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Abstract

Some of the missing proofs in the paper can be found here. All the results are
stated again here (although the numberings are different from the main paper).

1 Examples of λ-Variationally Stable Games

Here we give two important classes of games that satisfy the λ-variational stability criterion. This is
by no means a comprehensive list.

1. Convex Potential Games A game G = (N ,X =
∏N
i=1 Xi, {ui}Ni=1) is called a poten-

tial game [1] if there exists a potential function V : X → R such that ui(xi,x−i) −
ui(x̃i,x−i) = V (xi,x−i) − Vi(x̃i,x−i),∀i ∈ N ,∀x ∈ X ,∀x̃i ∈ Xi. A potential game
is called a convex potential game if the potential function V (·) is concave1 Note that in a
convex potential game, we have

Hλ
ij(x) =

1

2
λi∇xj vi(x) +

1

2
λj(∇xi vj(x))T (1.1)

=
1

2
λi∇xj ∇xi V (x) +

1

2
λj(∇xi ∇xj V (x))T . (1.2)

Setting λ = 1, we obtain H1(x) = ∇2 V , which is negative semi-definite when V is
concave. This implies that in a convex potential game, C = argmaxx∈X V (x) is 1-
variationally stable per Lemma 2.2.

2. Linear Cournot Oligopoly Games There is a set N = {1, 2, . . . , N} of firms that supply
the market with the same good (or service). Firm i provides xi ∈ [0, Ci] quantity to the
market. The price of the good is a decreasing function of the total quantity of the good
supplied to the market: P (x) = P (

∑N
i=1 xi). A common price function takes the linear

form: P (
∑N
i=1 xi) = a− b(

∑N
i=1 xi), a > 0, b > 0. The utility function for firm i is then

ui(x) = xiP (
∑N
i=1 xi)− cixi, where ci is the unit production cost for firm i. In this case,

one can clearly that this is a concave game. Further, again set setting λ = 1, we have

H1
ij(x) =

1

2

∂vi(x)

∂xj
+

1

2

∂vj(x)

∂xi
(1.3)

= −bδij − b, (1.4)

1It is called convex potential game as opposed to concave potential game because in engineering, the utility
is typically framed in terms of costs and convex costs correspond to concave utilities.
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where δij = 1 if i = j and δij = 0 otherwise. Consequently,

H1
ij(x) = −b(I+ 1N×N ),

which is negative definite. Hence, the game admits a unique Nash equilibrium that is
1-variationally stable per Lemma 2.2.

2 λ-Variational Stability: A Key Criterion

Before proceeding, a word on the notation for the remainder of the supplementary material: for
convenience, we shall write vj(x)(xj − x∗j ) to denote the inner product between vj(x) and xj − x∗j
in replacement of the more cumbersome notation 〈vj(x), xj − x∗j 〉.
Lemma 2.1. If C is nonempty and λ-stable, then it is closed, convex and contains all Nash equilibria
of the game.

Proof. First we show that any element x∗ ∈ C is a Nash equilibrium. For any i ∈ N , take any xi ∈ Xi
and any τ ∈ (0, 1], set x , (x∗1, . . . , x

∗
i−1, (1 − τ)x∗i + τxi, x

∗
i+1, . . . , x

∗
N ) = x∗ + τ(xi − x∗i )ei,

where ei is the j-th unit vector in the standard basis. By convexity of Xi, x ∈ X . Further,

d

dτ
ui(x

∗
i + τ(xi − x∗i );x−i) = vi(x)(xi − x∗i ). (2.1)

By applying the variational stability condition to the profiles x∗ and x, it follows that the RHS of the
above equation is strictly negative for all τ > 0. In turn, this implies that ui(x) ≤ ui(x∗), i.e. x∗ is a
Nash equilibrium.

