2− 2−2γ)−1/γf(0)

> (2− 2−2γ)−1/γ(4eπ)−1/2

(
2

(
1 + γ

1 + 3γ

√
3

(
1 + 2γ

1 + γ

) 3+3γ
2γ

)γ
− 1

)−1/γ

,
f2(s, n)

2
.

Therefore,

Pr
x∼D

[|w · x| ≤ t] =

∫ t

−t
g(x)dx >

f2(s, n)

2

∫ t

−t
dx = f2(s, n)t.

K Proof of Theorem 12

Theorem 12 (restated) Assume D is an isotropic s-concave distribution in Rn. Then for any two
unit vectors u and v in Rn, we have dD(u, v) = Prx∼D[sign(u · x) 6= sign(v · x)] ≥ f1(s, n)θ(u, v),

where f1(s, n) = c(2− 2−3α)−
1
α

[(
1+β
1+3β

√
3(1 + γ)3/γ21+1/α

)α
− 1
]− 1

α

(1 + γ)−2/γ
(

1+3β
3+3β

)2

, c
is an absolute constant, α = s

1+(n−2)s , β = s
1+(n−1)s , γ = s

1+ns .

Proof. Consider the 2-dimensional space spanned by vectors u and v, and let D2 be the marginal
of distribution D over that space. Since dD(u, v) = dD2

(u′, v′), where u′ and v′ are projection of u
and v, respectively, we only need to focus on the marginal distribution D2, which has an α-concave
density according to Theorem 3, and is isotropic according to Theorem 3.

LetA be the disagreement region of u and v intersected with the ball of radius d = (1+γ)−1/γ 1+3β
3+3β in

R2. By Theorem 9 (a) and (d), dD(u, v) = dD2(u′, v′) ≥ vol(A) infx∈A p(x) ≥ f1(s, n)θ(u′, v′) =
f1(s, n)θ(u, v), where p(x) is the density of distribution D2.

L Proof of Theorem 13

Theorem 13 (restated) Let u and v be two vectors in Rn and assume that θ(u, v) = θ < π/2. Let
D be an isotropic s-concave distribution. Then for any absolute constant c1 > 0 and any function
f1(s, n) > 0, there exists a function f4(s, n) > 0 such that

Pr
x∼D

[sign(u · x) 6= sign(v · x) and |v · x| ≥ f4(s, n)θ] ≤ c1f1(s, n)θ,

where f4(s, n) = 4β1(2,α)B(−1/α−3,3)
−c1f1(s,n)α3β2(2,α)3 , B(·, ·) is the beta function, α = s/(1 + (n− 2)s), β1(2, α)

and β2(2, α) are given by Lemma 10.

Proof. Let E be the event that we want to bound. Theorem 3 implies that, without loss of generality,
we can focus on the case when n = 2. Then the projected distribution D2 has an α-concave density,
where α = s

1+(n−2)s .

We first claim that each member x of E satisfies ‖x‖ ≥ f4. To see this, without loss of generality,
we assume that v · x is positive. Then for any x ∈ E, u · x < 0, i.e., θ(u, x) ≥ π/2. Hence
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θ(x, v) ≥ θ(u, x)− θ(u, v) ≥ π/2− θ. Since |v · x| ≥ f4θ implies ‖x‖ cos θ(v, x) ≥ f4θ, we must
have ‖x‖ cos(π/2 − θ) ≥ f4θ, namely, ‖x‖ ≥ f4θ/ sin(θ) ≥ f4. Let ball(r) denote the ball of
radius r centered at the origin. This implies that

Pr[E] =

∞∑
i=1

Pr[E ∩ (ball((i+ 1)f4)− ball(if4))].

Denote by f(x1, x2) the α-concave density function of D2. For any term i ≥ 1, by Lemma 10, we
have

Pr[E ∩ (ball((i+ 1)f4)− ball(if4))]

=

∫
(x1,x2)∈ball((i+1)f4)−ball(if4)

1E(x1, x2)f(x1, x2)dx1dx2

≤
∫

(x1,x2)∈ball((i+1)f4)−ball(if4)

1E(x1, x2)β1(2, α)(1− αβ2(2, α)‖x‖)1/αdx1dx2

≤ β1(2, α) (1− αβ2(2, α)if4)
1/α
∫

(x1,x2)∈ball((i+1)f4)−ball(if4)

1E(x1, x2)dx1dx2

≤ β1(2, α) (1− αβ2(2, α)if4)
1/α
∫

(x1,x2)∈ball((i+1)f4)

1E(x1, x2)dx1dx2.

Denote by B1 the unit ball in R2. Notice that∫
(x1,x2)∈ball((i+1)f4)

1E(x1, x2)dx1dx2 ≤ vol(B1)(i+ 1)2f2
4 θ/π.

Thus

Pr[E] ≤
∞∑
i=1

β1(2, α) (1− αβ2(2, α)if4)
1/α vol(B1)(i+ 1)2f2

4 θ/π

≤ 4f2
4

π
vol(B1)β1(2, α)θ

∞∑
i=1

(1− αβ2(2, α)if4)1/αi2

≤ 4f2
4

π
vol(B1)β1(2, α)θ

∫ ∞
0

x2(1− αβ2(2, α)f4x)1/αdx

=
4f2

4

π
vol(B1)β1(2, α)

B(−1/α− 3, 3)

(−αβ2(2, α)f4)3
× θ

= 4β1(2, α)
B(−1/α− 3, 3)

−α3β2(2, α)3f4
× θ.

Choosing f4(s, n) = 4β1(2,α)B(−1/α−3,3)
−c1f1(s,n)α3β2(2,α)3 , the proof is completed.

