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Abstract

This paper deals with finding an n-dimensional solution x to a system of quadratic
equations yi = |〈ai,x〉|2, 1 ≤ i ≤ m, which in general is known to be NP-hard.
We put forth a novel procedure, that starts with a weighted maximal correlation
initialization obtainable with a few power iterations, followed by successive re-
finements based on iteratively reweighted gradient-type iterations. The novel
techniques distinguish themselves from prior works by the inclusion of a fresh
(re)weighting regularization. For certain random measurement models, the pro-
posed procedure returns the true solution x with high probability in time pro-
portional to reading the data {(ai; yi)}1≤i≤m, provided that the number m of
equations is some constant c > 0 times the number n of unknowns, that is, m ≥ cn.
Empirically, the upshots of this contribution are: i) perfect signal recovery in the
high-dimensional regime given only an information-theoretic limit number of equa-
tions; and, ii) (near-)optimal statistical accuracy in the presence of additive noise.
Extensive numerical tests using both synthetic data and real images corroborate
its improved signal recovery performance and computational efficiency relative to
state-of-the-art approaches.

1 Introduction

One is often faced with solving quadratic equations of the form yi = |〈ai,x〉|2, or equivalently,

ψi = |〈ai,x〉|, 1 ≤ i ≤ m (1)

where x ∈ Rn/Cn (hereafter, symbol “A/B” denotes either A or B) is the wanted unknown n× 1
vector, while given observations ψi and feature vectors ai ∈ Rn/Cn that are collectively stacked in
the data vector ψ := [ψi]1≤i≤m and the m× n sensing matrix A := [ai]1≤i≤m, respectively. Put
differently, given information about the (squared) modulus of the inner products of the signal vector
x and several known design vectors ai, can one reconstruct exactly (up to a global phase factor) x,
or alternatively, the missing phase of 〈ai,x〉? In fact, much effort has been devoted to determining
the number of such equations necessary and/or sufficient for the uniqueness of the solution x; see
e.g., [1, 8]. It has been proved that m ≥ 2n− 1 (m ≥ 4n− 4) generic 1 (which includes the case of
random vectors) real (complex) vectors ai are sufficient for uniquely determining an n-dimensional
real (complex) vector x [1, Theorem 2.8], [8], while in the real case m = 2n − 1 is shown also
necessary [1]. In this sense, the number m = 2n− 1 of equations as in (1) can be regarded as the
information-theoretic limit for such a quadratic system to be uniquely solvable.

1It is out of the scope of the present paper to explain the meaning of generic vectors, whereas interested
readers are referred to [1].
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In diverse physical sciences and engineering fields, it is impossible or very difficult to record phase
measurements. The problem of recovering the signal or phase from magnitude measurements only,
also commonly known as phase retrieval, emerges naturally [10, 11]. Relevant application domains
include e.g., X-ray crystallography, astronomy, microscopy, ptychography, and coherent diffraction
imaging [21]. In such setups, optical measurement and detection systems record solely the photon
flux, which is proportional to the (squared) magnitude of the field, but not the phase. Problem (1) in
its squared form, on the other hand, can be readily recast as an instance of nonconvex quadratically
constrained quadratic programming, that subsumes as special cases several well-known combinatorial
optimization problems involving Boolean variables, e.g., the NP-complete stone problem [2, Sec.
3.4.1]. A related task of this kind is that of estimating the mixture of linear regressions, where the
latent membership indicators can be converted into the missing phases [29]. Although of simple form
and practical relevance across different fields, solving systems of nonlinear equations is arguably the
most difficult problem in all of the numerical computations [19, Page 355].

Notation: Lower- (upper-) case boldface letters denote vectors (matrices), e.g., a ∈ Rn (A ∈ Rm×n).
Calligraphic letters are reserved for sets. The floor operation bcc gives the largest integer no greater
than the given real quantity c > 0, the cardinality |S| counts the number of elements in set S, and
‖x‖ denotes the Euclidean norm of x. Since for any phase φ ∈ R, vectors x ∈ Cn and ejφx are
indistinguishable given {ψi} in (1), let dist(z,x) := minφ∈[0,2π) ‖z − xejφ‖ be the Euclidean
distance of any estimate z ∈ Cn to the solution set {ejφx}0≤φ<2π of (1); in particular, φ = 0/π in
the real case.