Next, we show that C is closed. Take any convergent sequence {xj}∞j=0 in C: xj ∈ C, limj→∞ xj =

x∗. Then, for any x ∈ X , we have
∑N
i=1 λivi(x)(xi − xji ) ≤ 0,∀j = 0, 1, . . . . Therefore, by

continuity, it follows that limj→∞
∑N
i=1 λivi(x)(xi − x

j
i ) =

∑N
i=1 λivi(x)(xi − x∗i ) ≤ 0,∀x ∈ C,

thereby implying x∗ ∈ C. Since {xj}∞j=0 is any sequence in C, C contains all its limit points and is
therefore closed.

To see that C is convex, take any x∗,y∗ ∈ C and any τ ∈ [0, 1]. For any x ∈ X , we have

N∑
i=1

λivi(x)(xi − (τx∗i − (1− τ)y∗i )) = (2.2)

τ

N∑
i=1

λivi(x)(xi − x∗i ) + (1− τ)
N∑
i=1

λivi(x)(xi − y∗i ) ≤ 0, (2.3)

thereby establishing that τx∗ + (1− τ)y∗ ∈ C.

Finally, to see that C contains all Nash equilibria of the game, assume that z∗ /∈ C is a Nash
equilibrium. We then have:

N∑
i=1

λivi(z
∗)(xi − z∗i ) ≤ 0,∀x ∈ X . (2.4)

Take an arbitrary x∗ ∈ C. Since C is λ-variational stable and z∗ /∈ C, we have
∑N
i=1 λivi(z

∗)(z∗i −
x∗i ) < 0, implying that

∑N
i=1 λivi(z

∗)(x∗i − z∗i ) > 0, which contradicts Equation 2.4.

Lemma 2.2. Consider a game with continuous actions (N ,X =
∏N
i=1 Xi, {ui}Ni=1), where each ui

is twice continuously differentiable. For each x ∈ X , define the λ-weighted Hessian matrix Hλ(x)
as follows:

Hλ
ij(x) =

1

2
λi∇xj vi(x) +

1

2
λj(∇xi vj(x))T . (2.5)

If Hλ(x) is negative-definite for every x ∈ X , then the game admits a unique Nash equilibrium x∗

that is λ-globally variational stable.
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Proof. Per Thereom 6 of [3], it follows that

N∑
i=1

λi(vi(x)− vi(x̃))(xi − x̃i) ≤ 0,∀x, x̃ ∈ X , (2.6)

where equality holds if and only if x = x̃. Per Theorem 2 of [3], this inequality then implies that
there exists a unique Nash equilibrium x∗. Plug x∗ into Inequality 2.6 for x̃, we have that for any
x ∈ X :

N∑
i=1

λivi(x)(xi − x∗i ) ≤
N∑
i=1

λivi(x
∗)(xi − x∗i ) ≤ 0,

where the second inequality follows from x∗ is a Nash equilibrium. Furthermore, both equality are
achieved if and only if x = x∗. This implies that {x∗} is λ-variational stable.

3 Convergence under Synchronous and Bounded Delays

Algorithm 1 Online Mirror Descent on Games under Delays

1: Each player i chooses an initial y0i .
2: for t = 0, 1, 2, . . . do
3: for i = 1, . . . , N do
4: xti = argmaxxi∈Xi{< yti , xi > −hi(xi)}
5: yt+1

i = yti + αt
∑
s∈Gti

vi(x
s)

6: end for
7: end for

Assumption 1. The delays are assumed to be:

1. Synchronous: Gti = Gtj ,∀i, j, ∀t.

2. Bounded: dti ≤ D,∀i, ∀t (for some positive integer D).

Lemma 3.1. For each i ∈ {1, . . . , N}, let hi : Xi → R be a regularizer with respect to the norm
‖ · ‖i that is Ki-strongly convex and let λ ∈ RN++. Then ∀x ∈ X ,∀ỹ,y ∈ R

∑N
i=1 di :

1. Fλ(x,y) ≥ 1
2

∑N
i=1Kiλi‖Ci(yi)− xi‖2i ≥ 1

2 (miniKiλi)
∑N
i=1 ‖Ci(yi)− xi‖2i .