M Proof of Theorem 14

Before proceeding, we first prove the following lemma which is critical to the proof of Theorem 14.
Lemma 23. For d given by Theorem 9 (a), there exist such that for any isotropic s-concave distribu-
tion D, for any a such that ‖a‖ ≤ 1 and ‖u − a‖ ≤ r, for any 0 < t ≤ d, and for any K ≥ 4, we
have

Pr
X∼Du,t

(|a · x| > K
√
r2 + t2) ≤ 4β1(2, η)

f2(s, n)β2(2, η)

1

η + 1

1− cηβ2(2, η)K

√
1 +

(
t

r

)2


η+1
η

,

where β1(2, η), β2(2, η), and Q(γ), are given by Lemma 10 and Theorem 11, respectively, η =
s

1+(n−2)s , and c is an absolute constant.
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Proof. Without loss of generality, we assume that u = (1, 0, ..., 0). Let a′ = (0, a2, ..., ad) and
X = (x1, x2, ..., xd) ∼ Du,t. So the probability that we want to bound is

Pr
X∼Du,t

(|a · x| > K
√
r2 + t2) =

Prx∼D(|a · x| > K
√
r2 + t2, |x1| ≤ t)

Prx∼D(|x1| ≤ t)
.

According to Theorem 11, there is a function Q(γ) such that the denominator obeys the following
lower bound when t ≤ d:

Pr
X∼D

(|x1| ≤ t) ≥ f2(s, n)t.

So the remainder of the proof is to bound the numerator. Note that we have

Pr
x∼D

(|a · x| > K
√
r2 + t2, |x1| ≤ t) ≤ Pr

x∼D
(|a′ · x| > K

√
r2 + t2 − t, |x1| ≤ t)

≤ Pr
x∼D

(|a′ · x| > (K − 1)
√
r2 + t2, |x1| ≤ t).

Denote by a′′ = a′

‖a′‖ . Define random variable Y as a′′ · x and Z as x1 where x ∼ D. Then the joint
distribution of Y and Z is isotropic β-concave with η = s

1+(n−2)s . Let f(y, z) be the density of such
a distribution. Then we can bound the numerator by

4 Pr
x∼D

(a′ · x > (K − 1)
√
r2 + t2, 0 ≤ x1 ≤ t) = 4 Pr

X∼D
(a′′ · x > (K − 1)

√
r2 + t2

‖a′‖
, 0 ≤ x1 ≤ t)

≤ 4

∫ t

0

∫ ∞
(K−1)

√
r2+t2

‖a′‖

f(y, z)dydz.

By Lemma 10, we note that

f(y, z) ≤ β1(2, η)(1− ηβ2(2, η)
√
y2 + z2)1/η.

Therefore, the numerator can be upper bounded by

4β1(2, η)

∫ t

0

∫ ∞
(K−1)

√
r2+t2

‖a′‖

(1− ηβ2(2, η)
√
y2 + z2)1/ηdydz

≤ 4β1(2, η)

∫ t

0

∫ ∞
(K−1)

√
r2+t2

‖a′‖

(1− ηβ2(2, η)y)1/ηdydz

= 4tβ1(2, η)

∫ ∞
(K−1)

√
r2+t2

‖a′‖

(1− ηβ2(2, η)y)1/ηdy

=
4tβ1(2, η)

β2(2, η)

1

η + 1

(
1− ηβ2(2, η)

(K − 1)
√
r2 + t2

‖a′‖

) η+1
η

.

(5)

Note that ‖a′‖ ≤ r. Finally, we have

Pr
X∼Du,t

(|a · x| > K
√
r2 + t2) ≤ 4β1(2, η)

f2(s, n)β2(2, η)

1

η + 1

(
1− ηβ2(2, η)

(K − 1)
√
r2 + t2

r

) η+1
η

≤ 4β1(2, η)

f2(s, n)β2(2, η)

1

η + 1

(
1− cηβ2(2, η)

K
√
r2 + t2

r

) η+1
η

,

for an absolute constant c.

Theorem 14 (restated) Assume thatD is isotropic s-concave. For d given by Theorem 9 (a), there is an
absoluteC0 such that for all 0 < t ≤ d and for all a such that ‖u−a‖ ≤ r and ‖a‖ ≤ 1, EX∼Du,t [(a·
x)2] ≤ f5(s, n)(r2 + t2), where f5(s, n) = 16 + C0

8β1(2,η)B(−1/η−3,2)
f2(s,n)β2(2,η)3(η+1)η2 , (β1(2, η), β2(2, η)) and

f2(s, n) are given by Lemma 10 and Theorem 11, respectively, and η = s
1+(n−2)s .
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Proof. Denote by z =
√
r2 + t2. Then we have

Ex∼Du,t [(a · x)2] =

∫ ∞
0

Pr
x∼Du,t

[(a · x)2 ≥ z]dz

≤ 16z2 +

∫ ∞
16z2

Pr
x∼Du,t

[(a · x)2 ≥ z]dz

≤ 16z2 +
4β1(2, η)

f2(s, n)β2(2, η)

1

η + 1

∫ ∞
0

(
1− ηβ2(2, η)

c
√
z

r

) η+1
η

dz

= 16z2 +
8β1(2, η)

f2(s, n)β2(2, η)

1

η + 1

∫ ∞
0

y
(

1− ηβ2(2, η)
cy

r

) η+1
η

dy

= 16z2 +
8β1(2, η)

f2(s, n)β2(2, η)

1

η + 1
C0B(−1/η − 3, 2)

r2

η2β2(2, η)2

=

(
16 + C0

8β1(2, η)B(−1/η − 3, 2)

f2(s, n)β2(2, η)3(η + 1)η2

)
r2 + 16t2

≤
(

16 + C0
8β1(2, η)B(−1/η − 3, 2)

f2(s, n)β2(2, η)3(η + 1)η2

)
(r2 + t2),

(6)

where c, C0 are absolute constants.

