Alternating minimization for dictionary learning with
random initialization

Niladri S. Chatterji Peter L. Bartlett
University of California, Berkeley University of California, Berkeley
chatterji@berkeley.edu peter@berkeley.edu
Abstract

We present theoretical guarantees for an alternating minimization algorithm for
the dictionary learning/sparse coding problem. The dictionary learning problem
is to factorize vector samples y',y?, ..., y" into an appropriate basis (dictionary)
A* and sparse vectors z'*,..., 2™*. Our algorithm is a simple alternating min-
imization procedure that switches between /1 minimization and gradient descent
in alternate steps. Dictionary learning and specifically alternating minimization
algorithms for dictionary learning are well studied both theoretically and empiri-
cally. However, in contrast to previous theoretical analyses for this problem, we
replace a condition on the operator norm (that is, the largest magnitude singular
value) of the true underlying dictionary A* with a condition on the matrix infinity
norm (that is, the largest magnitude term). Our guarantees are under a reasonable
generative model that allows for dictionaries with growing operator norms, and
can handle an arbitrary level of overcompleteness, while having sparsity that is
information theoretically optimal. We also establish upper bounds on the sample
complexity of our algorithm.

Erratum, August 7, 2019: An earlier version of this paper appeared in NIPS 2017 which had
an erroneous claim about convergence guarantees with random initialization. The main result —
Theorem 3 — has been corrected by adding an assumption about the initialization (Assumption Bl).

1 Introduction

In the problem of sparse coding/dictionary learning, given i.i.d. samples y',¢2,...,y" € R? pro-
duced from the generative model
for i € {1,2,...,n}, the goal is to recover a fixed dictionary A* € R and s-sparse vectors

" € R". (An s-sparse vector has no more than s non-zero entries.) In many problems of interest,
the dictionary is often overcomplete, thatis, » > d. This is believed to add flexibility in modeling and
robustness. This model was first proposed in neuroscience as an energy minimization heurlstlc that
reproduces features of the V1 region of the visual cortex (

, ). It has also been an extremely successful approach to 1dent1fy1ng low dimensional
structure in high dimensional data; it is used extensively to find features in images, speech and video
(see, for example, references in s ).

Most formulations of dictionary learning tend to yield non-convex optimization problems. For ex-
ample, note that if either °* or A* were known, given %, this would just be a (matrix/sparse) regres-
sion problem. However, estimating both 2** and A* simultaneously leads to both computational as
well as statistical complications. The heuristic of alternating minimization works well empirically
for dictionary learning. At each step, first an estimate of the dictionary is held fixed while the sparse
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coefficients are estimated; next, using these sparse coefficients the dictionary is updated. Note that in
each step the sub-problem has a convex formulation, and there is a range of efficient algorithms that
can be used. This heuristic has been very successful empirically, and there has also been significant
recent theoretical progress in understanding its performance, which we discuss next.

1.1 Related Work

A recent line of work theoretically analyzes local linear convergence rates for alternating minimiza-
tion procedures applied to dictionary learning ( ).

( ) present a neurally plausible algorithm that recovers the dlctlonary exactly for sparsity up
to s = O(Vd/(ulog(d))), where 11/\/d is the level of incoherence in the dictionary (which is a
measure of the similarity of the columns; see Assumption Al below). ( ) analyze
a least squares/¢; minimization scheme and show that it can tolerate sparsity up to s = O(d'/9).
Both of these establish local linear convergence guarantees for the maximum column-wise distance.
Exact recovery guarantees require a singular-value decomposition (SVD) or clustering based proce-
dure to initialize their dictionary estimates (see also the previous work s ;

9 )'
For the undercomplete case (when r < d), ( ) provide a Riemannian trust region
method that can tolerate sparsity s = O(d), while earlier work by ( ) provides

an algorithm that works in this setting for sparsity O(v/d).

