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A Previous Bounds for MDPs and SGs

The techniques we use in this paper are most related to the probably approximately correct (PAC)
analysis for RL algorithms. Some rather complete reviews of the related works are provided in
[19, 9]. [19] considers the average-reward MDP that is communicating with bounded diameter D
(i.e., maxs,s′ minπ T

π
s→s′(M) ≤ D, where Tπs→s′(M) is defined as the expected time to reach from

state s to state s′ under model M and policy π). Their UCRL2 algorithm achieves Õ(DS
√
AT )

regret upper bound, while still having a gap with the Ω(
√
DSAT ) lower bound. These bounds

translate to Õ
(
D2S2A
ε2

)
and Ω

(
DSA
ε2

)
sample complexity. The additional D dependency is resolved

by [22, 9], though in discounted and episodic settings respectively. These two works leverage the
Bellman equation for local variance and obtained sample complexity bounds of order Õ

(
S2A

ε2(1−γ)3

)
and Õ

(
H2S2A
ε2

)
(γ: discount factor, H: fixed horizon length), making their gaps with the lower

bounds Ω
(

SA
ε2(1−γ)3

)
and Ω

(
H2SA
ε2

)
remain only an order of S.

The scenario that most resembles ours in the literature is that considered in [5], who proposed the
algorithm R-MAX. R-MAX is an optimism-based algorithm that can be used to learn stochastic games
with arbitrary opponents. However, the algorithm depends on a parameter ε and the ε-return mixing
time Tε that need to be known in advance. This ε-return mixing time resembles our Dε in Assumption

2. As a result, their Õ
(
T 3
ε S

2A
ε3

)
translates to Õ

(
D3S2A
ε6

)
, while our bound is Õ

(
DS2A
ε3

)
. Another
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difference lies in that the output policy of our algorithm is a stationary one, rather than a Tε-step
non-stationary policy as in R-MAX.

B Inequalities

Lemma B.1. (Azuma-Hoeffding’s inequality. Theorem 4.2 of [6]) Let F1 ⊆ · · · ⊆ FT be a
filtration, and Y1, · · · , YT real random variables such that Yt is Ft-measurable, E(Yt|Ft−1) = 0
and Yt ∈ [At, At + ct] where At is a random variable Ft−1-measurable and ct is a positive constant.
Then with probability at least 1− δ,

T∑
t=1

Yt <

√√√√ log(δ−1)

2

T∑
t=1

c2t .

Lemma B.2. (Bernstein inequality. Lemma 4.4 of [6]) Let F1 ⊆ · · · ⊆ FT be a filtration, and
Y1, · · · , YT real random variables such that Yt is Ft-measurable, E(Yt|Ft−1) = 0 and |Yt| ≤ b for
some b > 0. Let VT =

∑T
t=1E(Y 2

t |Ft−1) and δ > 0. Then with probability at least 1− δ,
T∑
t=1

Yt ≤ 2
√
VT log(Tδ−1) +

√
5b log(Tδ−1).

C Perturbation Bounds for Markov Chains

Perturbation analysis for Markov chains plays an important role in analyzing reinforcement learning
algorithms (e.g., [2]). Those analyses mainly center around the question that when the transition
probabilities of a Markov chain are perturbed by a little, how much stationary distributions or mean
first passage times (as defined in Definition C.1) will change. While in [2], the perturbation bound
for stationary distributions is used, we further use that of the mean first passage time to get a tighter
regret bound.

In this section, we use i, j to index states, and use µi to denote the stationary distribution of state i in
an irreducible Markov chain.
Definition C.1 (Mean first passage time). In a Markov chain, we define Tij to be the expected time
to reach state j starting from state i. In the case i = j, Tii is the expected time to return to state i
when starting from i. Thus Tij ≥ 1 always holds whether i = j or not.

C.1 Perturbation Bounds for Stationary Distribution

Theorem C.2 (Proposition 2.2 of [7]). Let C and C̃ be two irreducible Markov chains with the
same state space S. Let their transition matrices be P , P̃ , and stationary distributions be µ, µ̃. Let
E = P̃ − P and use ‖·‖∞ to represent the largest absolute value in a matrix, then ∀j,

|µ̃j − µj | ≤ µj
S ‖E‖∞

2
max
i6=j

Tij . (7)

With a little modification on the proof of Theorem C.2, we can actually have the following lemma,
which only requires that C be an irreducible Markov chain.

Theorem C.3. Let C be an irreducible Markov chain, and C̃ be some Markov chain with the same
state space S as C. Let their transition matrices be P , P̃ , and let C’s stationary distributions be
µ. Let E = P̃ − P . If ‖E‖∞ < 2/(Smaxi 6=j Tij), then C̃ is also an irreducible Markov chain;
furthermore, the stationary distribution of C̃, µ̃, satisfies ∀j,

|µ̃j − µj | ≤ µj
S ‖E‖∞

2
max
i6=j

Tij . (8)

Proof. Let P ∗ and P̃ ∗ be the Cesaro limits of P and P̃ , which is defined by P ∗ =

limT→∞
1
T

∑T
t=1 P

t−1. Then we have

P ∗(I − P ) = 0, P̃ ∗(I − P̃ ) = P̃ ∗(I − P − E) = 0,
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and thus (P̃ ∗ − P ∗)(I − P ) = P̃ ∗E. If P̃ induces an irreducible Markov chain, P̃ ∗ will have
all identical rows and all positive elements. Suppose not, we can still extract its k-th row, which
corresponds to the stationary distribution when starting from state k. Let this k-th row’s j-th element
be µ̃kj . We can write (µ̃kj − µj)(I − P ) = µ̃kjE. Then following the same proof as in [7] or by [16]’s
Theorem 2.1, we still have

|µ̃kj − µj | ≤ µj
S ‖E‖∞

2
max
i 6=j

Tij

Now since ‖E‖∞ ≤ 2/(Smaxi6=j Tij) and µj > 0 ∀j, we have µ̃kj > 0 ∀j, k. This means that every
state is recurrent and reachable from each other, implying that P̃ induces an irreducible Markov
chain.

C.2 Perturbation Bounds for Mean First Passage Time

The main result of this subsection is stated in Theorem C.9. It is developed with the help of Theorem
C.5 to Theorem C.8.

Definition C.4 (g-inverse, Definition 3.1 of [15]). A g-inverse of a matrix A is any matrix G such
that AGA = A.

Theorem C.5 (Theorem 5.3 of [16]). Let C be an irreducible Markov chain with stochastic matrix
P . Let Tij be the first passage time from state i to state j, and let G be any g-inverse of I − P . We
have

µjTij = Gjj −Gij + δij + µj

n∑
k=1

(Gik −Gjk).

The below theorem introduces a special g-inverse that is convenient for our use.

Theorem C.6 (Theorem 3.3 of [15]). Let P be a stochastic matrix of an irreducible Markov chain.
Let p>n denote the n-th row of P , and en denote the unit column vector with n-th component being 1.
Then I − P + enp

>
n is non-singular, and G = (I − P + enp

>
n )−1 is a g-inverse of I − P .

Theorem C.7 (Section 5 of [16]). Let P̃ be a stochastic matrix of an irreducible Markov chain
perturbed from another stochastic matrix P of an irreducible Markov chain. Suppose that the
perturbation only occurs at the n-th row of P (i.e. p>i = p̃>i ∀i 6= n). Define G as that in Theorem
C.6. Then G = G̃.

Suppose that the perturbation only occurs at the n-th row, and let G = (I − P + enp
>
n )−1. Then

Theorem C.5 and C.7 together imply that for i 6= j,

T̃ij = Tij + (Gij −Gjj)
(

1

µj
− 1

µ̃j

)
, (9)

with Tjj = 1/µj and T̃jj = 1/µ̃j (Corollary 5.3.1 of [16]). Here we see that T̃in = Tin,∀i.
Lemma C.8. Let P be the stochastic matrix of an irreducible Markov chain, and let G = (I −
P + enp

>
n )−1. If all mean first passage times are bounded by D′ (i.e., Tij ≤ D′ ∀i, j), then

|Gij −Gjj | ≤ 2µjD
′ ∀i, j.

Proof. We first verify that

G =

[
(I − Pn)−1 e

0 1

]
, (10)

where Pn is obtained by deleting the n-th row and n-th column of P (without loss of generality,
assume that the n-th row is last row of G).

Directly expanding I − P + enp
>
n , we get

I − P + enp
>
n =

[
(I − Pn) d

0 1

]
,
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where d = (−p1,n,−p2,n, ...,−pn−1,n)>. To verify that (I − P + enp
>
n )−1 takes the form of (10),

one only needs to verify that (I − Pn)e + d = 0. This can be seen by (I − Pn)e = e − Pne =

(1, ..., 1)− (
∑n−1
i=1 p1,i, ...,

∑n−1
i=1 pn−1,i) = −d.

For i 6= n, from G’s expression in (10), we have
n∑
k=1

Gik = e>i Ge = e>i (I − Pn)−1e + 1. (11)

Note that the dimension of ei and e are n in the second expression of (11), while are n − 1 in the
third expression. By [7]’s Equation (2.3), e>i (I − Pn)−1e = Tin. One can also see this by observing
that (I − Pn)−1 = I + Pn + P 2

n + · · · , and e>i P
m
n ej is “the probability of staying at j after m steps

from i, while not visiting n in any of the m steps”. Summing e>i P
m
n ej over j and m, the physical

meaning becomes the mean first passage time from i to n, and the mathematical expression becomes
e>i (I − Pn)−1e. Thus, |

∑n
k=1(Gik − Gjk)| = |Tin − Tjn| ≤ maxij Tij ≤ D′. By Theorem C.5,

whenever i 6= j,

|Gij −Gjj | =
∣∣∣µjTij − µj n∑

k=1

(Gik −Gjk)
∣∣∣ ≤ µjTij + µjD

′ ≤ 2µjD
′.