N Proof of Theorem 15

Theorem 15 (restated) In the realizable case, let D be an isotropic s-concave distribution in Rn.
There exist constants C and c such that for any 0 < ε < 1/4 and δ > 0, Algorithm 2 with bk =

min{Θ(2−kf4f
−1
1 ), d} and mk = C

(
f3bk−1

2−k

(
n log f3bk−1

2−k
+ log 1+s−k

δ

))
, after T = dlog 1

cεe
iterations, outputs a linear separator of error at most ε with probability at least 1− δ.

Proof. We will show by induction that for all k ≤ s, with probability at least 1− δ
2

∑
i<k

1
(1+s−i)2 ,

any w that is consistent with the examples in W (k), e.g. wk, has error at most c2−k.

The case of k = 1 follows from the VC theory (Theorem 30). Assume now that the claim is
true for k − 1. We now consider the kth iteration. Denote by Sk−1 = {x : |wk−1 · x| ≤ bk−1}
and S̄k−1 = {x : |wk−1 · x| > bk−1}. By the induction hypothesis, with probability at least
1− δ

2

∑
i<k−1

1
(1+s−i)2 , any w that is consistent with W (k − 1), including wk−1, has error at most

c2−(k−1). For such a hypothesis w and wk−1, by Theorem 12, we have θ(w,w∗) ≤ cf−1
1 2−(k−1)

and θ(wk−1, w
∗) ≤ cf−1

1 2−(k−1). Thus θ(wk−1, w) ≤ θ(wk−1, w
∗) + θ(w∗, w) ≤ 4cf−1

1 2−k.
So by Theorem 13, there is a choice of band width bk−1 = min{Θ(f4f

−1
1 2−k), d} such that

Pr(sign(w · x) 6= sign(wk−1 · x), x ∈ S̄k−1) ≤ c2−k

4 and Pr[sign(wk−1 · x) 6= sign(w∗ · x), x ∈
S̄k−1] ≤ c2−k

4 . Therefore, Pr[sign(w · x) 6= sign(w∗ · x), x ∈ S̄k−1] ≤ c2−k

2 .

We now consider the case when x ∈ Sk−1. By Algorithm 2, we label mk data points in Sk−1

at the (k − 1)th iteration. So according to the VC theory (Theorem 30), with probability at least
1 − δ/(4(1 + s − k)2), for all w that is consistent with the examples in W (k), err(w|Sk−1) =

Pr[sign(w · x) 6= sign(w∗ · x)|x ∈ Sk−1] ≤ c2−k

2bk−1f3
. Finally, note that Theorem 11 implies that

Pr(Sk−1) ≤ f3bk−1. So we have err(w) = Pr[sign(w ·x) 6= sign(w∗ ·x), x ∈ S̄k−1] + Pr[sign(w ·
x) 6= sign(w∗ · x), x ∈ Sk−1] ≤ c2−k

2 + c2−k

2bk−1f3
× f3bk−1 = c2−k. The proof is completed.

O Proof of Theorem 16

Before proceeding, let `τ (w, x, y) = max{0, 1− y(w · x)/τ}, `τ (w, T )= 1
|T |
∑

(x,y)∈T`τ (w, x, y),
and Lτ (w,D) = Ex∼D`τ (w, x, sign(w∗ · x)). Our analysis will involve the distribution Dw,t
obtained by conditioning D on membership in the band, namely, the set {x : |w · x| ≤ t}.
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Lemma 24. Lτk(w∗,Dwk−1,bk−1
) ≤ κ/6, if κ ≥ 6f3τk

f2bk−1
and bk−1 ≤ d.

Proof. Note that y(w∗ ·x) cannot be negative on any clean example (x, y). So we have `(w∗, x, y) =
max{0, 1 − y(w∗ · x)/τk} ≤ 1 and w∗ pays a non-zero hinge loss only inside the margin {x :
|w∗ · x| ≤ τk}. Thus Lτk(w∗,Dwk−1,bk−1

) ≤ PrDwk−1,bk−1
(|w∗ · x| ≤ τk) = PrD(|w∗ · x| ≤

τk, |wk−1 · x| ≤ bk−1)/PrD(|wk−1 · x| ≤ bk−1). Notice that the numerator can be bounded
by PrD(|w∗ · x| ≤ τk) ≤ f3τk according to Theorem 11. As for the denominator, by Theorem
11 we have PrD(|wk−1 · x| ≤ bk−1) ≥ f2 min{bk−1, d}. So we have Lτk(w∗,Dwk−1,bk−1

) ≤
f3τk/(f2 min{bk−1, d}) ≤ κ/6.

Let P̃k be the noisy distribution of (x, y) where x ∼ Dwk−1,bk−1
and y obeys the adversarial noise

model, and denote by Pk the clean distribution of (x, y) where x ∼ Dwk−1,bk−1
and y = sign(w∗ ·x).

The following key lemma bounds the distance of expected loss w.r.t. the distributions P̃k and Pk.
Lemma 25. There exists an absolute constant c such that for any w ∈ ball(wk−1, rk), we have that∣∣∣E(x,y)∼Pk`(w, x, y)− E(x,y)∼P̃k`(w, x, y)

∣∣∣ ≤ 2
τk

√
ηf5(r2k+b2k−1)

f2bk−1
.