1.1 Prior contributions

Following the least-squares (LS) criterion (which coincides with the maximum likelihood (ML) one
assuming additive white Gaussian noise), the problem of solving quadratic equations can be naturally
recast as an empirical loss minimization

minimize
z∈Rn/Cn

L(z) :=
1

m

m∑
i=1

`(z;ψi/yi) (2)

where one can choose to work with the amplitude-based loss `(z;ψi) := (ψi−|〈ai,z〉|)2/2 [28, 30], or
the intensity-based one `(z; yi) := (yi−|〈ai,z〉|2)2/2 [3], and its related Poisson likelihood `(z; yi) :=
yi log(|〈ai, z〉|2)− |〈ai, z〉|2 [7]. Either way, the objective functional L(z) is nonconvex; hence, it
is generally NP-hard and computationally intractable to compute the ML or LS estimate.

Minimizing the squared modulus-based LS loss in (2), several numerical polynomial-time algorithms
have been devised via convex programming for certain choices of design vectors ai [4, 25]. Such
convex paradigms first rely on the matrix-lifting technique to express all squared modulus terms into
linear ones in a new rank-1 matrix variable, followed by solving a convex semi-definite program (SDP)
after dropping the rank constraint. It has been established that perfect recovery and (near-)optimal
statistical accuracy are achieved in noiseless and noisy settings respectively with an optimal-order
number of measurements [4]. In terms of computational efficiency however, such lifting-based
convex approaches entail storing and solving for an n× n semi-definite matrix from m general SDP
constraints, whose computational complexity in the worst case scales as n4.5 log 1/ε for m ≈ n [25],
which is not scalable. Another recent line of convex relaxation [12], [13] reformulated the problem of
phase retrieval as that of sparse signal recovery, and solved a linear program in the natural parameter
vector domain. Although exact signal recovery can be established assuming an accurate enough
anchor vector, its empirical performance is in general not competitive with state-of-the-art phase
retrieval approaches.

Recent proposals advocate suitably initialized iterative procedures for coping with certain noncon-
vex formulations directly; see e.g., algorithms abbreviated as AltMinPhase, (R/P)WF, (M)TWF,
(S)TAF [16, 3, 7, 26, 28, 27, 30, 22, 6, 24], as well as a prox-linear algorithm [9]. These nonconvex
approaches operate directly upon vector optimization variables, thus leading to significant computa-
tional advantages over their convex counterparts. With random features, they can be interpreted as
performing stochastic optimization over acquired examples {(ai;ψi/yi)}1≤i≤m to approximately
minimize the population risk functional L(z) := E(ai,ψi/yi)[`(z;ψi/yi)]. It is well documented
that minimizing nonconvex functionals is generally intractable due to existence of multiple critical
points [17]. Assuming Gaussian sensing vectors however, such nonconvex paradigms can provably
locate the global optimum, several of which also achieve optimal (statistical) guarantees. Specifically,

2



starting with a judiciously designed initial guess, successive improvement is effected by means of a
sequence of (truncated) (generalized) gradient-type iterations given by

zt+1 := zt − µt

m

∑
i∈T t+1

∇`i(zt;ψi/yi), t = 0, 1, . . . (3)

where zt denotes the estimate returned by the algorithm at the t-th iteration, µt > 0 is learning rate
that can be pre-selected or found via e.g., the backtracking line search strategy, and ∇`(zt, ψi/yi)
represents the (generalized) gradient of the modulus- or squared modulus-based LS loss evaluated at
zt. Here, T t+1 denotes some time-varying index set signifying the per-iteration gradient truncation.

