
A Probabilistic Framework for Nonlinearities in
Stochastic Neural Networks

Qinliang Su Xuejun Liao Lawrence Carin
Department of Electrical and Computer Engineering

Duke University, Durham, NC, USA
{qs15, xjliao, lcarin}@duke.edu

Abstract

We present a probabilistic framework for nonlinearities, based on doubly trun-
cated Gaussian distributions. By setting the truncation points appropriately, we
are able to generate various types of nonlinearities within a unified framework,
including sigmoid, tanh and ReLU, the most commonly used nonlinearities in
neural networks. The framework readily integrates into existing stochastic neural
networks (with hidden units characterized as random variables), allowing one for
the first time to learn the nonlinearities alongside model weights in these networks.
Extensive experiments demonstrate the performance improvements brought about
by the proposed framework when integrated with the restricted Boltzmann machine
(RBM), temporal RBM and the truncated Gaussian graphical model (TGGM).

1 Introduction

A typical neural network is composed of nonlinear units connected by linear weights, and such a
network is known to have universal approximation ability under mild conditions about the nonlinearity
used at each unit [1, 2]. In previous work, the choice of nonlinearity has commonly been taken as a
part of network design rather than network learning, and the training algorithms for neural networks
have been mostly concerned with learning the linear weights. However, it is becoming increasingly
understood that the choice of nonlinearity plays an important role in model performance. For example,
[3] showed advantages of rectified linear units (ReLU) over sigmoidal units in using the restricted
Boltzmann machine (RBM) [4] to pre-train feedforward ReLU networks. It was further shown in [5]
that rectified linear units (ReLU) outperform sigmoidal units in a generative network under the same
undirected and bipartite structure as the RBM.

A number of recent works have reported benefits of learning nonlinear units along with the inter-unit
weights. These methods are based on using parameterized nonlinear functions to activate each unit
in a neural network, with the unit-dependent parameters incorporated into the data-driven training
algorithms. In particular, [6] considered the adaptive piecewise linear (APL) unit defined by a mixture
of hinge-shaped functions, and [7] used nonparametric Fourier basis expansion to construct the
activation function of each unit. The maxout network [8] employs piecewise linear convex (PLC)
units, where each PLC unit is obtained by max-pooling over multiple linear units. The PLC units were
extended to Lp units in [9] where the normalized Lp norm of multiple linear units yields the output
of an Lp unit. All these methods have been developed for learning the deterministic characteristics
of a unit, lacking a stochastic unit characterization. The deterministic nature limits these methods
from being easily applied to stochastic neural networks (for which the hidden units are random
variables, rather than being characterized by a deterministic function), such as Boltzmann machines
[10], restricted Boltzmann machines [11], and sigmoid belief networks (SBNs) [12].

We propose a probabilistic framework to unify the sigmoid, hyperbolic tangent (tanh) and ReLU
nonlinearities, most commonly used in neural networks. The proposed framework represents a

31st Conference on Neural Information Processing Systems (NIPS 2017), Long Beach, CA, USA.

unit h probabilistically as p(h|z, ξ), where z is the total net contribution that h receives from other
units, and ξ represents the learnable parameters. By taking the expectation of h, a deterministic
characterization of the unit is obtained as E(h|z, ξ) ,

∫
h p(h|z, ξ)dh. We show that the sigmoid,

tanh and ReLU are well approximated by E(h|z, ξ) under appropriate settings of ξ. This is different
from [13], in which nonlinearities were induced by the additive noises of different variances, making
the model learning much more expensive and nonlinearity producing less flexible. Additionally,
more-general nonlinearities may be constituted or learned, with these corresponding to distinct
settings of ξ. A neural unit represented by the proposed framework is named a truncated Gaussian
(TruG) unit because the framework is built upon truncated Gaussian distributions. Because of the
inherent stochasticity, TruG is particularly useful in constructing stochastic neural networks.

The TruG generalizes the probabilistic ReLU in [14, 5] to a family of stochastic nonlinearities, with
which one can perform two tasks that could not be done previously: (i) One can interchangeably use
one nonlinearity in place of another under the same network structure, as long as they are both in
the TruG family; for example, the ReLU-based stochastic networks in [14, 5] can be extended to
new networks based on probabilistic tanh or sigmoid nonlinearities, and the respective algorithms in
[14, 5] can be employed to train the associated new models with little modification; (ii) Any stochastic
network constructed with the TruG can learn the nonlinearity alongside the network weights, by
maximizing the likelihood function of ξ given the training data. We can learn the nonlinearity at the
unit level, with each TruG unit having its own parameters; or we can learn the nonlinearity at the
model level, with the entire network sharing the same parameters for all its TruG units. The different
choices entail only minor changes in the update equation of ξ, as will be seen subsequently.

We integrate the TruG framework into three existing stochastic networks: the RBM, temporal RBM
[15] and feedforward TGGM [14], leading to three new models referred to as TruG-RBM, temporal
TruG-RBM and TruG-TGGM, respectively. These new models are evaluated against the original
models in extensive experiments to assess the performance gains brought about by the TruG. To
conserve space, all propositions in this paper are proven in the Supplementary Material.