Proof. Denote byN the set of noisy examples. Let P̃ be the noisy distribution of (x, y) where x ∼ D
and y obeys the adversarial noise model. We have∣∣∣E(x,y)∼P̃k [`τk(w∗, x, y)]− E(x,y)∼Pk [`τk(w∗, x, y)]

∣∣∣
≤
∣∣∣E(x,y)∼P̃k [1x∈N (`τk(w∗, x, y)− `τk(w∗, x, sign(w∗ · x)))]

∣∣∣
≤ 2 E(x,y)∼P̃k

[
1x∈N

(
|w∗ · x|
τk

)]
≤ 2

τk

√
Pr

(x,y)∼P̃k
[x ∈ N ]×

√
E(x,y)∼P̃k [(w∗ · x)2] (By Cauchy Schwarz)

≤ 2

τk

√
η

PrP̃(|wk−1 · x| ≤ bk−1)
×
√
f5(r2

k + b2k−1) (By Theorem 14)

≤ 2

τk

√
ηf5(r2

k + b2k−1)

f2bk−1
. (By Theorem 11)

Lemma 26. Denote by W the samples drawn from the noisy distribution P̃k and suppose that |W | =
O
(

[bk−1s+τk(1+ns)
√
n[1−(δ/(

√
n(k+k2)))s/(1+ns)]+τks]

2

κ2τ2
ks

2

(
n+ log k+k2

δ

))
. Then with probability at

least 1− δ
k+k2 , for all w ∈ ball(wk−1, rk), we have∣∣∣E(x,y)∼P̃k`(w, x, y)− `(w,W )

∣∣∣ ≤ κ/16.

Proof. To establish the lemma, we apply some standard VC tools (Theorem 31). Note that the
pseudo-dimension of {`(w, ·) : w ∈ Rn} is at most n [5]. To use Theorem 31, we first provide the
upper bound on the loss. On one hand, note that

`(w, x, y) ≤ 1 +
|w · x|
τk

≤ 1 +
|wk−1 · x|+ ‖w − wk−1‖‖x‖

τk

≤ 1 +
bk−1 + τk‖x‖

τk
.

On the other hand, by Theorem 5 and the union bound, with probability at least 1− δ
k+k2 , we have

that maxx∈W ‖x‖ ≤ C (1+ns)
√
n

s

{
1−

[
δ

6(k+k2)|W |

]s/(1+ns)
}
, for an absolute constant C. The

conclusion then follows from Theorem 31.
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Lemma 27. Let k ≤ dlog(1/(cε))e where c is an absolute constant. If

κ = max
{

f3τk
f2 min{bk−1,d} ,

bk−1

√
f5

τk
√
f2

}
, rk ≤ O(bk−1), η ≤ O(bk−1), mk =

O
(

[bk−1s+τk(1+ns)
√
n[1−(δ/(k+k2))s/(1+ns)]+τks]

2

κ2τ2
ks

2

(
n+ log k+k2

δ

))
, and bk−1 ≤ d, then with

probability at least 1− δ
k+k2 , we have errDwk−1,bk−1

(wk) ≤ κ.

Proof. With probability at least 1− δ
k+k2 , we have

errDwk−1,bk−1
(wk) = errDwk−1,bk−1

(vk)

≤ E(x,y)∼Pk`(vk, x, y)

≤ E(x,y)∼P̃k`(vk, x, y) +
2

τk

√
ηf5(r2

k + b2k−1)

f2bk−1
(By Lemma 25)

≤ `(vk,W ) +
2

τk

√
ηf5(r2

k + b2k−1)

f2bk−1
+

κ

16
(By Lemma 26)

≤ `(w∗,W ) +
4

τk

√
ηf5(r2

k + b2k−1)

f2bk−1
+
κ

8
(Since ‖vk‖ ≥ 1/2)

≤ E(x,y)∼P̃k`(w
∗, x, y) +

4

τk

√
ηf5(r2

k + b2k−1)

f2bk−1
+
κ

4
(By Lemma 26)

≤ E(x,y)∼Pk`(w
∗, x, y) +

6

τk

√
ηf5(r2

k + b2k−1)

f2bk−1
+
κ

4
(By Lemma 25)

≤ 6

τk

√
ηf5(r2

k + b2k−1)

f2bk−1
+
κ

2
(By Lemma 24)

≤ κ,

where the last inequality holds because κτk
√

f2
f5
≥ Θ(bk−1), rk ≤ O(bk−1), and η ≤ O(bk−1).

Now we are ready to prove Theorem 16.

Theorem 16 (restated) Let D be an isotropic s-concave distribution in Rn and the label y obeys
the adversarial noise model. If the rate η of adversarial noise satisfies η < c0ε for some absolute
constant c0, then there exists an absolute constant c such that for any 0 < ε < 1/4 and δ >

0, Algorithm 1 with bk = min{Θ(2−kf4f
−1
1 ), d}, τk = Θ

(
f−2

1 f
−1/2
2 f3f

2
4 f

1/2
5 2−(k−1)

)
, rk =

Θ(2−kf−1
1 ), mk = O

(
[bk−1s+τk(1+ns)

√
n[1−(δ/(k+k2))s/(1+ns)]+τks]

2

κ2τ2
ks

2

(
n+ log k+k2

δ

))
, and κ =

max
{

f3τk
f2 min{bk−1,d} ,

bk−1

√
f5

τk
√
f2

}
, after T = dlog 1

cεe iterations, outputs a linear separator wT such

that Prx∼D[sign(wT · x) 6= sign(w∗ · x)] ≤ ε with probability at least 1− δ.