Local and global optima of non-convex formulatlons for the problem have also been extensively
studied in ( s , ), among others.
Apart from alternating mlmmlzatlon other approaches (without theoretical convergence guarantees)
for dictionary learning include K-SVD ( R ) and MOD ( , ). There
is also a nice formulation by ( ), based on the sum-of-squares hierarchy. Recently,

( ) provide guarantees for improper dictionary learning, where instead of learning
a dictionary, they learn a comparable encoding via convex relaxations. Our work also adds to the
recent literature on analyzing alternating minimization algorithms ( , ; ,

1.2 Contributions

Our main contribution is to present new conditions under which alternating minimization for dic-
tionary learning converges at a linear rate to the optimum. We impose a condition on the matrix
infinity norm (largest magnitude entry) of the underlying dictionary. This allows dictionaries with
operator norm growing with dimension (d, ). The error rates are measured in the matrix infinity
norm, which is sharper than the previous error rates in maximum column-wise error.

Our results hold for a rather arbitrary level of overcompleteness, 7 = O(poly(d)). We establish
convergence results for sparsity level s = O(\/&) which is information theoretically optimal for
incoherent dictionaries and improves the previously best known results in the overcomplete setting
by a logarithmic factor. Our algorithm is simple, involving an ¢;-minimization step followed by a
gradient update for the dictionary.

A key step in our proofs is an analysis of a robust sparse estimator—{ £y, £, £ }-MU Selector—
under fixed (worst case) corruption in the dictionary. We prove that this estimator is minimax optimal
in this setting, which might be of independent interest.

1.3 Organization

In Section 2, we present our alternating minimization algorithm and discuss the sparse regression
estimator. In Section 3, we list the assumptions under which our algorithm converges and state the
main convergence result. Finally, in Section 4, we prove convergence of our algorithm. We defer
technical lemmas, analysis of the sparse regression estimator, and minimax analysis to the appendix.

Notation

For a vector v € R, v; denotes the i*"* component of the vector, ||v||, denotes the ¢, norm, supp(v)
denotes the support of a vector v, that is, the set of non-zero entries of the vector, sgn(v) denotes



Algorithm 1: Alternating Minimization for Dictionary Learning

Input : Step size 7, samples {y’“}}j:l, initial estimate A(®), number of steps 7', thresholds
{7}, initial radius R(®) and parameters {y"}Z_, {A\®}L_| and {+®}L,.

1 fort=1,2,...,Tdo

2 fork=1,2,...,ndo

3 wh® = MUS,y(t)’A(t)7y(t) (y’“, A(t_l), R(t_l))

4 forl =1,2,3...,rdo

5 ‘ xf’(t) = wlk’(t)l[ (|wlk’(t)| > T(t)) , (2™ is the sparse estimate)

6 end

7 end

8 fori=1,2,...,ddo

9 forj =1,2,...,rdo

(t) _ 4(-1) n r (t=1) K, (t) k() k,(t)

10 ‘ Ay = Ay = 2 k= {szl (Aip oy — g )}
11 end

12 end

13 R® = ZR(-1),

14 end
the sign of the vector v, that is, a vector with sgn(v); = 1if v; > 0, sgn(v); = —1ifv; <0

and sgn(v); = 0 if v; = 0. For a matrix W, W; denotes the it" column, W;; is the element in
the i*" row and j** column, ||W|,, denotes the operator norm, and ||W|| denotes the maximum
of the magnitudes of the elements of W. For a set .J, we denote its cardinality by |.J|. Throughout
the paper, we use C' multiple times to denote global constants that are independent of the problem
parameters and dimension. We denote the indicator function by I(+).

2 Algorithm

Given an initial estimate of the dictionary A(®) we alternate between an £; minimization procedure
(specifically the {¢1,¢2, ¢ }-MU Selector—MU S, 5, in the algorithm—followed by a thresh-
olding step) and a gradient step, under sample /5 loss, to update the dictionary. We analyze this
algorithm and demand linear convergence at a rate of 7/8; convergence analysis for other rates fol-
lows in the same vein with altered constants. Below we state the permitted range for the various
parameters in the algorithm above.