2 TruG: A Probabilistic Framework for Nonlinearities in Neural Networks
For a unit h that receives net contribution z from other units, we propose to relate h to z through the
following stochastic nonlinearity,

p(h|z, ξ) =
N
(
h
∣∣z, σ2

)
I(ξ1 ≤ h ≤ ξ2)∫ ξ2

ξ1
N (h′ |z, σ2) dh′

, N[ξ1,ξ2]

(
h
∣∣z, σ2

)
, (1)

where I(·) is an indicator function and N
(
·
∣∣z, σ2

)
is the probability density function (PDF) of

a univariate Gaussian distribution with mean z and variance σ2; the shorthand notation N[ξ1,ξ2]

indicates the density N is truncated and renormalized such that it is nonzero only in the interval
[ξ1, ξ2]; ξ , {ξ1, ξ2} contains the truncation points and σ2 is fixed.

The units of a stochastic neural network fall into two categories: visible units and hidden units [4].
The network represents a joint distribution over both hidden and visible units and the hidden units are
integrated out to yield the marginal distribution of visible units. With a hidden unit expressed in (1),
the expectation of h is given by

E(h|z, ξ) = z + σ
φ(ξ1−zσ)− φ(ξ2−zσ)

Φ(ξ2−zσ)− Φ(ξ1−zσ)
, (2)

where φ(·) and Φ(·) are, respectively, the PDF and cumulative distribution function (CDF) of the
standard normal distribution [16]. As will become clear below, a weighted sum of these expected
hidden units constitutes the net contribution received by each visible unit when the hidden units are
marginalized out. Therefore E(h|z, ξ) acts as a nonlinear activation function to map the incoming
contribution h receives to the outgoing contribution h sends out. The incoming contribution received
by hmay be a random variable or a function of data such as z = wTx+b; the former case is typically
for unsupervised learning and the latter case for supervised learning with x being the predictors.

By setting the truncation points to different values, we are able to realize many different kinds of
nonlinearities. We plot in Figure 1 three realizations of E(h|z, ξ) as a function of z, each with a
particular setting of {ξ1, ξ2} and σ2 = 0.2 in all cases. The plots of ReLU, tanh and sigmoid are

2

-20 -10 0 10 20
z

0

5

10

15

20

ac
tiv
at
io
n(
z)

ReLU
TruG

(a)

-20 -10 0 10 20
z

-1

-0.5

0

0.5

1

ac
tiv
at
io
n(
z)

tanh
TruG

(b)

-20 -10 0 10 20
z

0

0.2

0.4

0.6

0.8

1

ac
tiv
at
io
n(
z)

sigmoid
TruG

(c)

-20 -10 0 10 20
z

0

1

2

3

4

5

6

ac
tiv
at
io
n(
z)

sigmoid
TruG
ReLU

(d)

Figure 1: Illustration of different nonlinearities realized by the TruG with different truncation points.
(a) ξ1 = 0 and ξ2 = +∞; (b) ξ1 = −1 and ξ2 = 1; (c) ξ1 = 0 and ξ2 = 1; (d) ξ1 = 0 and ξ2 = 4.

also shown as a comparison. It is seen from Figure 1 that, by choosing appropriate truncation points,
E(h|z, ξ) is able to approximate ReLU, tanh and sigmoid, the three types of nonlinearities most
widely used in neural networks. We can also realize other types of nonlinearities by setting the
truncation points to other values, as exemplified in Figure 1(d). The truncation points can be set
manually by hand, selected by cross-validation, or learned in the same way as the inter-unit weights.
In this paper, we focus on learning them alongside the weights based on training data.

The variance of h, given by [16],

Var(h|z, ξ) = σ2 + σ2

ξ1−z
σ φ

(
ξ1−z
σ

)
− ξ2−z

σ φ
(
ξ2−z
σ

)
Φ
(
ξ2−z
σ

)
− Φ

(
ξ1−z
σ

) − σ2

 φ
(
ξ1−z
σ

)
− φ

(
ξ2−z
σ

)
Φ
(
ξ2−z
σ

)
− Φ

(
ξ1−z
σ

)
2

, (3)

is employed in learning the truncation points and network weights. Direct evaluation of (2) and (3) is
prone to the numerical issue of 0

0 , because both φ(z) and Φ(z) are so close to 0 when z < −38 that
they are beyond the maximal accuracy a double float number can represent. We solve this problem by
using the fact that (2) and (3) can be equivalently expressed in terms of φ(z)

Φ(z) by dividing both the
numerator and the denominator by φ(·). We make use of the following approximation for the ratio,

φ(z)

Φ(z)
≈
√
z2 + 4− z

2
, γ(z), for z < −38, (4)

the accuracy of which is established in Proposition 1.

Proposition 1. The relative error is bounded by
∣∣∣γ(z)/ φ(z)

Φ(z) − 1
∣∣∣ < 2

√
z2+4−z√
z2+8−3z

−1; moreover, for all

z < −38, the relative error is guaranteed to be smaller than 4.8× 10−7, that is,
∣∣∣γ(z)/ φ(z)

Φ(z) − 1
∣∣∣ <

4.8× 10−7 for all z < −38.