We now combine (9) with (8) and Lemma C.8. Assuming that Tij ≤ D′, we have for i 6= j,

|T̃ij − Tij |= |Gij −Gjj |
|µ̃j − µj |
µj µ̃j

≤ µj
µ̃j
‖E‖∞ SD′2. (12)

With (8) and (12) available, we now consider a general perturbation, which can actually be decom-
posed as S single-row perturbations.

Theorem C.9. Let P , P̃ be the original and the perturbed stochastic matrices, and let {Tij}, {T̃ij} be

their corresponding mean first passage times. If maxij Tij ≤ D and ‖E‖∞ =
∥∥∥P̃ − P∥∥∥

∞
≤ 1

8DS2 ,

then maxij T̃ij ≤ 2D.

Proof. We do this general perturbation of P by perturbing one row at a time. This procedure will
repeat for S times.

Suppose that the original stationary distribution and first passage times are denoted by µ(0)
i and T (0)

ij ,

and that those after n-th perturbation are denoted by µ̃(n)
i and T̃ (n)

ij .

Suppose that T (0)
ij ≤ D ∀i, j and µ(0)

j ≥ 1
D ∀j. Set ‖E‖∞ ≤

1
8S2D . We prove the following facts by

induction:

T̃
(n)
ij ≤ D

(
1 +

n

S

)
, (13)

µ̃
(n)
j ∈

[
µ̃

(0)
j

(
1− 1

8S

)n
, µ̃

(0)
j

(
1 +

1

8S

)n]
, (14)

for n = 1, ..., S. Since n ≤ S, these induction hypotheses implicitly imply that

T̃
(n)
ij ≤ 2D, (15)

µ̃
(n)
j ≥ µ̃(0)

j

(
1− 1

8S

)S
≥ 1

2D
, (16)

because (1 − 1/(8S))S ≥ 1/2 for all S ≥ 1. Now we start the induction. The base case
for n = 0 clearly holds. Suppose that (13)-(14) hold for all n ≤ k. Then by (8) we have∣∣∣µ̃(k)
j − µ̃

(k+1)
j

∣∣∣ ≤ µ̃
(k)
j

1
8S , so µ̃

(k+1)
j ≥ µ̃

(k)
j

(
1− 1

8S

)
≥ µ̃

(0)
j

(
1− 1

8S

)(k+1)
, and µ̃

(k+1)
j ≤
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µ̃
(k)
j

(
1 + 1

8S

)
≤ µ̃(0)

j

(
1 + 1

8S

)(k+1)
. On the other hand, by (12), for i 6= j, we have T̃ (k+1)

ij −T̃ (k)
ij ≤

µ̃
(k)
j

µ̃
(k+1)
j

‖E‖∞ (2D)2 ≤ 1
1− 1

8S

1
8S2DS(2D)2 ≤ D

S , so T̃ (k+1)
ij ≤ T̃

(k)
ij + D

S ≤ D
(
1 + k+1

S

)
. In the

case i = j, we have T̃ (k+1)
jj − T̃ (k)

jj = 1

µ̃
(k+1)
j

− 1

µ̃
(k)
j

≤ (1+ 1
8S )−1

µ̃
(k)
j

≤ 2D
8S ≤

D
S .

D Lemmas for Failing Events

Lemma D.1 (Proposition 18 of [19]). The number of phases is upper bounded by Umax = SA log2 T .

Proof. Since phase changes only occur when the sample count of some (s, a1, a2) is doubled, those
changes corresponding to a specific (s, a1, a2) is upper bounded by log2 T . Considering all states
and actions, the total number of phase changes is upper bounded by SA log2 T .

Lemma D.2 (Lemma 17 of [19]). For some specific k, s and a, the event p(·|s, a) ∈
CONF1(p̂k(·|s, a), nk(s, a)) holds with probability at least 1− δ1.

Proof. Please refer to [19].

Lemma D.3 (Lemma 1 of [9], Theorem 10 and 11 of [25]). For some specific k, s and a, the event
p(·|s, a) ∈ CONF2(p̂k(·|s, a), nk(s, a)) holds with probability at least 1− Sδ1.

Proof. Please refer to [9] or [25].

Proof of Lemma 4.2. By Lemma D.1, there are at most SA log2 T confidence set updates to consider.
Each update involves only a specific p̂(·|s, a) (totally S entries). By Lemma D.2, D.3 and using the
union bound, the event M ∈Mk∀k holds with probability at least 1− SA log2 T × (δ1 + Sδ1) ≥
1− δ.

E Lemmas for Stationary Optimal Policies

Theorem E.1. Given a stochastic game M = (S,A, r, p), where S is countable, A = A1 ×A2 a
compact metric space and both r(s, ·) ∈ [0, 1] and p(s′|s, ·) are continuous in a = (a1, a2). Suppose
Assumption 2 holds for M . Then there exist maximin stationary policies π∗ = (π1∗, π2∗) for the
two-player zero-sum stochastic game, the maximin stationary policies attain the game value ρ∗,
which is independent of the initial state, and there is a bounded function h(·) which together with ρ∗
satisfies the following Bellman equation. That is, for all state s,

ρ∗ + h(s) = max
π1∈ΠSR

{
r(s, π1, π2∗) +

∑
s′

p(s′|s, π1, π2∗)h(s′)
}

ρ∗ + h(s) = min
π2∈ΠSR

{
r(s, π1∗, π2) +

∑
s′

p(s′|s, π1∗, π2)h(s′)
}
.

To prove this, we use the following lemma which connects the boundedness of mean first passage
times with the uniform boundedness of sp(V ∗α (·)) for all discount factor 0 < α < 1, where V ∗α (·)
is the discounted game value defined as V ∗α (s) = maxπ1 minπ2 E

π1,π2 [∑∞
t=1 α

t−1rt|s1 = s
]
. It

is known that for any discount factor 0 < α < 1, discounted SGs always have maximin stationary
policies πα = (π1

α, π
2
α) which attain the game value V ∗α (s) for all s. We next show that the span of

V ∗α is uniformly bounded by D under Assumption 2.

Lemma E.2. [14] Suppose given a stochastic game M = (S,A, r, p), where 0 ≤ r(s, a1, a2) ≤ 1.
Suppose ∀s, s′ ∈ S and for any π2 ∈ ΠSR for Player 2, there exists a π1 ∈ ΠSR for Player 1 such
that the mean first passage time Tπ

1,π2

s,s′ ≤ D. Then we have |V ∗α (s)− V ∗α (s′)| ≤ D, ∀s, s′ ∈ S , for
all 0 < α < 1.
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Proof. Fix s, s′ ∈ S. Fix a discount factor 0 < α < 1. For a fixed pair of maximin station-
ary policies πα = (π1

α, π
2
α) ∈ ΠSR × ΠSR, the discounted value function satisfies V ∗α (s) =

r(s, π1
α, π

2
α) + α

∑
s′ p(s

′|s, π1
α, π

2
α)V ∗α (s′). Since for any π1 ∈ ΠSR, V ∗α (s) ≥ r(s, π1, π2

α) +
α
∑
s′ p(s

′|s, π1, π2
α)V ∗α (s′), thus recursively, for any time step T ≥ 1, we have

V ∗α (s) ≥ Eπ
1,π2

α
s

[ T−1∑
t=1

αt−1rt + αT−1V ∗α (sT )
]
,

where Eπ1,π2

s [·] = Es [·|π1, π2] denote the expectation conditioned on initial state being s, and the
players executing the policy pair (π1, π2). Hence for any stopping time τ ,

V ∗α (s) ≥ Eπ
1,π2

α
s

[ τ−1∑
t=1

αt−1rt + ατ−1V ∗α (sτ )
]
.

In particular, by choosing τ as the hitting time of s′ from s,

V ∗α (s) ≥ Eπ
1,π2

α
s

[ τ−1∑
t=1

αt−1rt

]
+ Es

[
ατ
∣∣∣π1, π2

α

]
V ∗α (s′)

≥ αEs
[
τ
∣∣π1,π2

α

]
V ∗α (s′) = αT

π1,π2
α

s→s′ V ∗α (s′)

≥ V ∗α (s′)− (1− α)(T
π1,π2

α

s→s′ )V ∗α (s′)

≥ V ∗α (s′)− Tπ
1,π2

α

s→s′

≥ V ∗α (s′)−D.
For the first inequality we used Vα(sτ ) = Vα(s′) and for the second, the non-negativity of r(s, a)
and Jensen’s inequality. The equality holds since the expected value of hitting time is the mean first
passage time Tπ

1,π2
α

s→s′ . The third inequality is essentially αx ≥ (α − 1)x + 1 for x ≥ 1; the fourth
(1− α)Vα ≤ 1. For the last inequality we used the assumption that there exists some π1 for which

T
π1,π2

α

s→s′ ≤ D.

Lemma E.3. [12] Suppose |V ∗α (s)− V ∗α (s′)| is uniformly bounded for all 0 < α < 1 and for any
s, s′ ∈ S. Then there exist a pair of maximin stationary policies π = (π1∗, π2∗) attaining the game
value ρ∗ which is independent of the initial state and a bounded function h(·) for which the following
equations hold. For all state s,

ρ∗ + h(s) = max
π1∈ΠSR

{
r(s, π1, π2∗) +

∑
s′

p(s′|s, π1, π2∗)h(s′)
}
,

ρ∗ + h(s) = min
π2∈ΠSR

{
r(s, π1∗, π2) +

∑
s′

p(s′|s, π1∗, π2)h(s′)
}
.

Proof. For any discount factor 0 < α < 1,

V ∗α (s) = max
π1
{r(s, π1, π2

α) + α
∑
s′

p(s′|s, π1, π2
α)V ∗α (s′)},

V ∗α (s) = min
π2
{r(s, π1

α, π
2) + α

∑
s′

p(s′|s, π1
α, π

2)V ∗α (s′)}.