1. Step size: We need to set the step size in the range 3r/4s < n < r/s.
2. Threshold: At each step set the threshold at 7(*) = 16R*=D M (R~ (s + 1) 4 s//d).

3. Tuning parameters: We need to pick A(*) and () such that the assumption (D5) is satisfied.
A choice that is suitable that satisfies this assumption is

1285 (R@*U)2 < <3,

2 3/2 p(t—1)
- <83/2 (R(t_l)) n Sdlf/z) <4+ 6> <0 <3,

We need to set () as specified by Theorem 16,

_n\? 5 _(i—
,Y(t):\/g(R(t 1)) +\/;R<t 1)

2.1 Sparse Regression Estimator

Our proof of convergence for Algorithm | also goes through with a different choices of robust sparse
regression estimators, however, we can establish the tightest guarantees when the {¢1, {s, £, }-MU



Selector is used in the sparse regression step. The {/1, {5, £ }-MU Selector ( s )
was established as a modification of the Dantzig selector to handle uncertainty in the dictionary.
There is a beautiful line of work that precedes this that includes ( ;
, ). There are also modified non-convex LASSO programs that have been studled
( , ) and Orthogonal Matching Pursuit algorithms under in-variable errors
( , ). However these estimators require the error in the dictionary to be
stochastic and zero mean which makes them less suitable in this setting. Also note that standard ¢/,
minimization estimators like the LASSO and Dantzig selector are highly unstable under errors in the
dictionary and would lead to much worse guarantees in terms of radius of convergence (as studied in
, ). We establish the error guarantees for a robust sparse estimator {1, £o, o }-
MU Selector under fixed corruption in the dictionary. We also establish that this estimator is mini-
max optimal when the error in the sparse estimate is measured in infinity norm [|6 — 6* | and the
dictionary is corrupted.

The {/1, {2, {~ }-MU Selector

Define the estimator § such that (0,%,4) € R" xR, xR, is the solution to the convex minimization
problem

min {||9||1 +A+ru|eR,
6,t,u

1
ZAT(y—40)| <t + B2, 0]l < 1 6) < u} @)

where, 7, A and v are tuning parameters that are chosen appropriately. R is an upper bound on

the error in our dictionary measured in matrix infinity norm. Henceforth the first coordinate (¢) of
this estimator is called MUS,, v (Y, A, R), where the first argument is the sample, the second is
the matrix, and the third is the value of the upper bound on the error of the dictionary measured in
infinity norm. We will see that under our assumptions we will be able to establish an upper bound

on the error on the estimator, || — 6*||oc < 16RM (R(s +1)+ s/\/ﬁ), where [0 < M Vj. We

define a threshold at each step 7 = 16RM (R(s+41) +s/+/d). The thresholded estimate @ is defined
as

0; = 0,16, > 7] Vie{l,2,...,r} 3)

Our assumptions will ensure that we have the guarantee sgn(f) = sgn(6*). This will be crucial in
our proof of convergence. The analysis of this estimator is presented in Appendix B.

To identify the signs of the sparse covariates correctly using this class of thresholded estimators, we
would like in the first step to use an estimator 6 that is optimal, as this would lead to tighter control
over the radius of convergence. This makes the choice of {¢1, {2, {~ }-MU Selector natural, as we
will show it is minimax optimal under certain settings.

Theorem 1 (informal). Define the sets of matrices A = {B € R¥>"|||B;|lz < 1, Vi € {1,...,r}}
and W = {P € R¥"|||P|| < R} with R = O(1/+/s). Then there exists an A* € Aand W € W
with A & A* + W such that

) 1
inf sup||T — 6% > CREL [ /1 1288 ) )
FE log(r)

where the inf ;. is over all measurable estimators T with input (A*0*, A, R), and the sup is over
s-sparse vectors 0* with 2-norm L > 0.