Although they achieve optimal statistical guarantees in both noiseless and noisy settings, state-of-the-
art (convex and nonconvex) approaches studied under Gaussian designs, empirically require stable
recovery of a number of equations (several) times larger than the information-theoretic limit [7, 3, 30].
As a matter of fact, when there are numerously enough measurements (on the order of n up to some
polylog factors), the squared modulus-based LS functional admits benign geometric structure in
the sense that [23]: i) all local minimizers are also global; and, ii) there always exists a negative
directional curvature at every saddle point. In a nutshell, the grand challenge of tackling systems of
random quadratic equations remains to develop algorithms capable of achieving perfect recovery and
statistical accuracy when the number of measurements approaches the information limit.

1.2 This work

Building upon but going beyond the scope of the aforementioned nonconvex paradigms, the present
paper puts forward a novel iterative linear-time scheme, namely, time proportional to that required
by the processor to scan all the data {(ai;ψi)}1≤i≤m, that we term reweighted amplitude flow, and
henceforth, abbreviate as RAF. Our methodology is capable of solving noiseless random quadratic
equations exactly, yielding an estimate of (near)-optimal statistical accuracy from noisy modulus
observations. Exactness and accuracy hold with high probability and without extra assumption on
the unknown signal vector x, provided that the ratio m/n of the number of equations to that of the
unknowns is larger than a certain constant. Empirically, our approach is shown able to ensure exact
recovery of high-dimensional unstructured signals given a minimal number of equations, where m/n
in the real case can be as small as 2. The new twist here is to leverage judiciously designed yet
conceptually simple (re)weighting regularization techniques to enhance existing initializations and
also gradient refinements. An informal depiction of our RAF methodology is given in two stages as
follows, with rigorous details deferred to Section 3:

S1) Weighted maximal correlation initialization: Obtain an initializer z0 maximally correlated
with a carefully selected subset S (M := {1, 2, . . . ,m} of feature vectors ai, whose contributions
toward constructing z0 are judiciously weighted by suitable parameters {w0

i > 0}i∈S .
S2) Iteratively reweighted “gradient-like” iterations: Loop over 0 ≤ t ≤ T :

zt+1 = zt − µt

m

m∑
i=1

wti ∇`(zt;ψi) (4)

for some time-varying weighting parameters {wti ≥ 0}, each possibly relying on the current iterate
zt and the datum (ai;ψi).

Two attributes of the novel approach are worth highlighting next. First, albeit being a variant of
the spectral initialization devised in [28], the initialization here [cf. S1)] is distinct in the sense that
different importance is attached to each selected datum (ai;ψi). Likewise, the gradient flow [cf.
S2)] weighs judiciously the search direction suggested by each datum (ai;ψi). In this manner, more
robust initializations and more stable overall search directions can be constructed even based solely
on a rather limited number of data samples. Moreover, with particular choices of the weights wti’s
(e.g., taking 0/1 values), the developed methodology subsumes as special cases the recently proposed
algorithms RWF [30] and TAF [28].

2 Algorithm: Reweighted Amplitude Flow

This section explains the intuition and basic principles behind each stage of the advocated RAF
algorithm in detail. For analytical concreteness, we focus on the real Gaussian model with x ∈ Rn,
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and independent sensing vectors ai ∈ Rn ∼ N (0, I) for all 1 ≤ i ≤ m. Nonetheless, the presented
approach can be directly applied when the complex Gaussian and the coded diffraction pattern (CDP)
models are considered.

2.1 Weighted maximal correlation initialization

A key enabler of general nonconvex iterative heuristics’ success in finding the global optimum is
to seed them with an excellent starting point [14]. Indeed, several smart initialization strategies
have been advocated for iterative phase retrieval algorithms; see e.g., the spectral initialization [16],
[3] as well as its truncated variants [7], [28], [9], [30], [15]. One promising approach is the one
pursued in [28], which is also shown robust to outliers in [9]. To hopefully approach the information-
theoretic limit however, its performance may need further enhancement. Intuitively, it is increasingly
challenging to improve the initialization (over state-of-the-art) as the number of acquired data samples
approaches the information-theoretic limit.