2. Fλ(x, ỹ) ≤ Fλ(x,y)+
∑N
i=1 λi〈ỹi−yi, Ci(yi)−xi〉+

1
2 (maxi

λi
Ki

)
∑N
i=1(‖ỹi−yi‖∗i )2,

where ‖ · ‖∗i is the dual norm of ‖ · ‖i (i.e. ‖yi‖∗i = max‖xi‖i≤1〈xi, yi〉.

Theorem 3.2. Consider a game with continuous actions (N ,X =
∏N
i=1 Xi, {ui}Ni=1) that admits

x∗ as the unique Nash equilibrium that is λ-variationally stable. Under Assumption 1 for the delays,
the OMD iterate xt given in Algorithm 1 converges to x∗, irrespective of the initial point x0.

Remark 3.1. We repeat the four main steps in the following remark and prove each of them in detail
in order.

1. Since the delays are synchronous, we denote by Gt the common set and dt the common
delay at round t. The gradient update in OMD under delays can then be written as:

yt+1
i = yti + αt

∑
s∈Gt

vi(x
s) = yti + αt

{
|Gt|vi(xt) +

∑
s∈Gt
{vi(xs)− vi(xt)}

}
. (3.1)

Define bti =
∑
s∈Gt{vi(xs)− vi(xt)}. We show that under the delay assumption (Assump-

tion 1), limt→∞ ‖bti‖∗i = 0 for each player i.

3



2. Define bt = (bt1, . . . , b
t
N ) and we have limt→∞ bt = 0 per Claim 1. Since each player’s

gradient update can be written as yt+1
i = yti +αt(|Gt|vi(xt)+ bti) per Claim 1, we can then

write the joint OMD update (of all players) as:

xt = C(yt), (3.2)
yt+1 = yt + αt {|Gt|v(xt) + bt} . (3.3)

Let B(x∗, ε) , {x ∈ X | ‖x− x∗‖ < ε} be the open ball centered around x∗ with radius
ε. Then, using λ-Fenchel coupling as a “energy" function and leveraging the handle on
bt given by Claim 1, we can establish that, for any ε > 0 the iterate xt will eventually
enter B(x∗, ε) and visit B(x∗, ε) infinitely often, no matter what the initial point x0 is.
Mathematically, the claim is that ∀ε > 0,∀x0, |{t | xt ∈ B(x∗, ε)}| =∞.

3. Fix any δ > 0 and consider the set B̃(x∗, δ) , {C(y) | Fλ(x∗,y) < δ}. In other words,
B̃(x∗, δ) is some “neighborhood" of x∗, which contains every x that is an image of some y
(under the choice map C(·)) that is within δ distance of x∗ under the λ-Fenchel coupling
“metric". Although Fλ(x∗,y) is not a metric, B̃(x∗, δ) contains an open ball within it.
Mathematically, the claim is that for any δ > 0, ∃ε(δ) > 0 such that: B(x∗, ε) ⊂ B̃(x∗, δ).

4. For any “neighborhood" B̃(x∗, δ), after long enough iterations, if xt ever enters B̃(x∗, δ),
it will be trapped inside B̃(x∗, δ) thereafter. Mathematically, the claim is that for any δ > 0,
there exists a T (δ), such that for any t ≥ T (δ), if xt ∈ B̃(x∗, δ), then xt̃ ∈ B̃(x∗, δ),∀t̃ ≥
t.

Putting all four elements above together, we note that the significance of Claim 3 is that, since the
iterate xt will enter B(x∗, ε) infinitely often (per Claim 2), xt must enter B̃(x∗, δ) infinitely often. It
therefore follows that, per Claim 4, starting from iteration t, xt will remain in B̃(x∗, δ). Since this is
true for any δ > 0, we have Fλ(x∗,yt)→ 0 as t→∞. Per Statement 1 in Lemma 3.1, this leads to
that ‖C(yt)− x∗‖ → 0 as t→∞, thereby establishing that xt = C(yt)→ x∗ as t→ 0.