Remark 2. Note that when R = O(1/\/s) and s = O(+/d), this lower bound matches the upper
bound we have for Theorem 16 (up to logarithmic factors) and hence the {{1, {2, }-MU Selector
is minimax optimal.

The proof of this theorem follows by Fano’s method and is relegated to Appendix C.



2.2 Gradient Update for the dictionary

We note that the update to the dictionary at each step in Algorithm 1 is as follows

SO k) KD k)
p=1

n

1
A() A(t 1) -
—n| =D

k=1

fori e {1,...,d},je{l,...,r}andt € {1,...,T}. If we consider the loss function at time step
¢ built using the vector samples y', . .., y" and sparse estimates " (*) ... z™®)

1 ¢ H k k,(t)
- 3 - et
2n P

we can identify the update to the dictionary §(*) as the gradient of this loss function evaluated at
AC=1),

VA € R¥X"

g(t) 0L, (A )‘ '
0A lac-1

3 Main Results and Assumptions

In this section we state our convergence result and state the assumptions under which our results are
valid.

3.1 Assumptions

Assumptions on A*

(A1) Incoherence: We assume the the true underlying dictionary is u/ Vd-incoherent

(A5, A9 < L2 Vi je{1,...,r} such that, i # j.

Vd
This is a standard assumption in the sparse regression literature when support recovery is of
interest. It was introduced in ( , ; , ) in signal processing and indepen-
dently in ( s ) in statistics. We can also
establish guarantees under the strictly weaker £ -sensmvrty condition (cf.
, ) used in analyzing sparse estimators under in-variable uncertainty in (

, ). The {£1, £, £+ }-MU selector that we use for our sparse

recovery step also works with this more general assumption, however for ease of exposition

we assume A* to be y1/+/d-incoherent.
(A2) Normalized Columns: We assume that all the columns of A* are normalized to 1,
|ATle =1 Vie{l,...,r}.
Note that the samples {y?}7_; are invariant when we scale the columns of A* or under permu-

tations of its columns. Thus we restrict ourselves to dictionaries with normalized columns and
label the entire equivalence class of dictionaries with permuted columns and varying signs as

A*.
(A3) Bounded max-norm: We assume that A* is bounded in matrix infinity norm
. Cy
”A ||oo S
S

where C, = 1/2000M?2. This is in contrast w1th previous work that imposes conditions
on the operator norm of A* ( ).
Our assumptions help provide guarantees under alternate assumpt10ns and it also allows the
operator norm to grow with dimension, whereas earlier work requires A* to be such that

| A lop < C ( r/ d). In general the infinity norm and operator norm balls are hard to



compare. However, one situation where a comparison is possible is if we assume the entries
of the dictionary to be drawn iid from a Gaussian distribution N/(0, o2). Then by standard
concentration theorems, for the operator norm condition to be satisfied we would need the
variance (o2) of the distribution to scale as O(1/d) while, for the infinity norm condition to be
satisfied we need the variance to be O(1/s?). This means that modulo constants the variance
can be much larger for the infinity norm condition to be satisfied than for the operator norm

condition.
(A4) Separation: We assume that Vi € {1,...,r}
3C 3C
A% > 4—;’ and, Ze?ln |Af — 2A%] o0 > T; Vitie{l,... r}

This condition ensures that two dictionaries in the equivalence class with varying signs of
columns or permutations are separated in infinity norm. The first condition ensures that for
any column A} and — A} are separated | Af — (—A)|lco > 3C4/2s.

Assumption on the initial estimate and initialization

(B1) We require an initial estimate for the dictionary A©) that is close in infinity norm,
49 — A% < 22,
2s
This initialization combined with the separation condtion above ensures that the initial estimate
A is close to only one dictionary in the equivalence class. The algorithm is going to be
contractive, hence this will hold true throughout the run of the algorithm.