3 RBM with TruG Nonlinearity

We generalize the ReLU-based RBM in [5] by using the TruG nonlinearity. The resulting TruG-RBM
is defined by the following joint distribution over visible units x and hidden units h,

p(x,h) =
1

Z
e−E(x,h)I(x ∈ {0, 1}n, ξ1 ≤ h ≤ ξ2), (5)

where E(x,h) , 1
2hT diag(d)h − xTWh − bTx − cTh is an energy function and Z is the

normalization constant. Proposition 2 shows (5) is a valid probability distribution.
Proposition 2. The distribution p(x,h) defined in (5) is normalizable.

By (5), the conditional distribution of x given h is still Bernoulli, p(x|h) =
∏n
i=1 σ([Wh + b]i),

while the conditional p(h|x) is a truncated normal distribution, i.e.,

p(h|x) =

m∏
j=1

N[ξ1,ξ2]

(
hj

∣∣∣∣ 1

dj
[WTx + c]j ,

1

dj

)
. (6)

3

By setting ξ1 and ξ2 to different values, we are able to produce different nonlinearities in (6).

We train a TruG-RBM based on maximizing the log-likelihood function `(Θ, ξ) ,∑
x∈X ln p(x; Θ, ξ), where Θ , {W,b, c} denotes the network weights, p(x; Θ, ξ) ,∫ ξ2

ξ1
p(x,h)dh is contributed by a single data point x, and X is the training dataset.

3.1 The Gradient w.r.t. Network Weights

The gradient w.r.t. Θ is known to be ∂ln p(x)
∂Θ = E

[
∂E(x,h)
∂Θ

]
−E

[
∂E(x,h)
∂Θ

∣∣∣x], where E[·] and E[·|x]

means the expectation w.r.t. p(x,h) and p(h|x), respectively. If we estimate the gradient using a
standard sampling-based method, the variance associated with the estimate is usually very large. To
reduce the variance, we follow the traditional RBM in applying the contrastive divergence (CD) to
estimate the gradient [4]. Specifically, we approximate the gradient as

∂ ln p(x)

∂Θ
≈E
[
∂E(x,h)

∂Θ

∣∣∣∣x(k)

]
−E
[
∂E(x,h)

∂Θ

∣∣∣∣x] , (7)

where x(k) is the k-th sample of the Gibbs sampler p(h(1)|x(0)), p(x(1)|h(1)) · · · p(x(k)|h(k)), with
x(0) being the data x. As shown in (6), p(x|h) and p(h|x) are factorized Bernoulli and univariate
truncated normal distributions, for which efficient sampling algorithms exist [17, 18].

Furthermore, we can obtain that ∂E(x,h)
∂wij

= xihj ,
∂E(x,h)
∂bi

= xi,
∂E(x,h)
∂cj

= hj and ∂E(x,h)
∂dj

= 1
2h

2
j .

Thus estimation of the gradient with CD only requires E
[
hj |x(s)

]
and E

[
h2
j |x(s)

]
, which can be

calculated using (2) and (3). Using the estimated gradient, the weights can be updated using the
stochastic gradient ascent algorithm or its variants.

3.2 The Gradient w.r.t. Truncation Points

The gradient w.r.t. ξ1 and ξ2 are given by

∂ ln p(x)

∂ξ1
=

m∑
j=1

(p(hj = ξ1)− p(hj = ξ1|x)) , (8)

∂ ln p(x)

∂ξ2
=

m∑
j=1

(p(hj = ξ2|x)− p(hj = ξ2)) , (9)

for a single data point, with the derivation provided in the Supplementary Material. It is known that
p(hj = ξ|x) = N[ξ1,ξ2]

(
hj = ξ

∣∣∣ 1
dj

[WTx + c]j ,
1
dj

)
, which can be easily calculated. However, if

we calculate p(hj = ξ) directly, it would be computationally prohibitive. Fortunately, by noticing
the identity p(hj = ξ) =

∑
x p(hj = ξ|x)p(x), we are able to estimate it efficiently with CD as

p(hj = ξ) ≈ p(hj = ξ|x(k)) = N[ξ1,ξ2]

(
hj=ξ

∣∣∣ [WT x(k)+c]j
dj

, 1
dj

)
, where x(k) is the k-th sample of

the Gibbs sampler as described above. Therefore, the gradient w.r.t. the lower and upper truncation
points can be estimated using the equations ∂ ln p(x)

∂ξ2
≈
∑m
j=1

(
p(hj=ξ2|x)−p(hj=ξ2|x(k))

)
and

∂ ln p(x)
∂ξ1

≈−
∑m
j=1

(
p(hj=ξ1|x)−p(hj=ξ1|x(k))

)
. After obtaining the gradients, we can update the

truncation points with stochastic gradient ascent methods.