Subtracting both sides by V ∗α (s1) for some fixed state s1, and defining vα(s) := V ∗α (s) − V ∗α (s1),
we get, for all s,

vα(s) = max
π1
{r(s, π1, π2

α)− (1− α)V ∗α (s1) + α
∑
s′

p(s′|s, π1, π2
α)vα(s′)},

vα(s) = min
π2
{r(s, π1

α, π
2)− (1− α)V ∗α (s1) + α

∑
s′

p(s′|s, π1
α, π

2)vα(s′)}.

Since −D ≤ vα(s) ≤ D, 0 ≤ (1 − α)V ∗α (s1) ≤ 1 and πiα ∈ ΠSR, (i = 1, 2), all of which
are contained in compact subsets/spaces, by using diagonalization argument and by Lebesgue
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Algorithm 2 Value Iteration with Schweitzer transform
Input: M = (S,A1 ×A2, r, p), 0 < γ < 1, 0 < α < 1.
Initialization: v0 ≡ 0.
repeat for i = 1, 2, ...
vi = (1− α) val

{
r + Pvi−1

}
+ αvi−1.

until sp (vi − vi−1) ≤ (1− α)γ.

convergence theorem, we can obtain a sequence αk → 1, a bounded function h, and a constant ρ∗
such that vαk(·)→ h(·), (1− αk)V ∗αk(s1)→ ρ∗, πiαk → πi∗, (i = 1, 2), and

αk
∑
s′

p(s′|s, π1, π2
αk

)vαk(s′)→
∑
s′

p(s′|s, π1, π2∗)h(s′),

αk
∑
s′

p(s′|s, π1
αk
, π2)vαk(s′)→

∑
s′

p(s′|s, π1∗, π2)h(s′),

as k →∞. Hence in the limit, for all state s,

ρ∗ + h(s) = max
π1∈ΠSR

{
r(s, π1, π2∗) +

∑
s′

p(s′|s, π1, π2∗)h(s′)
}
,

ρ∗ + h(s) = min
π2∈ΠSR

{
r(s, π1∗, π2) +

∑
s′

p(s′|s, π1∗, π2)h(s′)
}
.

F MAXIMIN-EVI and Its Convergence

As noted in Section 4.1, MAXIMIN-EVI proceeds simply by applying value iteration (Algorithm
2) on M+. The output of the algorithm is a value vector with tolerable errors. The val{r + Pvi−1}
term in Algorithm 2 becomes

val
{
r(s, a1+, a2) +

∑
s′

p+(s′|s, a1+, a2)vi−1(s′))
}

= val
{
r(s, a1, a2) + max

p̃(·)∈Pk(s,a1,a2)

∑
s′

p̃(s′)vi−1(s′))
}
. (17)

The inner maximization can be efficiently solved with linear programming. The
MAXIMIN-EVI(Mk, γk) in UCSG is then done by running Algorithm 2 with the evaluation of (17)
in every iteration.

The following three lemmas characterize the convergence of the algorithm, and the properties of its
outputs when converged. Lemma F.1 gaurantees that MAXIMIN-EVI converges. Lemma F.2 shows
that when the algorithm halts, the output policy’s worst-case average reward does not deviate from
the maximin reward by more than γ. Lemma F.3 shows that the output value vector has a span no
more than D.

Lemma F.1 (Theorem 4 in [34]). Suppose that Assumption 2 holds for some SGM . Then performing
Value Iteration with Schweitzer transform on M converges asymptotically.

Proof of Lemma F.1. If Assumption 2 holds, then the Bellman equation holds with an initial-state
independent game value by Theorem E.1. Then by Theorem 4 of [34], the value iteration with
Schweitzer transform converges.

Lemma F.2. Suppose that Assumption 2 holds for some stochastic game M . Let {vi} be the
value sequence in the Value Iteration algorithm. Let N be the index when iteration halts, i.e.,
sp(vN+1 − vN ) ≤ (1 − α)γ. Let π1 := solve1 {r + PvN}. Then π1 is γ-optimal in the sense that
minπ2 ρ(M,π1.π2) ≥ ρ∗(M)− γ.
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Proof of Lemma F.2. Let D = mins{vN+1(s)− vN (s)} and U = maxs{vN+1(s)− vN (s)}. Then
De + vN ≤ vN+1 = (1− α) val{r + PvN}+ αvN ≤ (1− α)(rπ + PπvN ) + αvN ,

where π = (π1, π2) for any π2 ∈ ΠSR. Let P ∗π = limT→∞
1
T

∑T
t=1 P

t−1
π be the Cesaro limit of Pπ .

Applying it on both sides of the inequality, we get De ≤ (1 − α)P ∗πrπ = (1 − α)ρ(M,π1, π2, ·),
or D ≤ (1 − α)ρ(M,π1, π2, s), ∀s, π2. Let π∗ = (π1∗, π2∗) be the optimal policy pair and
ρ∗(M) be their maximin value, then D ≤ (1− α)ρ(M,π1, π2∗, s) ≤ (1− α)ρ∗(M). In a similar
way, one can prove that U ≥ (1 − α)ρ∗(M). Since we assume U − D ≤ (1 − α)γ, we have
D ≥ (1 − α)(ρ∗(M) − γ). Therefore, π1 is γ-optimal in the sense that ∀π2, ρ(M,π1, π2, s) ≥
ρ∗(M)− γ.

Lemma F.3. If Assumption 2 holds for some model M , then value iteration procedure in Algorithm
2 will always produce value functions with spans bounded by D. That is,

sp (vi) ≤ D, ∀i.

Proof. Note that value iteration with Schweitzer transform is equivalent to the following procedure.
First modify the transition kernel and reward by pα(s′|s, a1, a2) = (1− α)p(s′|s, a1, a2) + αδs,s′

and rα(s, a1, a2) = (1− α)r(s, a1, a2) + α0; then do the normal value iteration by vi = val{rα +
Pαvi−1}. By the principle of dynamic programming, vi is the maximin expected reward in the i-step
game under the transformed model.

The transformed model is equivalent to the system where at each time step, the state remains same as
the previous one with probability α, and within that step there is no reward obtained/paid.

Clearly, in this new game, the advantage of starting from state s than starting from state s′ (which
can be calculated by vi(s)− vi(s′)) is no more than that in the original game. In the original game,
by a similar argument as Remark 8 in [19], this advantage difference is bounded by D. This then
implies the argument in the lemma.

G Proof of Lemma 5.2

Lemma 5.2 directly follows from Lemma G.1 and G.2.

In this proof, we borrow the technique used in [22] and [9] to bound the number of steps with
inaccurate transition probabilities (while they use this technique to bound the number of steps with
inaccurate game value). Note here again that πt(·) can represent any history-dependent policy, and
we hide its parameter Ht = (s1, a1, r1, ..., st) inside the subscript of t.

Define the importance of a joint action a at time t as

ιt(a) := max

{
zj : zj ≤

πt(a)

wmin

}
,

and the its knownness as

κt(a) := max

{
zj : zj ≤

nk(t)(st, a)

mπt(a)

}
,

with z1 = 0, zj = 2j−2 ∀j = 2, 3, ..., and some pre-defined wmin > 0, m > 0. Note that we can
always define them in hindsight even though the learner does not know π2

t . These two amounts make
partitions to the action set available at st. The partitioning is based on the actions’ probability of being
selected at time t (i.e., πt(a)), and the accuracy it has been estimated (the larger nk(t)(st, a), the more
accurate). Intuitively, the larger κt(a), the less likely will action a contribute to inaccurate transition
probability estimation. Define the partitions by Xt,κ,ι := {a : κt(a) = κ and ιt(a) = ι}, ∀κ, ι.

If we let wmin = ε

3
√

2 ln(1/δ)A
and m =

5 log2
2(T/wmin) ln(1/δ)

ε2 , with some 0 < ε < 1, we can prove

the following lemmas.
Lemma G.1. For any s, any κ and any ι > 0, with probability at least 1− δ,

T∑
t=1

1st=s1|Xt,κ,ι|>κ = O
(
A log2

2(T/wmin) ln(1/δ)

ε2

)
.

Lemma G.2. If for all κ and all ι > 0 we have |Xt,κ,ι| ≤ κ, then for any plausible p̃ in the
confidence setMk(t), |p̃(s′|st, πt)− p(s′|st, πt)| ≤ ε for all s′.
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G.1 Proof of Lemma G.1

We prove Lemma G.1 with the help of Lemma G.3 and G.4.

Lemma G.3. For any s, κ, and ι > 0,
∑T
t=1 1st=s1at∈Xt,κ,ι ≤ 6Am(κ+ 1)ιwmin.

Proof. First fix a. By the definition of importance, if a ∈ Xt,κ,ι, then ιwmin ≤ πt(a) < 2ιwmin.
In the case κ > 0, we also have mκπt(a) ≤ nk(t)(st, a) < 2mκπt(a). They two together imply
mκιwmin ≤ nk(t)(st, a) < 4mκιwmin. This last inequality says that any (s, a) cannot be sampled
in the partition (κ, ι) for more than about 3mκιwmin times. This is because when (s, a) is sampled
once (i.e., st = s, at = a), nk(t)(s, a) will be increased by one, and this cannot happen for more than
4mκιwmin −mκιwmin times while (s, a) ∈ Xt,κ,ι. Since UCSG only updates nk(s, a) when new
phases start and doubling the sample count of a state-action triple incurs a phase change, we use a
more conservative bound of 6mκιwmin. That is, we have

T∑
t=1

1st=s1at=a1a∈Xt,κ,ι ≤ 6mκιwmin. (18)

In the case κ = 0, we have nk(t)(st, a) < mπt(a) < 2mιwmin. Thus similarly, the sample counts
of (s, a) in the partition (κ, ι) cannot exceed 4mιwmin. The cases of κ > 0 and κ = 0 can then be
combined into a single one:

T∑
t=1

1st=s1at=a1a∈Xt,κ,ι ≤ 6m(κ+ 1)ιwmin. (19)

Summing (19) over all actions leads to the statement in the lemma.