In this context, we develop a more flexible initialization scheme based on the correlation property
(as opposed to the orthogonality in [28]), in which the added benefit is the inclusion of a flexible
weighting regularization technique to better balance the useful information exploited in the selected
data. Similar to related approaches of the same kind, our strategy entails estimating both the norm
‖x‖ and the direction x/‖x‖ of x. Leveraging the strong law of large numbers and the rotational
invariance of Gaussian ai vectors (the latter suffices to assume x = ‖x‖e1, with e1 being the first
canonical vector in Rn), it is clear that

1

m

m∑
i=1

ψ2
i =

1

m

m∑
i=1

∣∣〈ai, ‖x‖e1〉∣∣2 =
( 1

m

m∑
i=1

a2i,1

)
‖x‖2 ≈ ‖x‖2 (5)

whereby ‖x‖ can be estimated to be
∑m
i=1

ψ2
i/m. This estimate proves very accurate even with a

limited number of data samples because
∑m
i=1

a2i,1/m is unbiased and tightly concentrated.

The challenge thus lies in accurately estimating the direction of x, or seeking a unit vector maximally
aligned with x. Toward this end, let us first present a variant of the initialization in [28]. Note that
the larger the modulus ψi of the inner-product between ai and x is, the known design vector ai is
deemed more correlated to the unknown solution x, hence bearing useful directional information
of x. Inspired by this fact and having available data {(ai;ψi)}1≤i≤m, one can sort all (absolute)
correlation coefficients {ψi}1≤i≤m in an ascending order, yielding ordered coefficients 0 < ψ[m] ≤
· · · ≤ ψ[2] ≤ ψ[1]. Sortingm records takes time proportional toO(m logm).2 Let S $M denote the
set of selected feature vectors ai to be used for computing the initialization, which is to be designed
next. Fix a priori the cardinality |S| to some integer on the order of m, say, |S| := b3m/13c. It is
then natural to define S to collect the ai vectors that correspond to one of the largest |S| correlation
coefficients {ψ[i]}1≤i≤|S|, each of which can be thought of as pointing to (roughly) the direction of x.
Approximating the direction of x therefore boils down to finding a vector to maximize its correlation
with the subset S of selected directional vectors ai. Succinctly, the wanted approximation vector can
be efficiently found as the solution of

maximize
‖z‖=1

1

|S|
∑
i∈S

∣∣〈ai, z〉∣∣2 = z∗
( 1

|S|
∑
i∈S

aia
∗
i

)
z (6)

where the superscript ∗ represents the transpose or the conjugate transpose that will be clear from
the context. Upon scaling the unity-norm solution of (6) by the norm estimate obtained

∑m
i=1

ψ2
i/m

in (5), to match the magnitude of x, we will develop what we will henceforth refer to as maximal
correlation initialization.

As long as |S| is chosen on the order of m, the maximal correlation method outperforms the spectral
ones in [3, 16, 7], and has comparable performance to the orthogonality-promoting method [28].
Its performance around the information-limit however, is still not the best that we can hope for.
Recall from (6) that all selected directional vectors {ai}i∈S are treated the same in terms of their
contributions to constructing the initialization. Nevertheless, according to our starting principle, this
ordering information carried by the selected ai vectors is not exploited by the initialization scheme
in (6) and [28]. In other words, if for i, j ∈ S, the correlation coefficient of ψi with ai is larger

2f(m) = O(g(m)) means that there exists a constant C > 0 such that |f(m)| ≤ C|g(m)|.
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than that of ψj with aj , then ai is deemed more correlated (with x) than aj is, hence bearing more
useful information about the direction of x. It is thus prudent to weigh more the selected ai vectors
associated with larger ψi values. Given the ordering information ψ[|S|] ≤ · · · ≤ ψ[2] ≤ ψ[1] available
from the sorting procedure, a natural way to achieve this goal is weighting each ai vector with simple
monotonically increasing functions of ψi, say e.g., taking the weights w0

i := ψγi , ∀i ∈ S with the
exponent parameter γ ≥ 0 chosen to maintain the wanted ordering w0

|S| ≤ · · · ≤ w0
[2] ≤ w0

[1]. In a
nutshell, a more flexible initialization strategy, that we refer to as weighted maximal correlation, can
be summarized as follows

z̃0 := arg max
‖z‖=1

z∗
( 1

|S|
∑
i∈S

ψγi aia
∗
i

)
z. (7)