It should be emphasized that in the derivation above, we assume a common truncation point
pair {ξ1, ξ2} shared among all units for the clarity of presentation. The extension to separate
truncation points for different units is straightforward, by simply replacing (8) and (9) with
∂ ln p(x)
∂ξ2j

= (p(hj = ξ2j |x)− p(hj = ξ2j)) and ∂ ln p(x)
∂ξ1j

= (p(hj = ξ1j)− p(hj = ξ1j |x)), where
ξ1j and ξ2j are the lower and upper truncation point of j-th unit, respectively. For the models
discussed subsequently, one can similarly get the gradient w.r.t. unit-dependent truncations points.

After training, due to the conditional independence between x and h and the existence of efficient
sampling algorithm for truncated normal, samples can be drawn efficiently from the TruG-RBM
using the Gibbs sampler discussed below (7).

4

4 Temporal RBM with TruG Nonlinearity

We integrate the TruG framework into the temporal RBM (TRBM) [19] to learn the probabilistic
nonlinearity in sequential-data modeling. The resulting temporal TruG-RBM is defined by

p(X,H) = p(x1,h1)
∏T
t=2 p(xt,ht|xt−1,ht−1), (10)

where p(x1,h1) and p(xt,ht|xt−1,ht−1) are both represented by TruG-RBMs; xt ∈ Rn and
ht ∈ Rm are the visible and hidden variables at time step t, with X , [x1,x2, · · · ,xT]

and H , [h1,h2, · · · ,hT]. To be specific, the distribution p(xt,ht|xt−1,ht−1) is de-
fined as p(xt,ht|xt−1,ht−1) = 1

Zt
exp−E(xt,ht) I(x ∈ {0, 1}n, ξ1 ≤ ht ≤ ξ2),

where the energy function takes the form E(xt,ht) , 1
2

(
xTt diag(a) xt + hTt diag(d) ht −

2xTt W1ht − 2cTht − 2 (W2xt−1)
T

ht − 2bTxt −2 (W3xt−1)
T
xt − 2(W4ht−1)Tht

)
; and

Zt ,
∫ +∞
−∞

∫ +∞
0

e−E(xt,ht)dhtdxt.

Similar to the TRBM, directly optimizing the log-likelihood is difficult. We instead optimize the
lower bound

L , Eq(H|X)[ln p(X,H; Θ, ξ)− ln q(H|X)] , (11)

where q(H|X) is an approximating posterior distribution of H. The lower bound is equal to the
log-likelihood when q(H|X) is exactly the true posterior p(H|X). We follow [19] to choose the
following approximate posterior,

q(H|X) = p(h1|x1) · · · p(hT |xT−1,hT−1,xT),

with which it can be shown that the gradient of the lower bound w.r.t. the network
weights is given by ∂L

∂Θ =
∑T
t=1 Ep(ht−1|xt−2,ht−2,xt−1)

(
Ep(xt,ht|xt−1,ht−1)

[
∂E(xt,ht)

∂Θ

]
−

Ep(ht|xt−1,ht−1,xt)

[
∂E(xt,ht)

∂Θ

])
. At any time step t, the outside expectation (which is over ht−1) is

approximated by sampling from p(ht−1|xt−2,ht−2,xt−1); given ht−1 and xt−1, one can represent
p(xt,ht|xt−1,ht−1) as a TruG-RBM and therefore the two inside expectations can be computed in
the same way as in Section 3. In particular, the variables in ht are conditionally independent given
(xt−1,ht−1,xt), i.e., p(ht|xt−1,ht−1,xt) =

∏m
j=1 p(hjt|xt−1,ht−1,xt) with each component

equal to

p(hjt|xt−1,ht−1,xt) =N[ξ1,ξ2]

(
hjt

∣∣∣∣ [WT
1 xt+W2xt−1+W4ht−1+c]j

dj
,
1

dj

)
. (12)

Similarly, the variables in xt are conditionally independent given (xt−1,ht−1,ht). As a result,
Ep(ht|xt−1,ht−1,xt)[·] can be calculated in closed-form using (2) and (3), and Ep(xt,ht|xt−1,ht−1,xt)[·]
can be estimated using the CD algorithm, as in Section Section 3. The gradient of L w.r.t. the upper
truncation point is

∂L
∂ξ2

= Eq(H|X)

[T∑
t=1

m∑
j=1

p(hjt = ξ2|xt−1,ht−1,xt)−
T∑
t=1

m∑
j=1

p(hjt = ξ2|xt−1,ht−1)

]
,

with ∂L
∂ξ1

taking a similar form, where the expectations are similarly calculated using the same
approach as described above for ∂L

∂Θ .

5 TGGM with TruG Nonlinearity

We generalize the feedforward TGGM model in [14] by replacing the probabilistic ReLU with the
TruG. The resulting TruG-TGGM model is defined by the joint PDF over visible variables y and
hidden variables h,

p(y,h|x) = N (y|W1h + b1, σ
2I)N[ξ1,ξ2](h|W0x + b0, σ

2I), (13)

5

given the predictor variables x. After marginalizing out h, we get the expectation of y as

E[y|x] = W1E(h|W0x + b0, ξ) + b1, (14)

where E(h|W0x + b0, ξ) is given element-wisely in (2). It is then clear that the expectation of y
is related to x through the TruG nonlinearity. Thus E[y|x] yields the same output as a three-layer
perceptron that uses (2) to activate its hidden units. Hence, the TruG-TGGM model defined in (13)
can be understood as a stochastic perceptron with the TruG nonlinearity. By choosing different values
for the truncation points, we are able to realize different kinds of nonlinearities, including ReLU,
sigmoid and tanh.

