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1 Proof of Proposition 1

Proof. It has been proved in [1, 2] that the inequality
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relation
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2 from the lower and upper bounds of φ(z)
Φ(z) , we can readily prove that

the derivative is always positive for all z < −38. Therefore, we have that the upper bound for any
z < −38 is smaller than the bound evaluated at z = −38, which is equal to 4.8× 10−7.

2 Proof of Proposition 2

Proof. We first derive p∗(x) ,
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with CDF functions, we obtain p∗(x) = eb
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Since both Φ(·) and φ(·) can only be positive finite numbers, we observe that p∗(x) is also finite for
all x ∈ {0, 1}n. Therefore, we can infer that the normalization constant Z ,

∑
x∈{0,1}n p

∗(x) is
finite.

3 Derivation for Gradient of Truncation Points in TruG-RBMs

It can be seen that ∂ ln p(x;Θ,ξ)
∂ξi

= ∂ln s(x)
∂ξi

− ∂ lnZ
∂ξi

, where s(x) ,∫ ξ2
ξ1
· · ·
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where h−j denotes the vector h without the j-th element; and for clarity, we abbreviate the multidi-
mensional integral

∫
· · ·
∫
f(h)dh1 · · · dhm as

∫
f(h)dh. By dividing the normalizer Z for both the

numerator and denominator, (1) becomes ∂ ln s(x)
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Thus, the gradient of p(x; Θ, ξ) w.r.t. ξ2 equals to
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With the similar derivations, it can be obtained that the gradient of p(x; Θ, ξ) w.r.t. lower truncation
point ξ1 equals to
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4 Partition Function Estimation for TruG-RBMs

To evaluate the model’s performance, we need to calculate the partition function Z. By exploiting
the bipartite structure in an RTGGM as well as the appealing properties of truncated normals,
we show that we can use annealed importance sampling (AIS) [3, 4] to estimate it. Here, we
only focus on the estimation for the RTGGM with binary data; methods for the other types data
are derived similarly. By integrating out the hidden variables h in the joint pdf p(x,h; Θ) =
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where p∗(x; Θ) is defined in previous section.

Following the AIS procedure, we define two distributions pA(x,hA) = 1
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On the othe hand, the partition function of pB(x,hB) can be approximated as

ZB ≈
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i=1 w

(i)

M
ZA, (8)

where w(i) is constructed from a Markov chain that gradually transits from pA(x,hA) to pB(x,hB),
with the transition realized via a sequence of intermediate distributions
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Based on the sequential pdfs pk(x,hA,hB), the Markov chain (x
(0)
i ,x

(1)
i , . . . ,x
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as x
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this way, one obtains {w(i)}Mi=1. Note that the Markov chains can be efficiently simulated, as all
involved variables are conditionally independent.

5 Derivation for Gradient of Truncation Points in TruG-TGGMs

In order to learn the trunation points automatically, we need to derive the gradients ∂ ln p(y|x)
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where h−j means the vector h without the j-th element hj . Similarly, it can be easily derived that
∂ ln p(y|x)

∂ξ1
= −

∑K
j=1 p(hj = ξ1|y,x) and ∂ lnZ

∂ξ1
= −

∑K
j=1 p(hj = ξ1|x). By combing the above

expressions, we obtain

∂ ln p(y|x)

∂ξ2
=

K∑
j=1

(p(hj=ξ2|y,x)−p(hj=ξ2|x)) , (13)

∂ ln p(y|x)

∂ξ1
=−

K∑
j=1

(p(hj=ξ1|y,x)−p(hj=ξ1|x)) . (14)

The probability p(hj = ξi|x) can be computed directly since it is a univariate truncated normal
distribution. For the term p(hj = ξ2|y,x), we will approximate it with the mean-field marginal
distributions computed above.

6 Other Experimental Results

6.1 Convergence of AIS Estimation

To demonstrate the reliability of log-probabilities estimated using annealed importance sampling
(AIS) algorithm [3] (reported in Table 1 in the paper), here we plot the estimate as a function of Gibbs
sweeps. As seen in Figure 1, log-probabilities for both MNIST and Caltech101 Silhouettes datasets
have already converged when we use 5× 105 Gibbs sweeps.
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Figure 1: Demonstration of convergence of estimated test log-probabilities. (a): MNIST; (b):
Caltech101 Silhouettes.

6.2 Dynamics of Truncation Points

We plot the truncation point values as a function of time, so that we can examine how the truncation
points evolves. We can see that for MNIST dataset, as the learning process proceed, the upper
truncation point increases gradually, while for the Bouncing Ball dataset, the upper truncation point
increases at the beginning and then decreases gradually.

6.3 Images Generated from TruG-RBM

Figures 3 show samples drawn from the TruG-RBM trained on MNIST and Caltech101 Silhouettes,
respectively. As seen from the figure, the samples looks very similar to the true images and are also
very diverse. This implies that the TruG-RBM has modeled these data very well.

6.4 Dictionaries Learned in Temporal TruG-RBM

Figures 4 shows the dictionaries learned in Temporal TruG-RBM.

6.5 Learned Nonlinearities and Truncation Points for TruG-TGGMs

The nonlinearities learned for the TruG-TGGM models on different datasets are plotted in Figure 5.
Moreover, we also tabulate the learned truncation points on these datasets. Since we train the model
10 times for each dataset, the presented values in Table 1 are the average of the 10 trials.
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Figure 2: The upper truncation point as a function of the number of training epochs, for (a) MNIST;
(b) Bouncing Ball.

(a) (b)

Figure 3: Samples drawn from TruG-RBM. (a): Trained on MNIST; (b): Trained on Caltech101
Silhouettes.

(a) (b)
Figure 4: Dictionaries learned in temporal TruG-RBM for Bouncing Ball. (a): W1; (b): W2.

Table 1: Learned lower and upper truncation points averaged over 10 trials.

Dataset Lower Trun. Point Upper Trun. Point
Boston Housing -0.329 2.833
Concrete Strength -0.898 2.188
Energy Efficiency -0.528 1.574
Kin8nm -0.331 7.759
Naval Propulsion -2.755 4.105
Cycle Power Plant 0 3.131
Protein Structure -0.50 2.76
Wine Quality Red -0.847 1.725
Yacht Hydrodynamic -0.65 2.215
Year Prediction MSD -0.230 2.940
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Figure 5: Nonlinearities learned for different datasets on the supervised TruG-TGGMs, with EE, CS
and YPM being the abbreviations of Energy Efficiency, Concrete Strength, Year Prediction MSD,
respectively.
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