For any given ε > 0, the power method or the Lanczos algorithm can be called for to find an ε-accurate
solution to (7) in time proportional toO(n|S|) [20], assuming a positive eigengap between the largest
and the second largest eigenvalues of the matrix (1/|S|)

∑
i∈S ψ

γ
i aia

∗
i , which is often true when

{ai} are sampled from continuous distribution. The proposed initialization can be obtained upon
scaling z̃0 from (7) by the norm estimate in (5), to yield z0 := (

∑m
i=1

ψ2
i/m)z̃0. By default, we take

γ := 1/2 in all reported numerical implementations, yielding w0
i :=

√
|〈ai,x〉| for all i ∈ S.

Regarding the initialization procedure in (7), we next highlight two features, whereas technical details
and theoretical performance guarantees are provided in Section 3:

F1) The weights {w0
i } in the maximal correlation scheme enable leveraging useful information that

each feature vector ai may bear regarding the direction of x.
F2) Taking w0

i := ψγi for all i ∈ S and 0 otherwise, problem (7) can be equivalently rewritten as

z̃0 := arg max
‖z‖=1

z∗
( 1

m

m∑
i=1

w0
i aia

∗
i

)
z (8)

which subsumes previous initialization schemes with particular selections of weights {w0
i }. For

instance, the spectral initialization in [16, 3] is recovered by choosing S :=M, and w0
i := ψ2

i for all
1 ≤ i ≤ m.
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Figure 1: Relative initialization error for i.i.d.
ai ∼ N (0, I1,000), 1 ≤ i ≤ 1, 999.

For comparison, define

Relative error :=
dist(z,x)

‖x‖
.

Throughout the paper, all simulated results were
averaged over 100 Monte Carlo (MC) realizations,
and each simulated scheme was implemented with
their pertinent default parameters. Figure 1 eval-
uates the performance of the developed initializa-
tion relative to several state-of-the-art strategies,
and also with the information limit number of
data benchmarking the minimal number of sam-
ples required. It is clear that our initialization
is: i) consistently better than the state-of-the-art;
and, ii) stable as n grows, which is in contrast to
the instability encountered by the spectral ones
[16, 3, 7, 30]. It is worth stressing that the more
than 5% empirical advantage (relative to the best)
at the challenging information-theoretic bench-
mark is nontrivial, and is one of the main RAF upshots. This advantage becomes increasingly
pronounced as the ratio m/n grows.

2.2 Iteratively reweighted gradient flow

For independent data obeying the real Gaussian model, the direction that TAF moves along in stage
S2) presented earlier is given by the following (generalized) gradient [28]:

1

m

∑
i∈T
∇`(z;ψi) =

1

m

∑
i∈T

(
a∗i z − ψi

a∗i z

|a∗i z|

)
ai (9)

5



where the dependence on the iterate count t is neglected for notational brevity, and the convention
a∗i z/|a∗i z| := 0 is adopted when a∗i z = 0.

Unfortunately, the (negative) gradient of the average in (9) generally may not point towards the true
solution x unless the current iterate z is already very close to x. Therefore, moving along such a
descent direction may not drag z closer to x. To see this, consider an initial guess z0 that has already
been in a basin of attraction (i.e., a region within which there is only a unique stationary point) of
x. Certainly, there are summands (a∗i z − ψi

a∗i z
|a∗i z|

)ai in (9), that could give rise to “bad/misleading”

gradient directions due to the erroneously estimated signs a∗i z
|a∗i z|

6= a∗ix
|a∗ix|

[28], or (a∗i z)(a
∗
ix) < 0

[30]. Those gradients as a whole may drag z away from x, and hence out of the basin of attraction.
Such an effect becomes increasingly severe as m approaches the information-theoretic limit of
2n− 1, thus rendering past approaches less effective in this case. Although this issue is somewhat
remedied by TAF with a truncation procedure, its efficacy is limited due to misses of bad gradients
and mis-rejections of meaningful ones around the information limit.