To train the model by maximum likelihood estimation, we need to know the gradient of ln p(y|x) ,
ln
∫
p(y,h|x; Θ)dh, where Θ , {W1,W0,b1,b0} represents the model parameters. By rewriting

the joint PDF as p(y,h|x) ∝ e−E(y,h,x)I(ξ1 ≤ h ≤ ξ2), the gradient is found to be given by
∂ ln p(y|x)

∂Θ =E
[
∂E(y,h,x)

∂Θ

∣∣∣x]−E
[
∂E(y,h,x)

∂Θ

∣∣∣x,y] , where E(y,h,x) , ||y−W1h−b1||2+||h−W0x−b0||2
2σ2 ;

E[·|x] is the expectation w.r.t. p(y,h|x); and E[·|x,y] is the expectation w.r.t. p(h|x,y). From
(13), we know p(h|x) = N[ξ1,ξ2](h|W0x + b0, σ

2I) can be factorized into a product of univariate
truncated Gaussian PDFs. Thus the expectation E[h|x] can be computed using (2). However, the
expectations E[h|x,y] and E[hhT |x,y] involve a multivariate truncated Gaussian PDF and are
expensive to calculate directly. Hence mean-field variational Bayesian analysis is used to compute
the approximate expectations. The details are similar to those in [14] except that (2) and (3) are used
to calculate the expectation and variance of h.

The gradients of the log-likelihood w.r.t. the truncation points ξ1 and ξ2 are given by ∂ ln p(y|x)
∂ξ2

=∑K
j=1 (p(hj=ξ2|y,x)− p(hj=ξ2|x)) and ∂ ln p(y|x)

∂ξ1
= −

∑K
j=1 (p(hj=ξ1|y,x)− p(hj=ξ1|x))

for a single data point, with the derivation provided in the Supplementary Material. The probability
p(hj = ξ1|x) can be computed directly since it is a univariate truncated Gaussian distribution. For
p(hj = ξ2|y,x), we approximate it with the mean-field marginal distributions obtained above.

Although TruG-TGGM involves random variables, thanks to the existence of close-form expression
for the expectation of univariate truncated normal, the testing is still very easy. Given a predictor x̂,
the output can be simply predicted with the conditional expectation E[y|x] in (14).

6 Experimental Results

We evaluate the performance benefit brought about by the TruG framework when integrated into the
RBM, temporal RBM and TGGM. In each of the three cases, the evaluation is based on comparing
the original network to the associated new network with the TruG nonlinearity. For the TruG, we
either manually set {ξ1, ξ2} to particular values, or learn them automatically from data. We consider
both the case of learning a common {ξ1, ξ2} shared for all hidden units and the case of learning a
separate {ξ1, ξ2} for each hidden unit.

Table 1: Averaged test log-probability on MNIST. (?)
Results reported in [20]; (�) Results reported in [21]
using RMSprop as the optimizer.

Model Trun. Points Ave. Log-prob

MNIST Caltech101

TruG-RBM

[0, 1] -97.3 -127.9
[0, +∞) -83.2 -105.2
[-1, 1] -124.5 -141.5

c-Learn -82.9 -104.6
s-Learn -82.5 -104.3

RBM — -86.3? -109.0�

Results of TruG-RBM The binarized
MNIST and Caltech101 Silhouettes are con-
sidered in this experiment. The MNIST
contains 60,000 training and 10,000 testing
images of hand-written digits, while Cal-
tech101 Silhouettes includes 6364 training
and 2307 testing images of objects’ silhou-
ettes. For both datasets, each image has
28× 28 pixels [22]. Throughout this exper-
iment, 500 hidden units are used. RMSprop
is used to update the parameters, with the
delay and mini-batch size set to 0.95 and
100, respectively. The weight parameters are initialized with the Gaussian noise of zero mean and
0.01 variance, while the lower and upper truncation points at all units are initialized to 0 and 1,
respectively. The learning rates for weight parameters are fixed to 10−4. Since truncations points
influence the whole networks in a more fundamental way than weight parameters, it is observed
that smaller learning rates are often preferred for them. To balance the convergence speed and

6

-15 -10 -5 0 5 10 15
Input before transform: 7

0

0.5

1

1.5

2

2.5

3

3.5

4

O
ut

pu
t a

fte
r t

ra
ns

fo
rm

Sigmoid function <(7)
Nonlinearity in Ball
Nonlinearity in MNIST
Nonlinearity in Motion
Nonlinearity in Caltech

(a)

0.5 1 1.5 2 2.5 3 3.5Upper truncation point: 2

0.02

0.04

0.06

0.08

0.1

0.12

0.14

Pr
ob

ab
ilit

y

(b)

2 2.5 3 3.5 4 4.5
Upper truncation point: 2

0

0.02

0.04

0.06

0.08

0.1

0.12

Pr
ob

ab
ilit

y

(c)

Figure 2: (a) The learned nonlinearities in TruG models with shared upper truncation point ξ; The
distribution of unit-level upper truncation points of TruG-RBM for (b) MNIST; (c) Caltech101
Silhouettes.

performance, we anneal their learning rates from 10−4 to 10−6 gradually. The evaluation is based on
the log-probability averaged over test data points, which are estimated using annealed importance
sampling (AIS) [23] with 5 × 105 inverse temperatures equally spaced in [0, 1]; the reported test
log-probability is averaged over 100 independent AIS runs.