Proof. The case of k = 1 is obvious. Assume now that the claim is true for k − 1. We now consider
the kth iteration. Denote by Sk−1 = {x : |wk−1 · x| ≤ bk−1} and S̄k−1 = {x : |wk−1 · x| > bk−1}.
By the induction hypothesis, with probability at least 1 − δ

2

∑
i<k−1

1
(1+s−i)2 , wk−1 has error at

most c2−(k−1). Then by Theorem 12, we have θ(wk−1, w
∗) ≤ cf−1

1 2−(k−1). On the other hand,
since ‖wk−1‖ = 1 and vk ∈ B(wk−1, rk), we have θ(wk−1, vk) ≤ rk. This in turn implies
θ(wk−1, wk) ≤ 2−kf−1

1 . So by Theorem 13, there is a choice of band width 2bk−1 = O(f4f
−1
1 2−k)

such that Pr(sign(wk · x) 6= sign(wk−1 · x), x ∈ S̄k−1) ≤ c2−k

4 and Pr[sign(wk−1 · x) 6= sign(w∗ ·
x), x ∈ S̄k−1] ≤ c2−k

4 . Therefore, Pr[sign(wk · x) 6= sign(w∗ · x), x ∈ S̄k−1] ≤ c2−k

2 . Finally,
note that Theorem 11 implies that Pr(Sk−1) ≤ f3bk−1. So we have errD(wk) = Pr[sign(wk · x) 6=
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sign(w∗ · x), x ∈ S̄k−1] + Pr[sign(wk · x) 6= sign(w∗ · x), x ∈ Sk−1] = Pr[sign(wk · x) 6=
sign(w∗ · x), x ∈ S̄k−1] + errDwk−1,bk−1

(wk) Pr(x ∈ Sk−1) ≤ c2−k

2 + κ × f3bk−1 ≤ c2−k = ε,

where the penultimate inequality follows from Lemma 27. The proof is completed.

P Proof of Theorem 17

Theorem 17 (restated) Let D be an isotropic s-concave distribution over Rn. Then for any w∗ ∈ Rn

and r > 0, the disagreement coefficient is Θw∗,D(ε) = O
(√

n (1+ns)2

s(1+(n+2)s)f1(s,n) (1− εs/(1+ns))
)

,

where f1(s, n) is given by Theorem 12. In particular, when s→ 0 (a.k.a. log-concave), Θw∗,D(ε) =
O(
√
n log(1/ε)).

Proof. Consider any unit w such that dD(w,w∗) ≤ r. According to Theorem 12, we have
‖w − w∗‖ < θ(w,w∗) ≤ dD(w,w∗)/f(s) ≤ r/f(s). Thus for any x such that ‖x‖ ≤
O(
√
n 1+ns

s (1− rs/(1+ns))), we have w · x−w∗ · x ≤ ‖w−w∗‖ ‖x‖ < r
√
n 1+ns
sf(s) (1− rs/(1+ns)).

So as soon as |w∗ · x| ≥ r
√
n 1+ns
sf(s) (1 − rs/(1+ns)), we will have sign(w · x) = sign(w∗ · x),

i.e., w and w∗ agree with each other. We now evaluate the probability. By Theorem 11,
Prx∼D

[
|w∗ · x| ≤ r

√
n 1+ns
sf(s) (1− rs/(1+ns))

]
≤ 2 1+ns

1+(n+2)sr
√
n 1+ns
sf(s) (1 − rs/(1+ns)). Moreover,

Prx∼D
[
‖x‖ ≥ c

√
n 1+ns

s (1− rs/(1+ns))
]
≤ Cr by Theorem 5. Thus

capw∗,D(r) ≤
Prx∼D

[
|w∗ · x| ≤ r

√
n 1+ns
sf(s) (1− rs/(1+ns))

]
r

+
Prx∼D

[
‖x‖ ≥ c

√
n 1+ns

s (1− rs/(1+ns))
]

r

= O

(√
n

(1 + ns)2

s(1 + (n+ 2)s)f(s)
(1− rs/(1+ns))

)
.

Therefore, Θw∗,D(ε) = supr≥ε[capw∗,D(r)] = O
(√

n (1+ns)2

s(1+(n+2)s)f(s) (1− εs/(1+ns))
)

.

Q Proof of Theorem 18

Lemma 28. Denote byR the intersections of three origin-centered halfspaces in Rn. Suppose that the
instance x in Rn is drawn from an isotropic s-concave distribution. Then Pr[x ∈ −R] ≤ K Pr[x ∈
R], where K = β1(3, κ)B(−1/κ−3,3)

(−κβ2(3,κ))3
3+1/κ

h(κ)d3+1/κ , β1(3, κ), β2(3, κ), and a(3, κ) are as in Lemma

10, h(κ) =
(

1
d ((2− 2−4κ)−1 − 1) + 1

)1/κ
(4eπ)−3/2

[(
1+β
1+3β

√
3(1 + γ)3/γ22+1/κ

)κ
− 1
]−1/κ

,

d = (1 + γ)−1/γ 1+3β
3+3β , β = κ

1+2κ , γ = κ
1+κ , and κ = s/(1 + (n− 3)s).