To address this challenge, reweighted amplitude flow effecting suitable gradient directions from all
data samples {(ai;ψi)}1≤i≤m will be adopted in a (timely) adaptive fashion, namely introducing
appropriate weights for all gradients to yield the update

zt+1 = zt − µt∇`rw(zt;ψi), t = 0, 1, . . . (10)
The reweighted gradient ∇`rw(zt) evaluated at the current point zt is given as

∇`rw(z) :=
1

m

m∑
i=1

wi∇`(z;ψi) (11)

for suitable weights {wi}1≤i≤m to be designed next.

To that end, we observe that the truncation criterion [28]

T :=

{
1 ≤ i ≤ m :

|a∗i z|
|a∗ix|

≥ α
}

(12)

with some given parameter α > 0 suggests to include only gradient components associated with |a∗i z|
of relatively large sizes. This is because gradients of sizable |a∗i z|/|a∗ix| offer reliable and meaningful
directions pointing to the truth x with large probability [28]. As such, the ratio |a∗i z|/|a∗ix| can be
somewhat viewed as a confidence score about the reliability or meaningfulness of the corresponding
gradient∇`(z;ψi). Recognizing that confidence can vary, it is natural to distinguish the contributions
that different gradients make to the overall search direction. An easy way is to attach large weights
to the reliable gradients, and small weights to the spurious ones. Assume without loss of generality
that 0 ≤ wi ≤ 1 for all 1 ≤ i ≤ m; otherwise, lump the normalization factor achieving this into the
learning rate µt. Building upon this observation and leveraging the gradient reliability confidence
score |a∗i z|/|a∗ix|, the weight per gradient∇`(z;ψi) in RAF is designed to be

wi :=
1

1 + βi/(|a∗i z|/|a∗i x|)
, 1 ≤ i ≤ m (13)

in which {βi > 0}1≤i≤m are some pre-selected parameters.

Regarding the proposed weighting criterion in (13), three remarks are in order, followed by the RAF
algorithm summarized in Algorithm 1.

R1) The weights {wti}1≤i≤m are time adapted to zt. One can also interpret the reweighted gradient
flow zt+1 in (10) as performing a single gradient step to minimize the smooth reweighted loss
1
m

∑m
i=1 w

t
i`(z;ψi) with starting point zt; see also [4] for related ideas successfully exploited in the

iteratively reweighted least-squares approach to compressive sampling.
R2) Note that the larger |a∗i z|/|a∗ix| is, the larger wi will be. More importance will be attached to
reliable gradients than to spurious ones. Gradients from almost all data points are are judiciously
accounted for, which is in sharp contrast to [28], where withdrawn gradients do not contribute the
information they carry.
R3) At the points {z} where a∗i z = 0 for certain i ∈M, the corresponding weight will be wi = 0.
That is, the losses `(z;ψi) in (2) that are nonsmooth at points z will be eliminated, to prevent their
contribution to the reweighted gradient update in (10). Hence, the convergence analysis of RAF can
be considerably simplified because it does not have to cope with the nonsmoothness of the objective
function in (2).
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2.3 Algorithmic parameters

To optimize the empirical performance and facilitate numerical implementations, choice of pertinent
algorithmic parameters of RAF is independently discussed here. It is obvious that the RAF algorithm
entails four parameters. Our theory and all experiments are based on: i) |S|/m ≤ 0.25; ii) 0 ≤ βi ≤ 10
for all 1 ≤ i ≤ m; and, iii) 0 ≤ γ ≤ 1. For convenience, a constant step size µt ≡ µ > 0 is suggested,
but other step size rules such as backtracking line search with the reweighted objective work as well.
As will be formalized in Section 3, RAF converges if the constant µ is not too large, with the upper
bound depending in part on the selection of {βi}1≤i≤m.

In the numerical tests presented in Sections 2 and 4, we take

|S| := b3m/13c, βi ≡ β := 10, γ := 0.5, and µ := 2 (14)

while larger step sizes µ > 0 can be afforded for larger m/n values.