Now we sketch the argument of the next lemma. When ι > 0, each action in Xt,κ,ι are to be
sampled with probability no less than ιwmin. If furthermore |Xt,κ,ι| is large, the probability that
some a ∈ Xt,κ,ι is sampled will be also large. However by Lemma G.3, the total times elements in
partition (κ, ι) are sampled are upper bounded. Therefore, we can conclude that |Xt,κ,ι| cannot be
large for too many steps. Formally, we have
Lemma G.4. With probability at least 1− δ,

T∑
t=1

1st=s1at∈Xt,κ,ι ≥
1

2
(κ+ 1)ιwmin

T∑
t=1

1st=s1|Xt,κ,ι|>κ −
9

2
log(Tδ−1).

Proof. To prove Lemma G.4, we need the help of Lemma B.2.

Let Ft−1 = Ht = (s1, a1, r1 · · · , st−1, at−1, rt−1, st) and

Yt = qt − 1st=s1|Xt,κ,ι|>κ1at∈Xt,κ,ι ,
where we define

qt := 1st=s1|Xt,κ,ι|>κ Pr
{
at ∈ Xt,κ,ι

∣∣∣st = s, |Xt,κ,ι| > κ
}
.

Then Lemma B.2’s conditions are met with b = 1. Moreover,

VT =

T∑
t=1

qt(1− qt) ≤
T∑
t=1

qt.

Substituting them into Lemma B.2 and rearraging terms, we get that with probability ≥ 1− δ,
T∑
t=1

1st=s1|Xt,κ,ι|>κ1at∈Xt,κ,ι ≥
(∑T

t=1 qt

)
− 2

√(∑T
t=1 qt

)
log(Tδ−1)−

√
5 log(Tδ−1).

Solving the above inequality with respect to
√∑T

t=1 qt, we can bound with probability ≥ 1− δ that

T∑
t=1

1st=s1|Xt,κ,ι|>κ1at∈Xt,κ,ι ≥
1

2

T∑
t=1

qt −
9

2
log(Tδ−1). (20)
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Finally we look at qt. Since each action in Xt,κ,ι are drawn at time t with probability at least ιwmin,
we have

qt ≥ 1st=s1|Xt,κ,ι|>κ
(∑

a∈Xt,κ,ι ιwmin

)
≥ (κ+ 1)ιwmin1st=s1|Xt,κ,ι|>κ. (21)

Combining (20), (21), and noting that 1st=s1at∈Xt,κ,ι ≥ 1st=s1|Xt,κ,ι|>κ1at∈Xt,κ,ι concludes the
proof.

Proof of Lemma G.1. Combining Lemma G.3 and G.4, we have

T∑
t=1

1st=s1|Xt,κ,ι|>κ ≤ 12Am+
9

(κ+ 1)ιwmin
(22)

with probability no less than 1− δ. The lemma is then proved by substituting the selection of m and
wmin into (22), and using κ+ 1 ≥ 1, ι ≥ 1.

G.2 Proof of Lemma G.2

Proof of Lemma G.2.

|p̃(s′|st, πt)− p(s′|st, πt)| ≤
∑
a

πt(a)|p̃(s′|st, a)− p(s′|st, a)|

≤
√

2 ln
1

δ1

 ∑
a:ιt(a)=0

√
πt(a)2

nk(t)(st, a)
+
∑
κ,ι:
ι>0

∑
a∈Xt,κ,ι

√
πt(a)2

nk(t)(st, a)



≤
√

2 ln
1

δ1

Awmin +
∑
κ,ι:
ι>0

√√√√|Xt,κ,ι|
∑

a∈Xt,κ,ι

πt(a)2

nk(t)(st, a)


≤
√

2 ln
1

δ1

Awmin +
∑
κ,ι:

ι>0,κ>0

√√√√κ
∑

a∈Xt,κ,ι

πt(a)

mκ


≤
√

2 ln
1

δ1

Awmin +

√√√√|K × I| ∑
κ,ι:

ι>0,κ>0

∑
a∈Xt,κ,ι

πt(a)

m


≤
√

2 ln
1

δ1

(
Awmin +

√
|K × I|
m

)
,

where K and I are the set of effective κ’s and ι’s in the above summation (only partitions with ι > 0

and κ > 0 are relevant). By definition, there are at most log2

(
1

wmin

)
different values of ι for ι > 0,

and log2

(
T

mwmin

)
≤ log2

(
T

wmin

)
different values for κ > 0 when ι > 0. The second inequality is

by the definition of the confidence set; the third and the fifth are by Cauchy’s inequality; the fourth is
by the assumption of the lemma. Substituting the values of wmin and m into the last expression, we
can get the desired result.

H Proofs of Lemma 5.1 and 5.3

To prove Lemma 5.1 and 5.3, the following lemma is a useful tool. In the following texts, we let
vk(s) :=

∑tk+1−1
t=tk

1st=s, and write the joint policy (π1
k, π̄

2
k) as π̄k.

Lemma H.1. Let v ≥ 1. Then ∀s, with high probability,
∑
k Tk1vk(s)≤v = Õ(vDSA).

Proof. Under Assumption 1, the times a state is visited within an interval of length D is in average
no less than 1 (no matter what policies the players play). Consider any arbitrarily chosen time frame
[τ, τ ′) ⊂ [1, T ]. In this time frame, there are b τ

′−τ
2D c intervals each with length 2D. By Markov’s
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inequality, the probability s is visited at least once within each interval is lower bounded by 1
2 . With

Azuma-Hoeffding’s inequality, we have with probability at least 1− δ
T 2 that

τ ′−1∑
t=τ

1st=s ≥
1

2

⌊τ ′ − τ
2D

⌋
−

√⌊τ ′ − τ
2D

⌋
log

(
T 2

δ

)
≥ 1

4

⌊τ ′ − τ
2D

⌋
− 4 log

(
T 2

δ

)
≥ 1

4

τ ′ − τ
2D

− 1

4
− 4 log

(
T 2

δ

)
, (23)

where the second inequality is easily verified by substracting RHS from LHS, and the third inequality
is by the property of the floor function. Using an union bound over all possible τ and τ ′, we get that
(23) holds for all τ, τ ′ with probability at least 1− δ.

Now apply (23) to all phases k with vk(s) ≤ v, and sum all of them up. Then we get∑
k:vk(s)≤v

vk(s) ≥
∑

k:vk(s)≤v

(
Tk
8D
− 1

4
− 4 log

(
T 2

δ

))
or ∑

k:vk(s)≤v

Tk ≤ 8D
∑

k:vk(s)≤v

(
vk(s) +

1

4
+ 4 log(T 2/δ)

)
. (24)

Since there are at most SA log2 T phases, the RHS of (24) is further bounded by(
8vD + 2D + 32D log(T 2/δ)

)
SA log2 T , which proves this lemma.

Proof of Lemma 5.1. π̄2
k is not well-defined if and only if there is a s such that vk(s) =∑tk+1−1

t=tk
1st=s = 0. The proof is done by simply applying Lemma H.1 with v = 1 together

with a union bound over all states s.

We prove Lemma 5.3 by proving the following Lemma H.2 and H.3.
Lemma H.2.∑

k

Tk1{π̄2
k is well-defined}1

{
∃s, µ(M, π̄k, s) >

2vk(s)

Tk

}
≤ Õ(D3S4A) with high probability.

Lemma H.3.∑
k

Tk1{π̄2
k is well-defined}1

{
sp(h(M1

k , π̄k, ·)) > 2D
}
≤ Õ(D3S5A) with high probability.

H.1 Proof of Lemma H.2

Proof of Lemma H.2. This lemma says, the stationary distribution of the irreducible Markov chain
induced by π1

k and π̄2
k won’t exceed the empirical distribution too much in most steps. To prove

Lemma H.2, we will compare three transition probabilities:

p̄k(s′|s) := p(s′|s, π1
k, π̄

2
k) =

∑tk+1−1
t=tk

1st=sp(s
′|s, π1

k, π
2
t )∑tk+1−1

t=tk
1st=s

,

p̂k(s′|s) :=

∑tk+1−1
t=tk

1st=s1st+1=s′∑tk+1−1
t=tk

1st=s

,

p̃k(s′|s) :=

∑tk+1−2
t=tk

1st=s1st+1=s′ + 1stk+1−1=s1stk=s′∑tk+1−1
t=tk

1st=s

,

and use perturbation analysis to claim that when they are close enough, the stationary distributions
they induce will also be close. Here, p̂k is constructed by counting empirical transitions. p̃k is
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only slightly modified from p̂k: the last term in the numerator changes from 1stk+1−11stk+1
to

1stk+1−11stk
. Under the condition that π̄2

k is well-defined,
∑tk+1−1
t=tk

1st=s 6= 0 ∀s, which means that
p̃k has non-zero probability to reach any states from any states, hence inducing an irreducible Markov
chain. p̄k also induces an irreducible Markov chain by Assumption 1. We denote the stationary
distributions corresponding to p̄k and p̃k by µ̄k and µ̃k.

We will see that µ̃k is exactly the same as the empirical distribution (i.e., µ̃k(s) = vk(s)
Tk

). By Theorem
C.2, when two transition probabilities are close enough, their stationary distributions will also be
close. We will argue that except for a constant amount of steps, |p̄k(s′|s) − p̂k(s′|s)| ≤ 1

2DS and
|p̂k(s′|s)− p̃k(s′|s)| ≤ 1

2DS hold for all s, s′. When they both hold, we can use Theorem C.2 with
‖E‖∞ = maxs,s′ |p̄k(s′|s) − p̃k(s′|s)| ≤ 1

DS and bound |µ̄k(s) − µ̃k(s)| ≤ 1
2 µ̄k(s). This will

directly imply µ̄k(s) ≤ 2µ̃k(s) = 2vk
Tk

.

From the discussion above, Lemma H.2 is proved as long as the three following lemmas (Lemma
H.4, H.5, H.6) are proved.