Proof:

1. We start by fixing some notation. Let yt = (yt1, . . . , y
t
N ),xt = (xt1, . . . , x

t
N ) be the

iterates generated in Algorithm 1. Since X is compact and v(·) is continuous, V imax ,
maxxi∈Xi ‖vi(x)‖∗i < ∞, Vmax , maxx∈X ‖v(x)‖∗ =

∑N
i=1 V

i
max < ∞. Since each

hi(·) is Ki strongly convex (with respect to ‖ · ‖i), it follows from a well-known result
in convex analysis [2] that the choice map C(·) is 1

K -Lipschitz continuous, where K ,
miniKi. Finally, since each vi(·) is Lipschitz continuous, v(·) is Lipschitz continuous as
well and denote the Lipschitz constant as L.

Since dt ≤ D,∀t, it follows that |Gt| ≤ D and minGt ≥ t−D + 1, for otherwise at least
one gradient comes from D + 1 rounds before. Further, per the OMD update (first equality
in Equation 3.1), we have:

‖yt+1 − yt‖∗ =
N∑
i=1

‖yt+1
i − yti‖∗i =

N∑
i=1

‖αt
∑
s∈Gt

vi(x
s)‖∗i (3.4)

≤ αt
N∑
i=1

∑
s∈Gt
‖vi(xs)‖∗i ≤ αt

N∑
i=1

|Gt|V imax ≤ αtDVmax (3.5)
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By definition, we can expand bti as follows:

bti =
∑
s∈Gt
{vi(xs)− vi(xt)} ≤

∑
s∈Gt

L‖xs − xt‖ =
∑
s∈Gt

L‖C(ys)− C(yt)‖ ≤
∑
s∈Gt

L

K
‖ys − yt‖∗

(3.6)

≤ L

K

∑
s∈Gt

{
‖ys − ys+1‖∗ + ‖ys+1 − ys+2‖∗ + · · ·+ ‖yt−1 − yt‖∗

}
(3.7)

≤ L

K

∑
s∈Gt

{
αsDVmax + αs+1DVmax + · · ·+ αtDVmax

}
(3.8)

=
LDVmax

K

∑
s∈Gt

t∑
k=s

αk ≤ LDVmax

K
|Gt|

t∑
s=minGt

αs ≤ LD2Vmax

K

t∑
s=minGt

αs (3.9)

≤ LD2Vmax

K

t∑
s=t−D+1

αs ≤ LD3Vmax

K
αt−D+1 → 0, as t→∞, (3.10)

where the first inequality in Equation 3.6 follows from the fact that v(·) is L-Lipschitz con-
tinuous, the second inequality in Equation 3.6 follows from the fact that C(·) is 1

K -Lipschitz
continuous, Equation 3.8 follows from Equations 3.4 and 3.5 and the first inequality in Equa-
tion 3.9 follows from that αt’s are non-negative and the second inequality in Equation 3.10
follows from αt is non-increasing. Lastly, the convergence to 0 in Equation 3.10 follows
from the fact that αt is square-summable.

2. Fix an arbitrary ε > 0. Assume for contradiction purposes that xt only visits B(x∗, ε) a
finite number of times and hence let t0 − 1 be the last time xt is in B(x∗, ε): ∀t ≥ t0,xt ∈
X −B(x∗, ε). Since X −B(x∗, ε) is a compact set and vi(x) is continuous in x and since
by assumption

∑N
i=1 λivi(x)(xi − x∗i ) < 0,∀x ∈ X ,x 6= x∗, it follows that there exists a

cmax(ε) < 0 such that

N∑
i=1

λivi(x)(xi − x∗i ) ≤ cmax(ε),∀x ∈ X −B(x∗, ε). (3.11)

Per Claim 1, limt→∞ bt = 0, therefore, ‖bt‖∗ is bounded and we denote Bmax ,

maxt ‖bt‖∗. Next denote R = maxx∈X ‖x‖, λmax , maxi λi and βt , maxi
(αt)2λi
2Ki

and
note that

∑∞
t=1 β

t <∞. Using Lemma 3.1, we have ∀t ≥ t0:

Fλ(x∗,yt+1) = Fλ(x∗,yt + αt{|Gt|v(xt) + bt}) ≤ (3.12)