To investigate the impact of truncation points, we first set the lower and upper truncation points
to three fixed pairs: [0, 1], [0,+∞) and [−1, 1], which correspond to probabilistic approximations
of sigmoid, ReLU and tanh nonlinearities, respectively. From Table 1, we see that the ReLU-type
TruG-RBM performs much better than the other two types of TruG-RBM. We also learn the truncation
points from data automatically. We can see that the model benefits significantly from nonlinearity
learning, and the best performance is achieved when the units learn their own nonlinearities. The
learned common nonlinearities (c-Learn) for different datasets are plotted in Figure 2(a), which shows
that the model always tends to choose a nonlinearity in between sigmoid and ReLU functions. For the
case with separate nonlinearities (s-Learn), the distributions of the upper truncation points in the TruG-
RBM’s for MNIST and Caltech101 Silhouettes are plotted in Figure 2(b) and (c), respectively. Note
that due to the detrimental effect observed for negative truncation points, here the lower truncation
points are fixed to zero and only the upper points are learned. To demonstrate the reliability of
AIS estimate, the convergence plots of estimated log-probabilities are provided in Supplementary
Material.

Results of Temporal TruG-RBM The Bouncing Ball and CMU Motion Capture datasets are
considered in the experiment with temporal models. Bouncing Ball consists of synthetic binary
videos of 3 bouncing balls in a box, with 4000 videos for training and 200 for testing, and each video
has 100 frames of size 30 × 30. CMU Motion Capture is composed of data samples describing the
joint angles associated with different motion types. We follow [24] to train a model on 31 sequences
and test the model on two testing sequences (one is running and the other is walking). Both the
original TRBM and the TruG-TRBM use 400 hidden units for Bouncing Ball and 300 hidden units
for CMU Motion Capture. Stochastic gradient descent (SGD) is used to update the parameters,
with the momentum set to 0.9. The learning rates are set to be 10−2 and 10−4 for the two datasets,
respectively. The learning rate for truncation points is annealed gradually, as done in Section 6.

Since calculating the log-probabilities for these temporal models is computationally prohibitive,
prediction error is employed here as the performance evaluation criteria, which is widely used
[24, 25] in temporal generative models. The performances averaged over 20 independent runs are
reported here. Tables 2 and 3 confirm again that models benefit remarkably from nonlinearity learning,
especially in the case of learning a separate nonlinearity for each hidden unit. It is noticed that,
although the ReLU-type TruG-TRBM performs better the tanh-type TruG-TRBM on Bouncing Ball,
the former performs much worse than the latter on CMU Motion Capture. This demonstrates that
a fixed nonlinearity cannot perform well on every dataset. However, by learning truncation points
automatically, the TruG can adapt the nonlinearity to the data and thus performs the best on every
dataset (up to the representational limit of the TruG framework). Video samples drawn from the
trained models are provided in the Supplementary Material.

Results of TruG-TGGM Ten datasets from the UCI repository are used in this experiment. Fol-
lowing the procedures in [26], datasets are randomly partitioned into training and testing subsets for

7

Table 2: Test prediction error on
Bouncing Ball. (?) Taken from [24],
in which 2500 hidden units are used.

Model Trun. Points Pred. Err.

TruG-TRBM

[0, 1] 6.38±0.51
[0, +∞) 4.16±0.42
[-1, 1] 6.01±0.52

c-Learn 3.82±0.41
s-Learn 3.66±0.46

TRBM — 4.90±0.47
RTRBM? — 4.00±0.35

Table 3: Test prediction error on CMU Motion Cap-
ture, in which ‘w’ and ‘r’ mean walking and running,
respectively. (?) Taken from [24].

Model Trun. Points Err. (w) Err. (r)

TruG-TRBM

[0, 1] 8.2±0.18 6.1±0.22
[0, +∞) 21.8±0.31 14.9±0.29
[-1, 1] 7.3±0.21 5.9±0.22

c-Learn 6.7±0.29 5.5±0.22
s-Learn 6.8±0.24 5.4±0.14

TRBM — 9.6±0.15 6.8±0.12
ss-SRTRBM? — 8.1±0.06 5.9±0.05

Table 4: Averaged test RMSEs for multilayer perception (MLP) and TruG-TGGMs under different
truncation points. (?) Results reported in [26], where BH, CS, EE, K8 NP, CPP, PS, WQR, YH, YPM
are the abbreviations of Boston Housing, Concrete Strength, Kin8nm, Naval Propulsion, Cycle Power
Plant, Protein Structure, Wine Quality Red, Yacht Hydrodynamic, Year Prediction MSD, respectively.