Lemma H.4.∑
k

Tk1{π̄2
k is well-defined}1

{
∃s, s′, |p̄k(s′|s)− p̂k(s′|s)| > 1

2DS

}
≤ Õ(D3S4A) w.h.p.

Lemma H.5.∑
k

Tk1{π̄2
k is well-defined}1

{
∃s, s′, |p̂k(s′|s)− p̃k(s′|s)| > 1

2DS

}
≤ Õ(D2S3A) w.h.p.

Lemma H.6.

µ̃k(s) =
vk(s)

Tk
.

Proof of Lemma H.4. Fix s, s′, and k. Consider the martingale difference sequence defined by
Yt := 1st=s

(
p(s′|s, π1

k(t), π
2
t )− 1st+1=s′

)
, where k(t) denotes the phase to which time step t

belongs. By Lemma B.2, for any τ ≤ T + 1, with probability at least 1− 2δ/T ,∣∣∣∣∣
τ−1∑
t=tk

Yt

∣∣∣∣∣ ≤ 2
√
Vtk,τ log(T 2δ−1) +

√
5 log(T 2δ−1). (25)

Here Vtk,τ =
∑τ−1
t=tk

qt(1− qt) ≤
∑τ−1
t=tk

qt ≤
∑τ−1
t=tk

1st=s where qt := 1st=sp(s
′|s, π1

k(t), π
2
t ) ≤

1st=s. With an union bound, we have that (25) holds for all τ with probability at least 1− 2δ. Now
pick τ to be tk+1, and thus Vtk,tk+1

≤
∑tk+1−1
t=tk

1st=s = vk(s). Then we have

|p̄k(s′|s)− p̂k(s′|s)| =

∣∣∣∣∣
∑tk+1−1
t=tk

1st=s(p(s
′|s, π1

k, π
2
t )− 1st+1=s′)

vk(s)

∣∣∣∣∣
≤ 2

√
log(T 2δ−1)

vk(s)
+

√
5 log(T 2δ−1)

vk(s)

with probability at least 1− 2δ. Another union bound over s′ lets the above inequality holds for all s′
with probability at least 1− 2Sδ.

We need about vk(s) ≥ 25D2S2 log(T 2δ−1) to make |p̄k(s′|s)− p̂k(s′|s)| ≤ 1
2DS ∀s

′ in the above
inequality. By Lemma H.1, we see that the number of steps not satisfying this condition is upper
bounded by Õ(D3S3A). Another union bound over s proves the lemma.

Proof of Lemma H.5. By the construction of p̃k, |p̃k(s′|s) − p̂k(s′|s)| ≤ 1
vk(s) ∀s

′. Again, we use

Lemma H.1 and set the threshold v = Θ̃(2DS) to make |p̃k(s′|s)− p̂k(s′|s)| ≤ 1
2DS ∀s

′. By Lemma
H.1, this will hold except for Õ(D2S2A) steps. An union bound over states leads to the Õ(D2S3A)
bound.
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Proof of Lemma H.6. We only need to check whether the equation µ̃k(s′) =
∑
s µ̃k(s)p̃k(s′|s) holds

for all s, s′. Indeed,

∑
s

µ̃k(s)p̃k(s′|s) =
∑
s

vk(s)

Tk

∑tk+1−2
t=tk

1st=s1st+1=s′ + 1stk+1−1=s1stk=s′

vk(s)

=

∑tk+1−2
t=tk

1st+1=s′ + 1stk=s′

Tk
= µ̃k(s′).

H.2 Proof of Lemma H.3

Proof of Lemma H.3. By Assumption 1, the maximum mean first passage time under model M
and policy pair (π1

k, π̄
2
k) does not exceed D, i.e., Tπ

1
k,π̄

2
k(M) ≤ D. Then by Theorem C.9, we

know that if all transition probabilities in the Markov chain induced by (M1
k , π

1
k, π̄

2
k) is perturbed

from that induced by (M,π1
k, π̄

2
k) within the amount of 1

8DS2 , the former’s maximum mean first
passage time can be bounded by two times the latter’s, i.e., Tπ

1
k,π̄

2
k(M1

k ) ≤ 2Tπ
1
k,π̄

2
k(M). This

also implies that (M1
k , π

1
k, π̄

2
k) induces an irreducible Markov chain. Finally, by Remark M.1,

we have sp(h(M1
k , π

1
k, π̄

2
k, ·)) ≤ Tπ

1
k,π̄

2
k(M1

k ). Combining the three inequalities above, we can
have sp(h(M1

k , π
1
k, π̄

2
k, ·)) ≤ 2D. As a result, to prove this theorem, we only need to bound the

number of steps in phases where there exist s, s′ such that the transition probability difference
|p1
k(s′|s, π1

k, π̄
2
k)− p(s′|s, π1

k, π̄
2
k)| is larger than 1

8DS2 (p1
k is the transition kernel of M1

k ). We define
the event Ek(s) =

{
∃s′, |p1

k(s′|s, π1
k, π̄

2
k)− p(s′|s, π1

k, π̄
2
k)| > 1

8DS2

}
, and Ek = {∃s, Ek(s) = 1}.

Our goal is to prove
∑
k Tk1Ek ≤ Õ(D3S5A).

Fix k. Suppose that π̄2
k is well-defined. By the definition of π̄2

k and the triangle inequality, we have

|p1
k(s′|s, π1

k, π̄
2
k)− p(s′|s, π1

k, π̄
2
k)| ≤ 1

vk(s)

tk+1−1∑
t=tk

1st=s|p1
k(s′|st, πt)− p(s′|st, πt)|. (26)

Define εi := 2−i, and define

Gk(s, ε) = {t ∈ [tk, tk+1) : st = s and ε < max
s′
|p1
k(s′|st, πt)− p(s′|st, πt)| ≤ 2ε},

and gk(s, ε) := |Gk(s, ε)|, i.e., gk(s, ε) is the number of steps t in phase k such that st = s and the
maximum transition probability error at that step is between ε and 2ε. With these definitions, we can
continue to upper bound (26) by

|p1
k(s′|s, π1

k, π̄
2
k)− p(s′|s, π1

k, π̄
2
k)| ≤ 1

vk(s)

tk+1−1∑
t=tk

1st=s|p1
k(s′|st, πt)− p(s′|st, πt)|

≤ 1

vk(s)

 ∑
2εi>

1
24DS2

2εigk(s, εi) +
1

24DS2
vk(s)


=

1

24DS2
+

blog2(48DS2)c∑
i=1

2εigk(s, εi)

vk(s)
. (27)

If |p1
k(s′|s, π1

k, π̄
2
k)− p(s′|s, π1

k, π̄
2
k)| > 1

8DS2 , then by (27) we have

vk(s)

24DS2
≤
blog2(48DS2)c∑

i=1

εigk(s, εi). (28)

Note that since steps counted in Gk(s, ε) have maximum transition errors greater that ε, by Lemma
5.2, with high probability,

∑
k gk(s, ε) won’t exceed c1A

ε2 , for some c1 hides logarithmic terms. Now
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sum the above equation over phases where Ek(s) holds, we get that

∑
k:Ek(s)

vk(s)

24DS2
≤

∑
k:Ek(s)

blog2(48DS2)c∑
i=1

εigk(s, εi) ≤
blog2(48DS2)c∑

i=1

c1A

εi
≤ 48c1DS

2A log2(48DS2)

or
∑
k:Ek(s) vk(s) ≤ Õ(D2S4A) holds with high probability. Similar to the proof of Lemma H.1,

we use (23) and lower bound
∑
k:Ek(s) vk(s) ≥

∑
k:Ek(s)

(
Tk
8D − Õ(1)

)
. Combining the lower

bound and the upper bound, we get
∑
k:Ek(s) Tk ≤ Õ(D3S4A). Finally, summing over s, we get the

desired bound.

I Proofs of Lemma 5.4 and 5.5

Proof of Lemma 5.4. Define notations: π̄k = (π1
k, π̄

2
k), p̄k(s′|s) := p(s′|s, π̄k), h̄k(s) :=

h(M, π̄k, s), ρ̄k := ρ(M, π̄k), r̄k(s) := r(s, π̄k), rt := r(st, at).

By the construction of π̄2
k, we have

p̄k(s′|s) =
∑
a2

∑tk+1−1
t=tk

1st=sπt(a
2)

vk(s)
p(s′|s, π1

k, a
2) =

1

vk(s)

tk+1−1∑
t=tk

1st=sp(s
′|s, π1

k, π
2
t ) (29)

and

r̄k(s) =
∑
a2

∑tk+1−1
t=tk

1st=sπ
2
t (a2)

vk(s)
r(s, π1

k, a
2) =

1

vk(s)

tk+1−1∑
t=tk

1st=sr(s, π
1
k, π

2
t ). (30)

Our target in phase k can be decomposed as:

Tkρ̄k −
tk+1−1∑
t=tk

rt =

tk+1−1∑
t=tk

(ρ̄k − r̄k(st)) +

tk+1−1∑
t=tk

(r̄k(st)− rt) , (31)

Now manipulate individual terms.

tk+1−1∑
t=tk

(ρ̄k − r̄k(st)) =

tk+1−1∑
t=tk

(∑
s′

p̄k(s′|st)h̄k(s′)− h̄k(st)

)

=
∑
s,s′

vk(s)p̄k(s′|s)h̄k(s′)−
tk+1−1∑
t=tk

h̄k(st)

=
∑
s,s′

tk+1−1∑
t=tk

1st=sp(s
′|s, π1

k, π
2
t )h̄k(s′)−

tk+1−1∑
t=tk

h̄k(st)

=

tk+1−1∑
t=tk

∑
s′

p(s′|st, π1
k, π

2
t )h̄k(s′)−

tk+1−1∑
t=tk

h̄k(st), (32)

where the third equality follows from (29);

tk+1−1∑
t=tk

(r̄k(st)− rt) =
∑
s

vk(s)r̄k(s)−
tk+1−1∑
t=tk

rt

=
∑
s

tk+1−1∑
t=tk

1st=sr(s, π
1
k, π

2
t )−

tk+1−1∑
t=tk

rt

=

tk+1−1∑
t=tk

r(st, π
1
k, π

2
t )−

tk+1−1∑
t=tk

rt, (33)
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where the second equality follows from (30). Substituting (32) and (33) into (31), we get

Tkρ̄k −
tk+1−1∑
t=tk

rt = h̄k(stk+1
)− h̄k(stk) +

tk+1−1∑
t=tk

(
Y 1
t + Y 2

t

)
, (34)

where Y 1
t :=

(∑
s′ p(s

′|st, π1
k, π

2
t )h̄k(s′)− h̄k(st+1)

)
, and Y 2

t :=
(
r(st, π

1
k, π

2
t )− rt

)
. It seems

that Y 1
t and Y 2

t have expectations of zero and should be able to be bounded with Bernstein’s inequality.
Nevertheless, one needs to be careful about that h̄k depends on π̄2

k, which is only known after phase
k ends. In other words, h̄k is not Ft-measurable for t ∈ ph(k), where Ft−1 := {s1, a1, · · · , st}.
The solution is as follows. Let D be the set where h̄k possibly lies. We discretize D and use the
Bernstein bound on all discretization points. Finally, we use the fact that h̄k is not far from the nearest
discretization point to bound the sum of Y 1

t .