Fλ(x∗,yt) +

N∑
i=1

λi(α
t{|Gt|vi(xt) + bti})(Ci(yti)− x∗i ) + βt(‖|Gt|v(xt) + bt‖∗)2 =

(3.13)

Fλ(x∗,yt) + αt

{
|Gt|

N∑
i=1

λivi(x
t)(xti − x∗i ) +

N∑
i=1

λib
t
i(x

t
i − x∗i )

}
+ βt(‖|Gt|v(xt) + bt‖∗)2

(3.14)

≤ Fλ(x∗,yt) + αt
{
|Gt|cmax(ε) + λmax‖bt‖∗‖xt − x∗‖

}
+ βt

{
2(‖|Gt|v(xt)‖∗)2 + 2(‖bt‖∗)2

}
(3.15)

≤ Fλ(x∗,yt) + αt
{
|Gt|cmax(ε) + λmaxR‖bt‖∗

}
+ 2βt(D2V 2

max +B2
max) (3.16)

≤ Fλ(x∗,yt
0

) + (

t∑
k=t0

αk)

{∑t
k=t0 α

k|Gk|∑t
k=t0 α

k
cmax(ε) + λmaxR

∑t
k=t0 α

k‖bk‖∗∑t
k=t0 α

k

}
(3.17)

+ 2(

t∑
k=t0

βk)(D2V 2
max +B2

max), (3.18)
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where Equation (3.15) follows from Equation (3.11) and Equation (3.17) follows from
telescoping.
Next, we show that:

1 ≤ lim
t→∞

∑t
k=t0 α

k|Gk|∑t
k=t0 α

k
≤ D. (3.19)

Partition the rounds into intervals {0, 1, . . . , D − 1}, {D,D + 1, . . . , 2D − 1}, . . . . Since
each gradient is received exactly once with at most delay D, the gradients corresponding to
the first interval will have been completely received by time 2D − 1 (i.e. by the end of the
second interval). Similarly, the gradients corresponding to the l-th interval will have been
all received by time (l + 1)D − 1. Consequently, since αt is non-increasing, it follows that:

∞∑
k=0

αk|Gk| ≥
∞∑
l=2

DαlD−1 ≥
∞∑

k=2D−1

αk =∞.

Consequently,

lim
t→∞

∑t
k=t0 α

k|Gk|∑t
k=t0 α

k
= lim
t→∞

∑t
k=0 α

k|Gk|∑t
k=0 α

k
= lim
t→∞

∑t
k=0 α

k|Gk|∑t
k=2D−1 α

k
≥ 1.

Finally,
∑t
k=t0

αk|Gt|∑t
k=t0

αk
≤ D follows easily by noting that |Gt| ≤ D.

Next, note that since limt→∞ bt = 0 and
∑∞
t=0 α

t =∞, it follows that:∑t
k=t0 α

k‖bk‖∗∑t
k=t0 α

k
→ 0, as t→∞. (3.20)

Combining Equation 3.19 and Equation 3.20, we obtain:

(

t∑
k=t0

αk)

{∑t
k=t0 α

k|Gk|∑t
k=t0 α

k
cmax(ε) + λmaxR

∑t
k=t0 α

k‖bk‖∗∑t
k=t0 α

k

}
→ −∞, as t→∞.

Since
∑∞
k=t0 β

k <∞, Equation (3.17) implies that Fλ(x∗,yt)→ −∞, which contradicts
the first statement in Lemma 3.1. The claim therefore follows.

3. Assume for contradiction purposes no B(x∗, ε) is contained in B̃(x∗, δ), which means that
for any δ > 0,∃yl, such that ‖Q(yl) − x∗‖ = δ but Fλ(x∗,yl) ≥ ε. This produces a
sequence {yl}∞l=0 such that C(yl)→ x∗ but Fλ(x∗,yl) ≥ ε,∀l. This contradicts with the
fact that the choice map C(·) is λ-Fenchel coupling conforming, because by definition it
holds that if C(yt)→ x, then Fλ(x,yt)→ 0. Consequently, the claim follows.