Dataset MLP (ReLU)? TruG-TGGM with Different Trun. Points

[0, 1] [0, +∞) [-1, 1] c-Learn s-Learn
BH 3.228 ±0.195 3.564±0.655 3.214±0.555 4.003±0.520 3.401±0.375 3.622± 0.538
CS 5.977±0.093 5.210±0.514 5.106±0.573 4.977±0.482 4.910±0.467 4.743± 0.571
EE 1.098±0.074 1.168±0.130 1.252±0.123 1.069±0.166 0.881±0.079 0.913± 0.120
K8 0.091±0.002 0.094±0.003 0.086±0.003 0.091±0.003 0.073±0.002 0.075± 0.002
NP 0.001±0.000 0.002±0.000 0.002±0.000 0.002± 0.000 0.001±0.000 0.001± 0.000
CPP 4.182±0.040 4.023±0.128 4.067±0.129 3.978±0.132 3.952±0.134 3.951± 0.130
PS 4.539±0.029 4.231±0.083 4.387±0.072 4.262±0.079 4.209±0.073 4.206± 0.071
WQR 0.645±0.010 0.662±0.052 0.644±0.048 0.659±0.052 0.645±0.050 0.643± 0.048
YH 1.182±0.165 0.871±0.367 0.821±0.276 0.846±0.310 0.803±0.292 0.793± 0.289
YPM 8.932±N/A 8.961±N/A 8.985±N/A 8.859±N/A 8.893±N/A 8.965± N/A

10 trials except the largest one (Year Prediction MSD), for which only one partition is conducted
due to computational complexity. Table 4 summarizes the root mean square error (RMSE) averaged
over the different trials. Throughout the experiment, 100 hidden units are used for the two datasets
(Protein Structure and Year Prediction MSD), while 50 units are used for the remaining. RMSprop is
used to optimize the parameters, with RMSprop delay set to 0.9. The learning rate is chosen from the
set {10−3, 2× 104, 10−4}, while the mini-batch size is set to 100 for the two largest datasets and 50
for the others. The number of VB cycles used in the inference is set to 10 for all datasets.

The RMSE’s of TGGMs with fixed and learned truncation points are reported in Table 4, along
with the RMSE’s of the (deterministic) multilayer perceptron (MLP) using ReLU nonlinearity for
comparison. Similar to what we have observed in generative models, the supervised models also
benefit significantly from nonlinearity learning. The TruG-TGGM with learned truncation points
perform the best for most datasets, with the separate learning performing slightly better than the
common learning overall. Due to the limited space, the learned nonlinearities and their corresponding
truncation points are provided in Supplementary Material.

7 Conclusions
We have presented a probabilistic framework, termed TruG, to unify ReLU, sigmoid and tanh, the
most commonly used nonlinearities in neural networks. The TruG is a family of nonlinearities
constructed with doubly truncated Gaussian distributions. The ReLU, sigmoid and tanh are three
important members of the TruG family, and other members can be obtained easily by adjusting the
lower and upper truncation points. A big advantage offered by the TruG is that the nonlinearity is
learnable from data, alongside the model weights. Due to its stochastic nature, the TruG can be
readily integrated into many stochastic neural networks for which hidden units are random variables.
Extensive experiments have demonstrated significant performance gains that the TruG framework
can bring about when it is integrated with the RBM, temporal RBM, or TGGM.

Acknowledgements
The research reported here was supported by the DOE, NGA, NSF, ONR and by Accenture.

8

References

[1] Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton. Imagenet classification with deep convolutional
neural networks. In Advances in neural information processing systems, pages 1097–1105, 2012.

[2] Kurt Hornik. Approximation capabilities of multilayer feedforward networks. Neural networks, 4(2):251–
257, 1991.

[3] Vinod Nair and Geoffrey E Hinton. Rectified linear units improve restricted boltzmann machines. In
Proceedings of the 27th International Conference on Machine Learning (ICML-10), pages 807–814, 2010.

[4] Geoffrey E Hinton. Training products of experts by minimizing contrastive divergence. Neural computation,
14(8):1771–1800, 2002.

[5] Qinliang Su, Xuejun Liao, Chunyuan Li, Zhe Gan, and Lawrence Carin. Unsupervised learning with
truncated gaussian graphical models. In The Thirty-First National Conference on Artificial Intelligence
(AAAI), 2016.

[6] Forest Agostinelli, Matthew D. Hoffman, Peter J. Sadowski, and Pierre Baldi. Learning activation functions
to improve deep neural networks. CoRR, 2014.

[7] Carson Eisenach, Han Liu, and ZhaoranWang. Nonparametrically learning activation functions in deep
neural nets. In Under review as a conference paper at ICLR, 2017.

[8] Ian J. Goodfellow, David Warde-Farley, Mehdi Mirza, Aaron Courville, and Yoshua Bengio. Maxout
networks. In International Conference on Machine Learning (ICML), 2013.

[9] Caglar Gulcehre, Kyunghyun Cho, Razvan Pascanu, and Yoshua Bengio. Learned-norm pooling for deep
feedforward and recurrent neural networks. In Machine Learning and Knowledge Discovery in Databases,
pages 530–546, 2014.