Proof. Let u1, u2, and u3 be normals to the hyperplanes bounding the region R, namely R = {x ∈
Rn : u1 · x ≥ 0 and u2 · x ≥ 0 and u3 · x ≥ 0}. Denote by U the linear span of vectors u1, u2, and
u3, and let (e1, e2, e3) be an orthogonal basis of U and (e1, e2, e3, ..., en) be an extension of basis
(e1, e2, e3) to Rn. Represent the components of x, u1, u2, and u3 in term of basis (e1, e2, e3, ..., en)
as

x = (x1, x2, x3, x4, ..., xn),

u1 = (u1,1, u1,2, u1,3, 0, ..., 0),

u2 = (u2,1, u2,2, u2,3, 0, ..., 0),

u3 = (u3,1, u3,2, u3,3, 0, ..., 0).

Denote by projU (x) , (x1, x2, x3) the projection of x onto subspace U , and let projU (R) be the
projection of R onto U . Because the dot products of a point with normal vectors of R are all that is
needed to determine the membership in R, we have

x ∈ R⇔ uj,1x1 + uj,2x2 + uj,3x3 ≥ 0 for all j ∈ {1, 2, 3}
⇔ projU (x) ∈ projU (R).

(7)
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Let f be the density of the isotropic s-concave distribution and g be the marginal density of f w.r.t.
(x1, x2, x3). Thus by (7),

Pr[x ∈ R] =

∫
· · ·
∫
R

f(x1, x2, x3, x4, ..., xn)dx1...dxn

=

∫ ∫ ∫
projU (R)

g(x1, x2, x3)dx1dx2dx3.

Note that f is isotropic and s-concave. So according to Theorem 3, g is isotropic and κ-concave
with κ = s/(1 + (n − 3)s). We now use Theorem 9 and Lemma 10 to bound g. Specifically, let
u , (x1, x2, x3). On one hand, according to Theorem 9 (a) and (d), for any u ∈ R3 such that
‖u‖ ≤ d,

g(u) ≥
(
‖u‖
d

((2− 2−4κ)−1 − 1) + 1

)1/κ

f(0)

>

(
‖u‖
d

((2− 2−4κ)−1 − 1) + 1

)1/κ

(4eπ)−3/2

[(
1 + β

1 + 3β

√
3(1 + γ)3/γ22+1/κ

)κ
− 1

]−1/κ

, ‖u‖1/κh(κ),

where d = (1 + γ)−1/γ 1+3β
3+3β , β = κ

1+2κ , γ = κ
1+κ , and

h(κ) =

(
1

d
((2− 2−4κ)−1 − 1) + 1

)1/κ

(4eπ)−3/2

[(
1 + β

1 + 3β

√
3(1 + γ)3/γ22+1/κ

)κ
− 1

]−1/κ

.

On the other hand, by Lemma 10, for every u ∈ R3,

g(u) ≤ β1(3, κ)(1− κβ2(3, κ)‖u‖)1/κ,

where

β1(3, κ) = (2− 2−4κ)1/κ 1

2π3/2d3
(1− κ)−1/κ3Γ(3/2)

[(
1 + β

1 + 3β

√
3(1 + γ)3/γ22+1/κ

)κ
− 1

]1/κ

,

β2(3, κ) =
2πd2

2
(2− 2−3s)−1/s [(a+ (1− s)β1(3, κ)κ)1+1/κ − a1+1/κ]κ

β1(3, κ)s(1 + κ)(1− κ)
,

and

a = (4eπ)−3κ/2

[(
1 + β

1 + 3β

√
3(1 + γ)3/γ22+1/κ

)κ
− 1

]−1

.

Denote by R′ = projU (R) ∩ ball(0, d), and ball(0, d) is the origin-centered ball of radius d in R3.
Thus we have∫ ∫ ∫

R′
‖u‖1/κh(κ)du1du2du3 ≤ Pr[x ∈ R]

≤
∫ ∫ ∫

projU (R)

β1(3, κ)(1− κβ2(3, κ)‖u‖)1/κdu1du2du3.

Let A ,
∫ ∫

projU (R)∩S2 sinθdϕdθ. Note that∫ ∫ ∫
R′
‖u‖1/κh(κ)du1du2du3 = A

∫ d

0

r2r1/κh(κ)dr = Ah(κ)
1

3 + 1/κ
d3+1/κ,

and ∫ ∫ ∫
projU (R)

β1(3, κ)(1− κβ2(3, κ)‖u‖)1/κdu1du2du3

= Aβ1(3, κ)

∫ ∞
0

r2(1− κβ2(3, κ)r)1/κdr

= Aβ1(3, κ)
B(−1/κ− 3, 3)

(−κβ2(3, κ))3
.
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So we have

Ah(κ)
1

3 + 1/κ
d3+1/κ ≤ Pr[x ∈ R] ≤ Aβ1(3, κ)

B(−1/κ− 3, 3)

(−κβ2(3, κ))3
,

and by symmetry,

Ah(κ)
1

3 + 1/κ
d3+1/κ ≤ Pr[x ∈ −R] ≤ Aβ1(3, κ)

B(−1/κ− 3, 3)

(−κβ2(3, κ))3
.

Therefore,

Pr[x ∈ −R] ≤ Pr[x ∈ R]β1(3, κ)
B(−1/κ− 3, 3)

(−κβ2(3, κ))3

3 + 1/κ

h(κ)d3+1/κ
.