4. Fix a given δ > 0. Since βt is summable and αt is not summable but square summable, it
follows that βt → 0, αt → 0, α

t

βt →∞ as t→∞. There, denote

(a) T 1(δ) = argmint{t | βs < δ
8(D2V 2

max+B
2
max)

,∀s ≥ t}.

(b) T 2(δ) = argmint{t | cmax(ε(
δ
2 )) < −2λmaxR‖bs‖∗,∀s ≥ t}.

(c) T 3(δ) = argmint{t | αs < δ
4λmaxRBmax

,∀s ≥ t}.

(d) T 4(δ) = argmint{t | α
s

βs >
4(D2V 2

max+B
2
max)

−cmax(ε(
δ
2 ))

,∀s ≥ t}.

We have T 1(δ) <∞, T 2(δ) <∞ (since limt→∞ ‖bt‖∗ = 0 and note that cmax(ε(
δ
2 )) < 0

by definition), T 3(δ) <∞, T 4(δ) <∞. Take

T (δ) = max(T 1(δ), T 2(δ), T 3(δ), T 4(δ)}.

Now take any t ≥ T (δ). We show that if xt ∈ B̃(x∗, δ), then xt+1 ∈ B̃(x∗, δ). To see that
this statement holds, let xt ∈ B̃(x∗, δ), which implies that Fλ(x∗,yt) < δ. Note that it
suffices to consider Gt 6= ∅, for otherwise xt+1 = xt.
Now there are two possibilities:
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(a) Possibility 1: xt ∈ B(x∗, ε( δ2 )).

(b) Possibility 2: xt ∈ B̃(x∗, δ)−B(x∗, ε( δ2 )).
Under Possibility 1, it follows

Fλ(x∗,yt+1) ≤ Fλ(x∗,yt) + αt
N∑
i=1

λi{|Gt|vi(xt) + bti}(xti − x∗i ) + βt(‖|Gt|v(xt) + bt‖∗)2

(3.21)

≤ Fλ(x∗,yt) + αt
N∑
i=1

λib
t
i(x

t
i − x∗i ) + βt

{
2(‖|Gt|v(xt)‖∗)2 + 2(‖bt‖∗)2

}
(3.22)

≤ Fλ(x∗,yt) + αtλmaxRBmax + 2βt(D2V 2
max +B2

max) (3.23)

< Fλ(x∗,yt) +
δ

4λmaxRBmax
λmaxRBmax +

2δ

8(D2V 2
max +B2

max)
(D2Vmax2 +B2

max)

(3.24)

≤ δ

2
+
δ

4
+
δ

4
= δ, (3.25)

where the second inequality follows from λ-variational stability and the last inequality
follows from the fact that xt ∈ B(x∗, ε( δ2 )) ⊂ B̃(x∗, δ2 ) per Claim 2.
Under Possibility 2, it follows from Equation 3.16 that

Fλ(x∗,yt+1) ≤ Fλ(x∗,yt) + αt
{
|Gt|cmax(ε(

δ

2
)) + λmaxR‖bt‖∗

}
+ 2βt(D2V 2

max +B2
max)

(3.26)

≤ Fλ(x∗,yt) + 2βt(D2V 2
max +B2

max)

{
αt

βt
cmax(ε(

δ
2 )) + λmaxR‖bt‖∗

2(D2V 2
max +B2

max)
+ 1

}
(3.27)

≤ Fλ(x∗,yt) + 2βt(V 2
max +B2

max)

{
αt

βt
cmax(ε(

δ
2 ))

4(V 2
max +B2

max)
+ 1

}
(3.28)

< Fλ(x∗,yt) < ε, (3.29)

where the second inequality follows from |Gt| ≥ 1 since it is not empty by assumption
and cmax < 0, the third inequality follows from λmaxR‖bt‖∗ < − 1

2cmax(ε(
δ
2 )) since

t ≥ T 2(δ) and the second-to-last inequality follows from αt

βt
cmax(ε(

δ
2 ))

4(V 2
max+B

2
max)

+ 1 < 0 since
t ≥ T 4(δ).

�
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