Let D := [−D,D]S , and thus h̄k ∈ D. Clearly, there is a discretization Dd with |Dd| ≤ (2DST )S

such that any h ∈ D can find some hd ∈ Dd with |h(s) − hd(s)| ≤ 1
ST ∀s. Now let Y 1(j)

t :=(∑
s′ p(s

′|st, π1
k, π

2
t )h(j)(s′)− h(j)(st+1)

)
for every h(j) ∈ Dd, j = 1, ..., (2DST )S . Now Y

1(j)
t ’s

are martingale difference sequences with respect to Ft−1, so we can apply Azuma-Hoeffding’s
inequality and bound

∑
k

tk+1−1∑
t=tk

Y
1(j)
t ≤

√
log((2DST )Sδ−1)

2
T (2D)2 (35)

with probability at least 1− δ
(2DST )S

. Using the union bound, (35) holds for all j with probability at

least 1 − δ. Also, there exists a j such that
∑tk+1−1
t=tk

(
Y 1
t − Y

1(j)
t

)
≤ Tk × 2S

ST = 2Tk
T . Thus we

have ∑
k

tk+1−1∑
t=tk

Y 1
t ≤ Õ(D

√
ST ) (36)

with high probability. We also have
∑
k

∑tk+1−1
t=tk

Y 2
t ≤ Õ(

√
T ) by Azuma-Hoeffding’s inequality.

Also, h̄k(stk+1
)− h̄k(stk) ≤ 2D. Collecting terms, we get the desired bound.

Proof of Lemma 5.5. First fix k. Denote the transition probabilities of the optimistically selected
model M1

k by p1
k(·|·, ·, ·). In this proof, we define h̃(·) := h(M1

k , π̄k, ·), h(·) := h(M, π̄k, ·),
µ̃(·) := µ(M1

k , π̄k, ·), µ(·) := µ(M, π̄k, ·), ρ̃ := ρ(M1
k , π̄k), ρ := ρ(M, π̄k), r(·) := r(s, π̄k),

p̃(s′|s) := p1
k(s′|s, π̄k), p(s′|s) := p(s′|s, π̄k).

By Bellman equation and the properties of irreducible Markov chains, we have

ρ = r(s) +
∑
s′

p(s′|s)h(s′)− h(s)

ρ̃ = r(s) +
∑
s′

p̃(s′|s)h̃(s′)− h̃(s)

for all s. Therefore, we can write (for any s)

ρ̃− ρ =
∑
s′

(
p̃(s′|s)h̃(s′)− p(s′|s)h(s′)

)
− h̃(s) + h(s)

=
∑
s′

(p̃(s′|s)− p(s′|s)) h̃(s′) +
∑
s′

(p(s′|s)− δs,s′)
(
h̃(s′)− h(s′)

)
. (37)

Thus,

Tk(ρ̃− ρ) =
∑
s

Tkµ(s)(ρ̃− ρ)

=
∑
s

Tkµ(s)
∑
s′

(p̃(s′|s)− p(s′|s)) h̃(s′)
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≤
∑
s

Tkµ(s) ‖p̃(·|s)− p(·|s)‖1 sp(h̃), (38)

where the second equality is by using (37) and the property of stationary distribution:∑
s µ(s) (p(s′|s)− δs,s′) = 0. By the definition of p̃ and p, we have

‖p̃(·|s)− p(·|s)‖1 ≤
∑
a

πt(a)

∑tk+1−1
t=tk

1st=s ‖p̃(·|s, a)− p(·|s, a)‖1
vk(s)

=

∑tk+1−1
t=tk

1st=s ‖p̃(·|s, at)− p(·|s, at)‖1 +
∑tk+1−1
t=tk

Yt

vk(s)
(39)

where Yt := E [qt] − qt, and qt := 1st=s ‖p̃(·|s, at)− p(·|s, at)‖1. To apply Lemma B.2, we note
that |qt| ≤ 2 and VT :=

∑tk+1−1
t=tk

E[Y 2
t |Ft−1] ≤ 2

∑tk+1−1
t=tk

E[qt]. Then we can bound

tk+1−1∑
t=tk

(E[qt]− qt) ≤ 2

√√√√(2

tk+1−1∑
t=tk

E[qt]

)
log(T 2δ−1) + 2

√
5 log(T 2δ−1) (40)

with probability at least 1− δ. (40) implies
tk+1−1∑
t=tk

(E[qt]− qt) ≤
tk+1−1∑
t=tk

qt + 17 log(T 2δ−1). (41)

Continuing (38) with the help of (39) and (41), we get

Tk(ρ̃− ρ) ≤ 2D
∑
s

Tkµ(s)
2
∑tk+1−1
t=tk

qt + 17 log(T 2δ−1)

vk(s)

≤ 3D
∑
s

(
2

tk+1−1∑
t=tk

qt + 17 log(T 2δ−1)

)

≤ 6D

tk+1−1∑
t=tk

‖p̃(st, at)− p(st, at)‖1 + Õ(DS)

≤ 12D

√
2S ln

1

δ1

∑
s,a

vk(s, a)√
nk(s, a)

+ Õ(DS),

where we have used the assumptions in this lemma. Now sum over benign phases, we get∑
k:benign

Tk
(
ρ(M1

k , π̄k)− ρ(M, π̄k)
)
≤
∑
k

∑
s,a

vk(s, a)√
nk(s, a)

Õ(D
√
S) +

∑
k

Õ(DS) (42)

≤ 2.5
√
SAT Õ(D

√
S) + Õ(DS2A)

= Õ(DS
√
AT +DS2A).

with high probability. The last inequality is by the following Lemma together with Cauchy’s
inequality.

Lemma I.1 (cf. Lemma 19 of [19]). For any sequence {zi}, i = 1, ..., N with 0 ≤ zi ≤ Zi−1 :=

max{1,
∑i−1
`=1 z`}. Let K be a subset of {1, ..., N}. Then we have∑

i∈K

zi√
Zi−1

≤ (
√

2 + 1)
√
L,

where L :=
∑
i∈K zi.

Proof. ∑
i∈K

zi√
Zi−1

≤ (
√

2 + 1)
∑
i∈K

zi√
Zi +

√
Zi−1
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= (
√

2 + 1)
∑
i∈K

zi · (
√
Zi −

√
Zi−1)

(
√
Zi +

√
Zi−1) · (

√
Zi −

√
Zi−1)

= (
√

2 + 1)
∑
i∈K

(
√
Zi −

√
Zi−1)

≤ (
√

2 + 1)
∑
i∈K

(
√
Li −

√
Li−1) ≤ (

√
2 + 1)

√
L,

where Li :=
∑
`∈K:`≤i zi. We used the inequality√
Zi −

√
Zi−1 ≤

√
Li −

√
Li−1 ⇔

zi√
Li +

√
Li−1

≤ zi√
Zi +

√
Zi−1

.

J Proofs of Lemma 6.1 and 6.2

Proof of lemma 6.1. Note that for any phase k and any episode i that fully lies in phase k, we have
E

[∑τi+1−1
t=τi

r(st, at)
]

= VH(M,π1
k, π

2
i , sτi). Therefore, the terms in

∑
k ∆

(5)
k form a martingale

difference sequence with no more than T/H terms. Furthermore, 0 ≤
∑τi+1−1
t=τi

r(st, at) ≤ H . By

Lemma B.1, with probability 1− δ, we have
∑
k ∆

(5)
k ≤

√
log(δ−1)

2
T
HH

2 = Õ(
√
HT ).