Theorem 18 (restated) In the PAC realizable case, Algorithm 4 outputs a hypothesis
h of error at most ε with probability at least 1 − δ under isotropic s-concave dis-
tribution. The label complexity is M(ε/2, δ/4, n2) + max{2m2/ε, (2/ε

2) log(4/δ)},
where M(ε, δ,m) is defined by M(ε, δ, n) = O

(
n
ε log 1

ε + 1
ε log 1

δ

)
, m2 =

M(max{δ/(4eKm1), ε/2}, δ/4, n), K = β1(3, κ)B(−1/κ−3,3)
(−κβ2(3,κ))3

3+1/κ
h(κ)d3+1/κ , d = (1 + γ)−1/γ 1+3β

3+3β ,

h(κ) =
(

1
d ((2− 2−4κ)−1 − 1) + 1

) 1
κ (4eπ)−

3
2

[(
1+β
1+3β

√
3(1+γ)3/γ22+ 1

κ

)κ
−1
]−1/κ

, β = κ
1+2κ ,

γ = κ
1+κ , and κ = s

1+(n−3)s . In particular, when s → 0 (a.k.a. log-concave), K is an absolute
constant.

Proof. Denote by p the probability of observing a positive example. We discuss the following three
cases.

1. r < m2 and p < ε.

In this case, the hypothesis that labels every examples as negative has error less than ε. Therefore, the
algorithm behaves with error at most ε when r < m2.

2. r < m2 and p ≥ ε.
By the Hoeffding inequality,

Pr(r < m2) ≤ Pr

(
r

m3
<
ε

2

)
≤ Pr

(
r

m3
< p− ε

2

)
≤ e−m3ε

2/2 ≤ δ/4.

So the probability that this case happens is at most δ/4.

3. r ≥ m2.

We note that

err(h) = Pr(−H ′) Pr(Hu ∩Hv| −H ′) + Pr(H ′) Pr(hxor(x) 6= c(x)|x ∈ H ′), (8)

where c : Rn → {−1, 1} is the hypothesis w.r.t. Hu ∩Hv . Observe that

Pr(−H ′) Pr(Hu ∩Hv| −H ′) = Pr(Hu ∩Hv) Pr(−H ′|Hu ∩Hv),

where Pr(−H ′|Hu ∩Hv) is the error of H ′ over the distribution conditioned on Hu ∩Hv . Since the
VC argument works for any distribution, and H ′ contains all r ≥ m2 positive examples according to
Step 5 in Algorithm 4, by the VC argument, with probability at least 1− δ/4,

Pr(−H ′|Hu ∩Hv) ≤ max

{
δ

4(1 + γ)1/γKm1
,
ε

2

}
.

So Pr(−H ′) Pr(Hu ∩ Hv| − H ′) = Pr(Hu ∩ Hv ∩ (−H ′)) ≤ Pr(−H ′|Hu ∩ Hv) ≤
max

{
δ

4(1+γ)1/γKm1
, ε2

}
≤ ε

2 .

We now bound the second term in (8). According to Lemma 28,

Pr((−Hu) ∩ (−Hv) ∩H ′) ≤ K Pr(Hu ∩Hv ∩ (−H ′)) ≤ δ

4(1 + γ)1/γm1
.
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On the other hand, by Lemma 8, Pr(H ′) ≥ (1 + γ)−1/γ with γ = s/(1 + ns). Thus

Pr((−Hu) ∩ (−Hv)|H ′) =
Pr((−Hu) ∩ (−Hv) ∩ (H ′))

Pr(H ′)
≤ δ

4m1
.

That is to say, each point in S has probability at most δ/(4m1) of being in (−Hu) ∩ (−Hv). So
by the union bound, with probability at least 1 − δ/4, none of points in S is in (−Hu) ∩ (−Hv).
Therefore, Step 6 in Algorithm 4 is able to find hxor that is consistent with all the instances in S.
Then by the VC argument, we have

Pr(hxor(x) 6= c(x)|x ∈ H ′) ≤ ε

2
,

with probability at least 1− δ/4. In summary, we have

err(h) = Pr(−H ′) Pr(Hu ∩Hv| −H ′) + Pr(H ′) Pr(hxor(x) 6= c(x)|x ∈ H ′)

≤ ε

2
+
ε

2
= ε,

with failure probability at most δ/4 + δ/4 + δ = δ by the union bound. Therefore, the proof is
completed.

R Proof of Lower Bounds

The proof of our lower bounds essentially depends on a lower bound on the packing number of all
homogeneous linear separators C under distribution D. Remind that the ε-packing number, denoted
byMD(C, ε), is the maximal cardinality of an ε-separated set with classifiers from C, where we sayN
classifiers w1, ..., wN are ε-separated w.r.t. D if dD(wi, wj) , Prx∼D[sign(wi ·x) 6= sign(wj ·x)] >
ε for any i 6= j.

Lemma 29. Suppose that D is s-concave in Rn, and that its covariance matrix is of full rank. Then

for all sufficiently small ε, we have MD(C, ε) ≥
√
n

2

(
f1(s,n)

2ε

)n−1

− 1.

Proof. We begin with proving the lemma in the case of isotropic D. Our proof inspires from proofs
for the special case of uniform and log-concave distributions by [48] and [9], respectively.

Denote by UBALLn the uniform distribution on the sphere in Rn. According to Theorem 12, for any
two unit vectors u and v in Rn we have f1(s, n)θ(u, v) ≤ dD(u, v). Thus for a fixed u the probability
that a uniformly chosen v obeys dD(u, v) ≤ ε is upper bounded by the volume of those points in
the interior of unit ball whose angle is at most ε/f1(s, n) divided by the volume of unit ball in Rn.