Algorithm 1 Reweighted Amplitude Flow
1: Input: Data {(ai;ψi}1≤i≤m; maximum number of iterations T ; step size µt = 2/6 and

weighting parameter βi = 10/5 for real/complex Gaussian model; |S| = b3m/13c, and γ = 0.5.
2: Construct S to include indices associated with the |S| largest entries among {ψi}1≤i≤m.
3: Initialize z0 :=

√∑m
i=1 ψ

2
i/m z̃0 with z̃0 being the unit principal eigenvector of

Y :=
1

m

m∑
i=1

w0
i aia

∗
i (15)

where w0
i :=

{
ψγi , i ∈ S⊆M
0, otherwise

for all 1 ≤ i ≤ m.

4: Loop: for t = 0 to T − 1

zt+1 = zt − µt

m

m∑
i=1

wti

(
a∗i z

t − ψi
a∗i z

t

|a∗i zt|

)
ai (16)

where wti :=
|a∗i z

t|/ψi
|a∗i z

t|/ψi+βi
for all 1 ≤ i ≤ m.

5: Output: zT .

3 Main results

Our main results summarized in Theorem 1 next establish exact recovery under the real Gaussian
model, whose proof is provided in the supplementary material. Our RAF approach however can be
generalized readily to the complex Gaussian and CDP models.

Theorem 1 (Exact recovery) Consider m noiseless measurements ψ = |Ax| for an arbitrary
x ∈ Rn. If the data size m ≥ c0|S| ≥ c1n and the step size µ ≤ µ0, then with probability at least
1− c3e−c2m, the reweighted amplitude flow’s estimates zt in Algorithm 1 obey

dist(zt,x) ≤ 1

10
(1− ν)t‖x‖, t = 0, 1, . . . (17)

where c0, c1, c2, c3 > 0, 0 < ν < 1, and µ0 > 0 are certain numerical constants depending on the
choice of algorithmic parameters |S|, β, γ, and µ.

According to Theorem 1, a few interesting properties of our RAF algorithm are worth highlighting.
To start, RAF recovers the true solution exactly with high probability whenever the ratio m/n of
the number of equations to the unknowns exceeds some numerical constant. Expressed differently,
RAF achieves the information-theoretic optimal order of sample complexity, which is consistent
with the state-of-the-art including TWF [7], TAF [28], and RWF [30]. Notice that (17) also holds at
t = 0, namely, dist(z0,x) ≤ ‖x‖/10, therefore providing performance guarantees for the proposed
initialization scheme (cf. Step 3 in Algorithm 1). Moreover, starting from this initial estimate, RAF
converges linearly to the true solution x. That is, to reach any ε-relative solution accuracy (i.e.,
dist(zT ,x) ≤ ε‖x‖), it suffices to run at most T = O(log 1/ε) RAF iterations (cf. Step 4). This in
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conjunction with the per-iteration complexity O(mn) confirms that RAF solves exactly a quadratic
system in time O(mn log 1/ε), which is linear in O(mn), the time required to read the entire data
{(ai;ψi)}1≤i≤m. Given the fact that the initialization stage can be performed in time O(n|S|) and
|S| < m, the overall linear-time complexity of RAF is order-optimal.

Proof of Theorem 1 is provided in the supplementary material.

4 Simulated tests
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Figure 2: Function value L(zT ) by RAF for
100 MC realizations when m = 2n− 1.

Our theoretical findings about RAF have been cor-
roborated with comprehensive numerical tests, a
sample of which are discussed next. Performance
of RAF is evaluated relative to the state-of-the-art
(T)WF, RWF, and TAF in terms of the empirical
success rate among 100 MC trials, where a success
will be declared for a trial if the returned estimate
incurs error ∥∥ψ − |AzT |∥∥

‖x‖
≤ 10−5

where the modulus operator | · | is understood
element-wise. The real Gaussian model and the
physically realizable CDPs were simulated in this
section. For fairness, all schemes were imple-
mented with their suggested parameter values. The
true signal vector x was randomly generated using
x ∼ N (0, I), and the i.i.d. sensing vectors ai
ai ∼ N (0, I). Each scheme obtained the initial
guess based on 200 power iterations, followed by
a series of T = 2, 000 (truncated/reweighted) gradient iterations. All experiments were performed
using MATLAB on an Intel CPU @ 3.4 GHz (32 GB RAM) computer. For reproducibility, the Matlab
code of the RAF algorithm is publicly available at https://gangwg.github.io/RAF/.