Proof of Lemma 6.2. Suppose that the value iteration halts at iteration N , then under Assumption 2
and by the proof of Lemma F.2, we have

(1− α)(ρ∗(M+)− γ)e ≤ De ≤ vN+1 − vN = (1− α) (val{r + PvN} − vN ) . (43)

Since (M1
k , p

1
k) is selected based on the vN when the value iteration halts, (43) is equivalent to

ρ∗(M+)− γ ≤ min
π2

{
r(s, π1

k, π
2) +

∑
s′

p1
k(s′|s, π1

k, π
2)vN (s′)

}
− vN (s). (44)

Besides, the span of the vector vN is bounded by D by Lemma F.3. Now we fix Player 1’s policy
as π1

k in the extended game, and let Player 2 run an H-step SG. The least amount Player 2 has
to pay Player 1 in this SG is minπ2 VH(M1

k , π
1
k, π

2, s) (assuming that the game starts from s),
which can be calculated by dynamic programming. The dynamic programming goes as follows: for
i = 0, ...,H − 1, for all s,

u0(s) = 0,

ui+1(s) = min
a
{r(s, π1

k, a) +
∑
s′

p1
k(s′|s, π1

k, a)ui(s
′)},

which, in its vector form, can be written as ui+1 = mina{ra+Paui} by denoting ra(·) := r(·, π1
k, a)

and (Pa)ij := p1
k(j|i, π1

k, a). We can re-write the induction procedure as

ui+1 − vN = min
a
{ra + PavN + Pa(ui − vN )} − vN

without affecting the solution. By the property min{u+ v} ≥ min{u}+ min{v}, we have

ui+1 − vN ≥ min
a
{ra + PavN}+ min

a
{Pa(ui − vN )} − vN (45)

By (44), mina{ra + PavN} − vN ≥ ρ∗(M+) − γ, and since Pa is stochastic, Pa(ui − vN ) ≥
mins′{ui(s′) − vN (s′)}. Combining them with (45), we have ui+1(s) − vN (s) ≥ ρ∗(M+) −
γ + mins′{ui(s′) − vN (s′)} for all s. Then by induction, we can easily prove ui(s) − vN (s) ≥
i (ρ∗(M+)− γ) + mins′{u0(s′) − vN (s′)}, and therefore, ui(s) ≥ i (ρ∗(M+)− γ) + vN (s) −
maxs′ vN (s′) ≥ i (ρ∗(M+)− γ)−D.

Let i = H and note that ρ∗(M+) = maxM̃ maxπ1 minπ2 ρ(M̃, π1, π2) ≥ minπ2 ρ(M1
k , π

1
k, π

2, s).
The above result translates to minπ2 VH(M1

k , π
1
k, π

2, s) ≥ H minπ2 ρ(M1
k , π

1
k, π

2, s) − D − Hγ,
which bounds ∆

(2)
k by

∑
i∈ph(k)(D +Hγ).
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K Proof of Theorem K.1 and Lemma 6.3

Theorem K.1. (Sample Complexity Bound of UCSG. cf. Theorem 1 [9]) Given δ > 0, with
probability at least 1− δ, for any 0 < ε < 1, UCSG produces a sequence of policies π1

k, that yield
at most Õ

(
H2S2A
ε2

)
episodes i such that |VH(M,π1

k, π
2
i , sτi)− VH(M1

k , π
1
k, π

2
i , sτi)| > ε.

Theorem K.1 mainly follows from the following Lemma K.6 and K.7. In [9] the analysis of sample
complexity is facilitated by partitioning the state-action space. The state-action pairs are grouped into
different categories according to two indices. The first index, importance, measures in log-scale the
relative occurrence frequency of (s, a) with respect to a fixed constant under the policy. The second
index, knownness, measures also in log-scale the ratio of the total number of observations to the
occurrence frequency. Here we modify the the definition of weight, importance, and knownness for a
state-joint action (s, a) = (s, a1, a2) defined below to have a partition of the state-joint-action space
S ×A = S ×A1 ×A2 for each episode.

Definition K.2. Define the weight of a state-joint-action pair (s, a) under joint policy πi in episode
i as the expected occurrence frequency of (s, a) in episode i,

wi(s, a) :=

τi+1−1∑
t=τi

P(st = s, at = a|at ∼ πi, sτi).

The setting in [9] is somewhat different from two-player zero-sum SGs. In the episodic RL setting
after an episode is over, a new episode starts afresh with the same initial distribution p0, while in
the non-episodic setting, initial state sτi in each episode is sampled from a different distribution.
Initial state distributions do not matter that much in our setting except we need the initial state sτi to
compute the expected frequency wi(s, a).

Definition K.3. Define the importance of a state-joint-action pair (s, a) in episode i as

ιi(s, a) := max

{
zj : zj ≤

wi(s, a)

wmin

}
,

where z1 = 0 and zj = 2j−2 ∀j = 2, 3, ...

Definition K.4. Define the knownness of a a state-joint-action pair (s, a) in episode i as

κi(s, a) := max

{
zj : zj ≤

nk(i)(s, a)

mwi(s, a)

}
,

where z1 = 0 and zj = 2j−2 ∀j = 2, 3, ...

Definition K.5. We can now categorize state-joint-action pairs (s, a) into subsets

Xi,κ,ι := {(s, a) ∈ Xi : κi(s, a) = κ, ιi(s, a) = ι},

and X̄i = S ×A\Xi, where Xi = {(s, a) ∈ S ×A : ιi(s, a) > 0}.

In contrast to the original definitions [9] which are designated for each phase k in the episodic RL
setting, in our setting, weight wi(s, a), importance ιi(s, a), knownness κi(s, a) are now indexed for
each episode i because Player 2 may have arbitrary policies in different episodes.

Theorem K.1 mainly follows from the following Lemma K.6 and K.7. Select m =
512SH2(log logH)2 log2(8T 2SH) ln(6/δ1)

ε2 , δ1 := δ
2UmaxS

, Umax := SA log2 T and wmin := ε
4HSA

for any 0 < ε < H , and any 0 < δ < 1 and then we have the following two lemmas.

Lemma K.6. (cf. Lemma 2 in [9]) Let E be the number of episodes i for which there are κ and ι
with |Xi,κ,ι| > κ, i.e. E =

∑∞
i=1 1{∃(κ, ι) : |Xi,κ,ι| > κ} and assume thatm ≥ 6H2

ε ln(2Emax/δ),

where Emax = log2

(
H
wmin

)
log2(SA). Then P(E ≤ 6SAEmaxm) ≥ 1− δ/2.

Proof. The proof mainly follows as Lemma 2 [9]. Here we point out the differences between the
original UCFH algorithm [9] and our UCSG, when we remove the input ε.
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1. Their stopping rule for phase k is dependent on the specification of ε.

2. They set an upper bound for the maximum number of executions for each state-action pair
(s, a), which is determined beforehand and hardcoded in their algorithm.

3. Our algorithm only needs input δ to specify the failure probability and has (ε, δ)-PAC
bounds for arbitrarily selected ε.

The original UCFH nearly doesn’t need the parameter ε except at one place: their phases stops when
“∃(s, a), vk(s, a) ≥ max{mwmin, nk(s, a)} and nk(s, a) < SmH .” Since wmin and m are defined
through ε, this stopping rule requires ε to be known by the algorithm. They need this because they
would like to control Umax, the total number of phases run by the algorithm. In their case, having this
stopping rule, Umax ≤ SA log2

SmH
mwmin

= SA log2
SH
wmin

because phase change won’t be triggered
when nk(s, a) < mwmin or nk(s, a) > SmH . However, since we assume that the time horizon T
is known, we can simply use Umax ≤ SA log2 T , and this can simplify our stopping rule to only
“∃(s, a), vk(s, a) ≥ nk(s, a).”

Therefore, we can totally abandon the use of ε in our algorithm, but enjoy their analysis results.
The results automatically hold for arbitrarily selected ε. However, since we bound the number
of κ by log2(4HSAT/ε) in Lemma K.7, we cannot let ε tends to 0 too fast. (The minimum ε

we will select is ε0 = min{H,
√

(H3S2A)/T} as in the proof of Lemma 6.3, where we select
H = max{D, 3

√
D2T/(S2A)} for Theorem 3.2 ).

Lemma K.7. (cf. Lemma 3 in [9]) AssumeM ∈Mk. If |Xi,κ,ι| ≤ κ for all (κ, ι) and for all 0 < ε ≤
1 and m ≥ 512CH

2

ε2 (log2 log2H)2 log2

(
4HSAT

ε

)
log2(SA) ln(6/δ1). Then |VH(M1

k , π
1
k, π

2
i ) −

VH(M,π1
k, π

2
i )| ≤ ε.

Proof. It mainly follows the same proof as Lemma 3 in [9]. It was shown sufficient to let m ≥
512C(log2 log2H)2|K×I|H

2

ε2 ln(6/δ1). The only differences are in the upper bounds for |K×I|. In
UCFH, the maximum number of executions of each state-action pair is set equal to mSH . Thus their
knownness κ(s, a) is no more than n(s,a)

mwmin
≤ 4S2AH2

ε , whereas in our setting, since n(s, a) ≤ T ,

κ(s, a) ≤ n(s,a)
mwmin

≤ 4HSAT
ε . Thus in our setting |K × I| ≤ log2( 4HSAT

ε ) log2(SA).

Proof of Lemma 6.3. Let ε0 :=min
{
H,
√

(H3S2A)/T
}

, and δ0 := δ/dlog2(H/ε0)e. We invoke
logarithmically many times the bound in Theorem K.1 and use the union bound to obtain the regret.
By assumption, for j = 1, ..., dlog2(H/ε0)e, with probability no less than 1− δ0, there are at most
Õ(4jS2A) episodes that are not (2−jH)-optimal. Then the total error is bounded by∑

k

∑
i∈ph(k)

∣∣∣VH(M1
k , π

1
k, π

2
i , sτi)− VH(M,π1

k, π
2
i , sτi)

∣∣∣
:=
∑
k

∑
i∈ph(k)

ri =
∑

i:ri≤ε0

ri +
∑

i:ri>ε0

ri

≤ ε0
T

H
+

dlog2(H/ε0)e∑
j=1

Õ(4jS2A)(2−j+1H)

= ε0
T

H
+ 4(2dlog2(H/ε0)e − 1)Õ(HS2A)

≤ ε0
T

H
+ 8
Õ(H2S2A)

ε0
= Õ(S

√
HAT +HS2A).

L Proofs for Offline Training Complexity

Proof of Theorem 7.1. Define
Kε := {k : ρ∗(M)−min

π2
ρ(M,π1

k, π
2) > ε},
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K ′ε := Kε ∩ {k : phase k is benign}.