[10] David H Ackley, Geoffrey E Hinton, and Terrence J Sejnowski. A learning algorithm for boltzmann
machines. Cognitive science, 9(1):147–169, 1985.

[11] Geoffrey E Hinton, Simon Osindero, and Yee-Whye Teh. A fast learning algorithm for deep belief nets.
Neural computation, 18(7):1527–1554, 2006.

[12] Radford M Neal. Connectionist learning of belief networks. Artificial intelligence, 56(1):71–113, 1992.
[13] Brendan J Frey. Continuous sigmoidal belief networks trained using slice sampling. In Advances in Neural

Information Processing Systems, pages 452–458, 1997.
[14] Qinliang Su, Xuejun Liao, Changyou Chen, and Lawrence Carin. Nonlinear statistical learning with

truncated gaussian graphical models. In Proceedings of the 33st International Conference on Machine
Learning (ICML-16), 2016.

[15] Ilya Sutskever, Geoffrey E Hinton, and Graham W. Taylor. The recurrent temporal restricted boltzmann
machine. In D. Koller, D. Schuurmans, Y. Bengio, and L. Bottou, editors, Advances in Neural Information
Processing Systems 21, pages 1601–1608. Curran Associates, Inc., 2009.

[16] Norman L Johnson, Samuel Kotz, and Narayanaswamy Balakrishnan. Continuous univariate distributions,
vol. 1-2, 1994.

[17] Nicolas Chopin. Fast simulation of truncated gaussian distributions. Statistics and Computing, 21(2):275–
288, 2011.

[18] Christian P Robert. Simulation of truncated normal variables. Statistics and computing, 5(2):121–125,
1995.

[19] Ilya Sutskever and Geoffrey E Hinton. Learning multilevel distributed representations for high-dimensional
sequences. In AISTATS, volume 2, pages 548–555, 2007.

[20] Ruslan Salakhutdinov and Iain Murray. On the quantitative analysis of deep belief networks. In Proceedings
of the 25th international conference on Machine learning, pages 872–879. ACM, 2008.

[21] David E Carlson, Edo Collins, Ya-Ping Hsieh, Lawrence Carin, and Volkan Cevher. Preconditioned spectral
descent for deep learning. In Advances in Neural Information Processing Systems, pages 2971–2979, 2015.

[22] Benjamin M Marlin, Kevin Swersky, Bo Chen, and Nando D Freitas. Inductive principles for restricted
boltzmann machine learning. In International conference on artificial intelligence and statistics, pages
509–516, 2010.

[23] Radford M Neal. Annealed importance sampling. Statistics and Computing, 11(2):125–139, 2001.
[24] Roni Mittelman, Benjamin Kuipers, Silvio Savarese, and Honglak Lee. Structured recurrent temporal

restricted boltzmann machines. In Proceedings of the 31st International Conference on Machine Learning
(ICML-14), pages 1647–1655, 2014.

[25] Zhe Gan, Chunyuan Li, Ricardo Henao, David E Carlson, and Lawrence Carin. Deep temporal sigmoid
belief networks for sequence modeling. In Advances in Neural Information Processing Systems, pages
2467–2475, 2015.

[26] José Miguel Hernández-Lobato and Ryan P Adams. Probabilistic backpropagation for scalable learning of
bayesian neural networks. Proceedings of The 32nd International Conference on Machine Learning, 2015.

[27] Siamak Ravanbakhsh, Barnabás Póczos, Jeff Schneider, Dale Schuurmans, and Russell Greiner. Stochastic
neural networks with monotonic activation functions. AISTATS, 1050:14, 2016.

[28] Max Welling, Michal Rosen-Zvi, and Geoffrey E Hinton. Exponential family harmoniums with an
application to information retrieval. In NIPS, pages 1481–1488, 2004.

9

[29] Qinliang Su and Yik-Chung Wu. On convergence conditions of gaussian belief propagation. IEEE
Transactions on Signal Processing, 63(5):1144–1155, 2015.

[30] Qinliang Su and Yik-Chung Wu. Convergence analysis of the variance in gaussian belief propagation.
IEEE Transactions on Signal Processing, 62(19):5119–5131, 2014.

[31] Brendan J Frey and Geoffrey E Hinton. Variational learning in nonlinear gaussian belief networks. Neural
Computation, 11(1):193–213, 1999.

[32] Qinliang Su and Yik-Chung Wu. Distributed estimation of variance in gaussian graphical model via
belief propagation: Accuracy analysis and improvement. IEEE Transactions on Signal Processing,
63(23):6258–6271, 2015.

[33] Daniel Soudry, Itay Hubara, and Ron Meir. Expectation backpropagation: Parameter-free training of
multilayer neural networks with continuous or discrete weights. In Advances in Neural Information
Processing Systems 27, pages 963–971. Curran Associates, Inc., 2014.

[34] Soumya Ghosh, Francesco Maria Delle Fave, and Jonathan Yedidia. Assumed density filtering methods
for learning bayesian neural networks. In Proceedings of the Thirtieth AAAI Conference on Artificial
Intelligence, AAAI’16, pages 1589–1595, 2016.

10