Assumptions on z*

Next we assume a generative model on the s-sparse covariates *. Here are the assumptions we
make about the (unknown) distribution of z*.

(C1) Conditional Independence: We assume that distribution of non-zero entries of x* is condi-
tionally independent and identically distributed. That is, 7 1L 7 lak, x zj #0.

(C2) Sparsity Level:We assume that the level of sparsity s is bounded
2 < s < min(2Vd, CyVd, CVd/ ),

where C' is an appropriate global constant such that A* satisfies assumption (D3), see Re-
mark 15. For incoherent dictionaries, this upper bound is tight up to constant factors for sparse
recovery to be feasible ( s ; s ).

(C3) Boundedness: Conditioned on the event that i is in the subset of non-zero entries, we have

m < [z7]| < M,

with m > 32RO M (R (s + 1) 4+ s/+v/d) and M > 1. This is needed for the thresholded
sparse estimator to correctly predict the sign of the true covariate (sgn(z) = sgn(z*)). We

can also relax the boundedness assumption: it suffices for the ] to have sub-Gaussian distri-
butions.

(C4) Probability of support: The probability of i© being in the support of x* is uniform over all
i€ {1,2,...,r}. This translates to

Pr(xf;ﬁO):; Vie{l,...,r},

s(s—1) o
o =1) Vi£je{l,...,r}

(C5) Mean and variance of variables in the support: We assume that the non-zero random vari-
ables in the support of x* are centered and are normalized

E(efle} £0)=0,  E(@’|a] £0) = L.

We note that these assumptions (Al), (A2) and (C1) - (C5) are similar to those made in (
R ; . ). ( ) require the matrices to satisfy the restricted

isometry property, which is strictly weaker than j/+/d-incoherence, however they can tolerate a
much lower level of sparsity (d'/).

Pr(z;, 2 #0) =



3.2 Main Result

Theorem 3. Suppose that true dictionary A* and the distribution of the s-sparse sam-
ples x* satis]? the assumptions stated in Section 3./ and we are given an estimate A
such that ||[A®) — A%, < RO < Cy/2s. If we are given {nD}]_| iid samples

in every iteration with n = Q mlog(dr/é)) then Algorithm 1 with parameters

OV Ay (O (v WYL n) chosen as specified in Section 3.1 after T iterations
returns a dictionary A") such that,

7 T
JAT) — A%l < (8> R®) with probability 1 — T§.

4 Proof of Convergence

In this section we prove the main convergence result. To prove this we analyze the gradient update to
the dictionary at each step. We can decompose this gradient update (which is a random variable) into
a first term which is its expected value and a second term which is its deviation from expectation.
We will prove a deterministic convergence result by working with the expected value of the gradient
and then appeal to standard concentration arguments to control the deviation of the gradient from its
expected value with high probability.

By Lemma &, Algorithm | is guaranteed to estimate the sign pattern correctly at every round of the
algorithm, sgn(z) = sgn(x*) (see proof in Appendix A.l). Also note that by assumption (B1), the
initial dictionary A(©) is close to only one dictionary A* in the equivalence class.

To un-clutter notation let, A7, = a7, Ag;) = a;j, AE;H) = a;j. The k' coordinate of the m!"
covariate is written as x7**. Similarly let 27 be the k" coordinate of the estimate of the m!"
covariate at step ¢. Finally let R®) = R, n{¥) = n and g,; be the (4, j)"" element of the gradient

with n (n(t)) samples at step t. Unwrapping the expression for g;; we get,

1 n T 1 n T
9ij = n Z lz (aiw?x;n) - ylnl’jn] ) Z [Z (aikJU? - a;kle*)@";n]
k=1

m=1 Lk=1 m=1

T

* *
=K E (aikxk — aikxk)xj
k=1
1 n T r
* * * ok
15 Z Z (aik‘”? — ATk )ff}n —E (az‘kﬂfk - aikxk>xj
m=1 Lk=1 k=1

-y
—€n

where g;; denotes (4, 7)*" element of the expected value (infinite samples) of the gradient. The sec-
ond term ¢, is the deviation of the gradient from its expected value. By Theorem 10 we can control
the deviation of the sample gradient from its mean via an application of McDiarmid’s inequality.
With this notation in place we are now ready to prove Theorem 3.