To demonstrate the power of RAF in the high-dimensional regime, the function value L(z) in (2)
evaluated at the returned estimate zT for 100 independent trials is plotted (in negative logarithmic
scale) in Fig. 2, where m = 2n− 1 = 9, 999. It is self-evident that RAF succeeded in all trials even
at this challenging information limit. To the best of our knowledge, RAF is the first algorithm that
empirically recovers any solution exactly from a minimal number of random quadratic equations. Left
panel in Fig. 3 further compares the empirical success rate of five schemes under the real Gaussian
model with n = 1, 000 and m/n varying by 0.1 from 1 to 5. Evidently, the developed RAF achieves
perfect recovery as soon as m is about 2n, where its competing alternatives do not work well. To
demonstrate the stability and robustness of RAF in the presence of additive noise, the right panel in
Fig. 3 depicts the normalized mean-square error

NMSE :=
dist2(zT ,x)

‖x‖2

as a function of the signal-to-noise ratio (SNR) for m/n taking values {3, 4, 5}. The noise model

ψi = |〈ai,x〉|+ ηi, 1 ≤ i ≤ m
with η := [ηi]1≤i≤m ∼ N (0, σ2Im) was employed, where σ2 was set such that certain SNR :=
10 log10(‖Ax‖2/mσ2) values on the x-axis were achieved.

To examine the efficacy and scalability of RAF in real-world conditions, the last experiment entails
the Galaxy image 3 depicted by a three-way arrayX ∈ R1,080×1,920×3, whose first two coordinates
encode the pixel locations, and the third the RGB color bands. Consider the physically realizable
CDP model with random masks [3]. Letting x ∈ Rn (n ≈ 2× 106) be a vectorization of a certain
band ofX , the CDP model with K masks is

ψ(k) = |FD(k)x|, 1 ≤ k ≤ K,
3Downloaded from http://pics-about-space.com/milky-way-galaxy.
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Figure 3: Real Gaussian model: Empirical success rate (Left); and, Relative MSE vs. SNR (Right).

where F ∈ Cn×n is a DFT matrix, and diagonal matricesD(k) have their diagonal entries sampled
uniformly at random from {1,−1, j,−j} with j :=

√
−1. Each D(k) represents a random mask

placed after the object to modulate the illumination patterns [5]. Implementing K = 4 masks, each
algorithm performs independently over each band 100 power iterations for an initial guess, which
was refined by 100 gradient iterations. Recovered images of TAF (left) and RAF (right) are displayed
in Fig. 4, whose relative errors were 1.0347 and 1.0715× 10−3, respectively. WF and TWF returned
images of corresponding relative error 1.6870 and 1.4211, which are far away from the ground truth.

Figure 4: Recovered Galaxy images after 100 gradient iterations of TAF (Left); and of RAF (Right).

5 Conclusion

This paper developed a linear-time algorithm called RAF for solving systems of random quadratic
equations. Our procedure consists of two stages: a weighted maximal correlation initializer attainable
with a few power or Lanczos iterations, and a sequence of scalable reweighted gradient refinements
for a nonconvex nonsmooth LS loss function. It was demonstrated that RAF achieves the optimal
sample and computational complexity. Judicious numerical tests showcase its superior performance
over state-of-the-art alternatives. Empirically, RAF solves a set of random quadratic equations
with high probability so long as a unique solution exists. Promising extensions include studying
robust and/or sparse phase retrieval and matrix recovery via (stochastic) reweighted amplitude flow
counterparts, and in particular exploiting the power of (re)weighting regularization techniques to
enable more general nonconvex optimization such as training deep neural networks [18].
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