By known bound on this ratio [48], we have Prv∈UBALLn [dD(u, v) ≤ ε] ≤ 1√
n

(
2ε

f1(s,n)

)n−1

. So

Pru,v∈UBALLn [dD(u, v) ≤ ε] ≤ 1√
n

(
2ε

f1(s,n)

)n−1

, meaning that if we select a set S of s normalized
vectors uniformly from the unit sphere, the expected number of pairs of vectors that are ε-close in the

sense of dD is at most s2√
n

(
2ε

f1(s,n)

)n−1

. Removing one vector from each pair of S yields a set of

s− s2√
n

(
2ε

f1(s,n)

)n−1

homogeneous linear separators that are ε-separated. The proof for isotropic D

is completed when we set s =
√
n

(2ε/f1(s,n))n−1 .

We now discuss the case when D is non-isotropic. Denote by Σ the covariance matrix of D and
let isotropic D′ be the whitened version of D, namely, the distribution obtained by first sampling x
from D and then computing Σ−1/2x. Notice that dD(u, v) = dD′(uΣ1/2, vΣ1/2). Therefore, we can
apply an ε-packing w.r.t. D′ to construct an ε-packing w.r.t. D′ of the same size.

Now we are ready to prove Theorem 19.

Theorem 19 (restated) For a fixed value− 1
2n+3 ≤ s ≤ 0 we have: (a) For any s-concave distribution

D in Rn whose covariance matrix is of full rank, the sample complexity of learning origin-centered
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linear separators under D in the passive learning scenario is Ω
(
nf1(s,n)

ε

)
; (b) The label complexity

of active learning of linear separators under s-concave distribution is Ω
(
n log

(
f1(s,n)

ε

))
.

Proof. It is known that for any distributionD in Rn, the sample complexity of (passive) PAC learning

of homogeneous linear separators under D is at least n−1
e

(
MD(C,2ε)

4

)1/(n−1)

[48]. By Lemma

29, we have an Ω
(
nf1(s,n)

ε

)
lower bound of sample complexity for passive learning homogeneous

halfspace.

We now discuss the label complexity lower bound in the active learning scenario. By [46], any active
learning algorithm that is allowed to make arbitrary binary queries must take at least Ω(logMD(C, ε))
so as to output a hypothesis of error at most ε with high probability. Applying Lemma 29, we obtain
the desired result.

S Related Algorithms

S.1 Margin Based Active Learning (Realizable Case)

Algorithm 2 Margin Based Active Learning under S-Concave Distributions (Realizable Case)

Input: bk = min{Θ(2−kf4f
−1
1 ), d}, mk = C

(
f3bk−1

2−k

(
n log f3bk−1

2−k
+ log 1+s−k

δ

))
, and T =

dlog 1
cεe.

1: Draw m1 examples from D, label them and put them into W (1).
2: For k = 1, 2, ..., T
3: Find a hypothesis wk with ‖wk‖ = 1 that is consistent with W (k).
4: W (k + 1)←W (k).
5: While mk+1 additional data points are not labeled
6: Draw sample x from D.
7: If |wk · x| ≥ bk
8: Reject x.
9: Else
10: Ask for label of x and put into W (k + 1).
11: End If
12: End While
13: End For
Output: Hypothesis wT .

S.2 Margin Based Active Learning (Adversarial Noise)

Procedure 3 Margin Based Active Learning under S-Concave Distributions (Adversarial Noise)
Input: Parameters bk, τk, rk, mk, κ, and T as in Theorem 16.
1: Draw m1 examples from D, label them and put them into W .
2: For k = 1, 2, ..., T
3: Find vk ∈ ball(wk−1, rk) to approximately minimize the hinge loss over W s.t. ‖vk‖ ≤ 1:

`τk ≤ minw∈ball(wk−1,rk)∩ball(0,1) `τk(w,W ) + κ/8.
4: Normalize vk, yielding wk = vk

‖vk‖ .
5: Clear the working set W .
6: While mk+1 additional data points are not labeled
7: Draw sample x from D.
8: If |wk · x| ≥ bk, reject x; else ask for label of x and put into W .
9: End While
10: End For
Output: Hypothesis wT .
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S.3 Learning Intersections of Halfspaces

Algorithm 4 Learning Intersections of Halfspaces under S-Concave Distributions
Input: Parameters m1, m2, and m3 as in Theorem 18.
1: Draw m3 examples. Denote by r the number of observed positive examples.
2: If r < m2, output the hypothesis that labels every point as negative, and end the algorithm.
3: Learn an origin-centered halfspace H ′ which contains all r positive examples.
4: Draw a set S of m1 i.i.d. examples in H ′. Learn a weight vector w ∈ Rn×n such that the
hypothesis hxor = sign

(∑n
i=1

∑n
j=1 wijxixj

)
is consistent with the set S.

Output: h : Rn → {−1, 1} such that h(x) = hxor(x) if x ∈ H ′; Otherwise, h(x) = −1.

T A Collection of Concentration Results

Theorem 30 ([54, 17]). Denote by C a class of concepts from a set X to {−1, 1} with VC dimension
n. Let c ∈ C, and assume that

M(ε, δ, n) = O

(
n

ε
log

1

ε
+

1

ε
log

1

δ

)
examples x1, ..., xM are sampled from any probability distribution D over X . Then any hypothesis
h ∈ C which is consistent with c on x1, ..., xM has error at most ε, with probability at least 1− δ.

Theorem 31 ([1]). Let F be a set of functions mapping from domain X to [a, b], and let n be the

pseudo-dimension of F . Then for any distribution D over X and m = O
(

(b−a)2

κ2 (d+ log(1/δ))
)

, if
x1, ..., xm are drawn independently from D, with probability at least 1− δ, for all f ∈ F ,∣∣∣∣∣Ex∼Df(x)− 1

m

m∑
i=1

f(xi)

∣∣∣∣∣ ≤ κ.
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