Also, define

Reg(off)′
ε :=

∑
k∈K′ε

Tk(ρ∗(M)−min
π2

ρ(M,π1
k, π

2))

= Reg(on)′
ε +

∑
k∈K′ε

tk+1−1∑
t=tk

(
rt −min

π2
ρ(M,π1

k, π
2)

)
.

(46)

where Reg(on)′
ε is defined as a summation similar to Reg(on)

T except that it is summed only over
time steps in phases k ∈ K ′ε. Besides, analogous to the definition of Lε, we define L′ε :=∑
k:benign Tk1{ρ∗(M)−minπ2 ρ(M,π1

k, π
2) > ε}.

We will argue (a) the order of Reg(off)′
ε does not exceed that of Reg(on)′

ε , and (b) the upper bound of
Reg(on)′

ε is similar to that of Reg(on)
T except that the dependency on T is replaced by L′ε.

To show (a), we note that the extra terms in Reg(off)′
ε compared to Reg(on)′

ε are the sum of

tk+1−1∑
t=tk

(
rt −min

π2
ρ(M,π1

k, π
2)

)
=

7∑
n=5

Λ
(n)
k ,

Λ
(5)
k :=

tk+1−1∑
t=tk

(
rt − ρ(M,π1

k, π
2
k)
)
,

Λ
(6)
k :=

tk+1−1∑
t=tk

(
ρ(M,π1

k, π
2
k)− ρ(M2

k , π
1
k, π

2
k, stk)

)
,

Λ
(7)
k :=

tk+1−1∑
t=tk

(
ρ(M2

k , π
1
k, π

2
k, stk)−min

π2
ρ(M,π1

k, π
2)

)
,

over k ∈ K ′ε. Λ
(7)
k is bounded by Tkγk by (6); the bound of this term is the same as that of Λ

(1)
k .

Λ
(5)
k and Λ

(6)
k are symmetric to Λ

(4)
k and Λ

(3)
k respectively (note that the π̄2

k we constructed in Section
5.1 will be identical to π2

k in the offline setting). Therefore, we can use the same bounds for the
corresponding terms.

Now we proceed to argue (b) and bound Reg(on)′
ε . We will largely reuse the regret analysis we already

done for Reg(on)
T , but only sum up the contribution from phases in K ′ε.

The contribution to Reg(on)′
ε from Λ

(1)
k is∑
k∈K′ε

Tkγk =
∑
k∈K′ε

Tk/
√
tk; (47)

the contribution from Λ
(3)
k is as shown in (42):∑
k∈K′ε

∑
s,a

vk(s, a)√
nk(s, a)

Õ(D
√
S) +

∑
k∈K′ε

Õ(DS); (48)

finally, the contribution from Λ
(4)
k is as shown in (34):

∑
k∈K′ε

(
h̄k(stk+1−1)− h̄(stk) +

tk+1−1∑
t=tk

(Y 1
t + Y 2

t )

)
. (49)

Reg(on)′
ε is then bounded by the sum of (47)-(49). By lemma I.1, (47) is bounded by (

√
2+1)

√
L′ε, and

the first term in (48) is bounded by Õ(
√
SAL′ε)Õ(D

√
S) = Õ(DS

√
AL′ε) by Cauchy inequality.

31



The second term in (48) can be still bounded by Õ(DS2A). Since the martingale difference sequences
in (49) are now summing over a total of L′ε steps, (49) is now bounded by DSA + D

√
SL′ε (cf.

(36)).

As a whole, we conclude that Reg(on)′
ε ≤ Õ(DS

√
AL′ε + DS2A), and hence Reg(off)′

ε ≤
Õ(DS

√
AL′ε +DS2A) by the argument in (a).

Note that by the definition of K ′ε, we have

Reg(off)′
ε =

∑
k∈K′ε

Tk(ρ∗(M)−min
π2

ρ(M,π1
k, π

2))

≥
∑
k∈K′ε

Tkε = εL′ε. (50)

Combining (50) with the upper bound of Reg(off)′
ε just established, we have

εL′ε ≤ Õ(DS
√
AL′ε +DS2A),

which has the solution

L′ε ≤ Õ
(
D2S2A

ε2

)
.

Comparing the definitions of Lε and L′ε, and by Lemma 5.3, we get

Lε ≤ L′ε + Õ(D3S5A) = Õ
(
D3S5A+

D2S2A

ε2

)
.

Finally, we remark on how to select a single stationary policy after we have run the algorithm for T
steps. Note that in our proofs, we actually bound the single step regret in phase k through

ρ∗(M)−min
π2

ρ(M,π1
k, π

2) ≤ min
π2

ρ(M1
k , π

1
k, stk)− ρ(M2

k , π
1
k, π

2
k, stk) + 2γk (51)

because LHS is 1
Tk

∑7
n=1 Λ

(n)
k while RHS is 1

Tk

∑6
n=2 Λ

(n)
k + 2γk. Note that the terms on RHS can

all be obtained by the algorithm, so they form an available upper bound for the LHS. Let uk denotes
the RHS. Then the previous proofs actually proved that∑

k

Tk1{uk > ε} ≤ Õ
(
D3S5A+

D2S2A

ε2

)
holds with high probability. Therefore, if T > Ω̃

(
D3S5A+ D2S2A

ε2

)
, there will be some k such

that uk < ε. Since the algorithm knows uk, it can just select the minimum of all uk’s among all
phases. That will output a policy π1

k such that ρ∗(M)−minπ2 ρ(M,π1
k, π

2) ≤ ε.

Proof of Theorem 7.2.

Reg(off)
ε :=

∑
k∈Kε

Tk(ρ∗(M)−min
π2

ρ(M,π1
k, π

2))

= Reg(on)
ε +

∑
k∈Kε

tk+1−1∑
t=tk

(
rt −min

π2
ρ(M,π1

k, π
2)

)
,

where Reg(on)
ε is the sum of ∆k over k ∈ Kε. Of the six regret terms (5), ∆

(4)
k dominates over ∆

(1)
k ,

∆
(3)
k , ∆

(5)
k , and ∆

(6)
k . So we only look at the ∆

(2)
k and ∆

(4)
k . ∆

(2)
k is bounded by Tk

H D + Tkγk.
Summing over k ∈ Kε by Lemma I.1 gives Lε

H D + Õ(
√
Lε). Thus its average error is bounded by

Õ(D/H + 1/
√
Lε). By taking H = D/(2ε) we have the sample complexity for the second term is

Õ(1/ε2). On the other hand, by Theorem K.1, ∆
(4)
k has sample complexity bound Õ(HS2A/ε2).
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By substituting H = D/(2ε) gives the dominating sample complexity bound Õ(DS2A/ε3). We
argue again the order of Reg(off)

ε does not exceed that of Reg(on)
ε . To show this, we note that the extra

terms in Reg(off)
ε compared to Reg(on)

ε are the sum of

tk+1−1∑
t=tk

(
rt −min

π2
ρ(M,π1

k, π
2)

)
=

11∑
n=7

∆
(n)
k ,

∆
(7)
k :=

∑
i∈ph(k)

(
τi+1−1∑
t=τi

r(st, at)− VH(M,πk, sτi)

)
,

∆
(8)
k :=

∑
i∈ph(k)

(
VH(M,πk, sτi)− VH(M2

k , πk, sτi)
)
,

∆
(9)
k :=

∑
i∈ph(k)

(
VH(M2

k , πk, sτi)−Hρ(M2
k , πk, sτi)

)
,

∆
(10)
k :=

∑
i∈ph(k)

(
Hρ(M2

k , πk, sτi)−H min
π2

ρ(M,π1
k, π

2, sτi)

)
,

∆
(11)
k := 2H,

over k ∈ Kε. This decomposition mirrors that in (5) where ∆
(7)
k , ∆

(8)
k , ∆

(9)
k , ∆

(10)
k and ∆

(11)
k are

symmetric to the ∆
(5)
k , ∆

(4)
k , ∆

(2)
k , ∆

(1)
k , and ∆

(6)
k in (5), respectively, and we can use the same

bounds for the corresponding terms.

Finally, we can pick an ε-optimal policy π1
k after the algorithm has run for T > Õ

(
DS2A
ε3

)
steps.

The way is similar to that described in the proof of Theorem 7.1.

M Other Technical Lemmas

Remark M.1. Under Assumption 1, note that for any stationary policy π, we have sp(h(M,π, ·)) ≤
Tπ(M). Indeed,

h(M,π, s) = Eπs
[ ∞∑
t=1

rt − ρ(M,π)
]

≤ Tπs→s′(M) + Eπs′
[ ∞∑
t=1

rt − ρ(M,π)
]

= Tπs→s′(M) + h(M,π, s′).

Remark M.2. Imagine an MDP where all transitions from s 6= s′ remain the same while s′ becomes
an absorbing state; rewards on s 6= s′ are all 1 and 0 on s′. Now maxπ1 maxπ2 Tπ

1,π2

s→s′ (M) is
equivalent to the maximum reward on this MDP, which can be achieved by stationary joint policy by
both players.

N Regularization/Constraint-based Approach for Assumption 1

It is possible to improve the Õ(D3S5A) term in the regret bound under Assumption 1. Note that this
term mainly comes from Lemma H.3, which says that to wait until sp(h(M1

k , π
1
k, π̄

2
k, ·)) < 2D, we

need to pay Õ(D3S5A) regret. However, if we can know the value of D in advance, the optimistic
model M1

k can be selected based on the following constrained optimization problem:

M1
k = argmax

M̃∈Mk

max
π1

min
π2

ρ(M̃, π1, π2, stk),

subject to ∀π1, π2 ∈ ΠSR, sp(h(M̃, π1, π2, ·)) ≤ D.

Clearly, the true model M still lies in this feasible set, so this is a valid way to select M1
k . It is also

possible to convert this into a regularized optimization problem as demonstrated by [3]. Nevertheless,
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we are not aware of any practical algorithm that can solve either optimization problem. We just
demonstrated in this paper that the benefit of this regularization/constraint-based approach is only on
the additive constant but not on the asymptotic performance.
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