Proof [Proof of Theorem 3] First we analyze the structure of the expected value of the gradient.

Step I: Unwrapping the expected value of the gradient we find it decomposes into three terms

_ 2 * kL o Lk ko
gi; = E (a”xj — aijxjxj) +E g AikTETj — Q3 TLT;
ki

s s
= (a;; — a’{j);E [m?\x;‘ # 0] +afj;E [(z; — x} )il # 0] +E Zaikxkxj — ALTLT;
kg

8 e =
=9 ==1



The first term gf; points in the correct direction and will be useful in converging to the right answer.
The other terms could be in a bad direction and we will control their magnitude with Lemma 5 such
that |Z;| + |Z2| < 3= R. The proof of Lemma 5 is the main technical challenge in the convergence
analysis to control the error in the gradient. Its proof is deferred to the appendix.

Step 2: Given this bound, we analyze the gradient update,
a;; = aij —nGi; = aij — 0(gi + en) = aij — 1 [g5; + (E1 +E2) + €] .
So if we look at the distance to the optimum a;‘j we have the relation,

’ « S

*

aiy — a; = ai; — afy —nlay; — ;) K 23] # 0] — n {(E1 + Z2) + eu).

-
Taking absolute values, we get

’

L @ s . X - -
jai; — agyl < (1= E [23]a5 #0]) lay; — il +n {[Za] + 22l + leal)

(44)

s . . s
< (1 — n;E [13\:10] #+ O]) la;; — aij\ +1n (?R) + nlen|

s N 1
< (1= {2l 20 - 3 }) R alal

provided the first term is at non-negative. Here, (¢) follows by triangle inequality and (i) is by
Lemma 5. Next we give an upper and lower bound on E [z?\x;‘ # O]. We would expect that as
R gets smaller this variance term approaches E [:c’;2|x; # O] = 1. By invoking Lemma 6 we can
bound this term to be % <E [;v?|9c;‘ #* 0] < %. We want the first term to contract at a rate 3/4; it

suffices to have
(1) s 21 » 1 (1) 3
0< (1—nr {E [xj|xj 750} — 3}) < T

Coupled with Lemma 6, Inequality () follows from n <  while (ii) follows from 7 > 3. We also
have by Theorem 10 that 5|e, | < R/8 with probability 1 — §. So if we unroll the bound for ¢ steps
we have,

t
®) _ g < 3 pt-1) <3pe-n pe _ Tpe-1 - (T po
‘alj a”L]| =4 +n|€n| — 4 + 8 8 — 8 N

We also have n]e,| < R/8 < R /8 with probability at least 1 — J in each iteration, for all
t € {1,...,T}; thus by taking a union bound over the iterations we are guaranteed to remain in our
initial ball of radius R(®) with high probability, completing the proof. |

5 Conclusion

An interesting question would be to further explore and analyze the range of algorithms for which
alternating minimization works and identifying the conditions under which they provably converge.
Going beyond sparsity v/d still remains challenging, and as noted in previous work alternating mini-
mization also appears to break down experimentally and new algorithms are required in this regime.
Also all theoretical work on analyzing alternating minimization for dictionary learning seems to
rely on identifying the signs of the samples (z*) correctly at every step. It would be an interesting
theoretical question to analyze if this is a necessary condition or if an alternate proof strategy and
consequently a bigger radius of convergence are possible. Lastly, it is not known what the optimal
sample complexity for this problem is and lower bounds there could be useful in designing more
sample efficient algorithms.
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