
Reliable Decision Support using
Counterfactual Models

Peter Schulam
Department of Computer Science

Johns Hopkins University
Baltimore, MD 21211

pschulam@cs.jhu.edu

Suchi Saria
Department of Computer Science

Johns Hopkins University
Baltimore, MD 21211
ssaria@cs.jhu.edu

A Equivalence of MPP Outcome Model and Counterfactual Model

At a given time t, we want to make predictions about the potential outcomes that we will measure at
a set of future query times q = [s1, . . . , sm] given a specified future sequence of actions a. This can
be written formally as

P ({Ys[a] : s ∈ q} | Ht) (1)

Without loss of generality, we can use the chain rule to factor this joint distribution over the potential
outcomes. We choose a factorization in time order; that is, a potential outcome is conditioned on all
potential outcomes at earlier times. We now describe a sequence of steps that we can apply to each
factor in the product.

P ({Ys[a] : s ∈ q} | Ht) =

m∏
i=1

P (Ysi [a] | {Ys[a] : s ∈ q, s < si} ,Ht). (2)

Using Assumption 3, we can introduce random variables for marked points that have the same
timing and actions as the proposed sequence of actions without changing the probability. Recall our
assumption that actions can only affect future values of the outcome, so we only need to introduce
marked points for actions taken at earlier times. Formally, we introduce the set of marked points for
the potential outcome at each time si

Ai = {(t′,∅, a, 0, 1) : (t′, a) ∈ a, t′ < si} . (3)

We can then write

P (Ysi [a] | {Ys[a] : s ∈ q, s < si} ,Ht) = P (Ysi [a] | Ai, {Ys[a] : s ∈ q, s < si} ,Ht). (4)

To show that P (Y [a] | A = a,X = x) = P (Y [a] | X = x) in Section 2, we use Assumption 2 to
remove the random variable A from the conditioning information without changing the probability
statement. We reverse that logic here by adding Ai.

Now, under Assumption 1, after conditioning on Ai, we can replace the potential outcome Ysi [a]
with Ysi . We therefore have

P (Ysi [a] | Ai, {Ys[a] : s ∈ q, s < si} ,Ht) = P (Ysi | Ai, {Ys[a] : s ∈ q, s < si} ,Ht). (5)

Similarly, because the set of proposed actions affecting the outcome at time si contain all actions
that affect the outcome at earlier times s < si, we can invoke Assumption 1 again and replace all
potential outcomes at earlier times with the value of the observed process at that time.

P (Ysi | Ai, {Ys[a] : s ∈ q, s < si} ,Ht) = P (Ysi | Ai, {Ys : s ∈ q, s < si} ,Ht).

31st Conference on Neural Information Processing Systems (NIPS 2017), Long Beach, CA, USA.

jk < j

{t, zy, za} {t, zy, za}

y y

a a

u1 u2

Figure 1: The causal Bayesian network for the counterfactual GP.

Next, Assumption 4 posits that the outcome model p∗(y | t′, zy = 1) is the density of P (Yt′ | Ht),
which implies that the mark (t′, y,∅, 1, 0) is equivalent to the event (Yt′ ∈ dy). Therefore, for each
si define

Oi = {(s, Ys,∅, 1, 0) : s ∈ q, s < si} . (6)

Using this definition, we can write

P (Ysi | Ai, {Ys : s ∈ q, s < si} ,Ht) = (Ysi | Ai,Oi,Ht).

The set of information (Ai,Oi,Ht) is a valid history of the marked point processH−si up to but not
including time si. We can therefore replace all information after the conditioning bar in each factor
of Equation 2 withHs−i

.

P (Ysi | Ai,Oi,Ht) = P (Ysi | H−si). (7)

Finally, by applying Assumption 4 again, we have

P (Ysi ∈ dy | H−si) = p∗(y | si, zy = 1) dy. (8)

The potential outcome query can therefore be answered using the outcome model, which we can
estimate from data.

B Causal Bayesian Network

We can also characterize our key assumptions using causal Bayesian networks [Pearl, 2009]. Let
{(tj , zy,j , za,j , yj , aj)}j≥1 be a countable sequence of tuples of variables (a marked point process
can be characterized as a countable sequence of points and marks). Recall that tj is an event time,
zy,j is a binary random variable indicating whether an outcome is measured, za,j is a binary random
variable indicating whether an action is taken, yj ∈ R ∪ {∅} is an outcome measurement, and
aj ∈ C ∪ {∅} is an action (the last two variables are ∅ when the respective indicator is 0).

We define the directed acyclic graph G with nodes V , ∪j≥1{tj , zy,j , za,j , yj , aj} and edge
set E to be the causal Bayesian network for the counterfactual GP. For any variables v1 ∈
{tj , zy,j , za,j , yj , aj} and v2 ∈ {tk, zy,k, za,k, yk, ak}, the edge (v1 → vk) ∈ E if j < k or
if j = k and v1 is a parent of v2 in the right-most plate of Figure 1. We allow the variables
{(tj , zy,j , za,j , aj)}∞j=1 to depend on a common unobserved parent u1, and the outcomes {yj}∞j=1

2

to depend on a common unobserved parent u2. The DAG in Figure 1 sketches the causal Bayesian
network. For any index j, we show the edges present between all variables at times k < j.

We now formulate our causal query, and show that it is identified using observational traces sampled
from the distribution implied by the causal Bayesian network. For any time t ∈ [0, τ], our goal is to
predict the values of future outcomes under a hypothetical sequence of future actions given the history
up until time t. DefineHt = ∪j:tj<t{tj , zy,j , za,j , yj , aj} to be the sequence of n actions taken and
outcomes measured prior to time t, and define Ft to be a sequence of m tuples corresponding to
future actions and measurements. The variables inHt∪Ft are connected using the edge set definition
described above. Let t denote the m future time points, zy the future measurement indicators, za the
future action indicators, y the future outcomes, and a the future actions. Our goal is to show that the
following query is identified:

p(y | do(t, zy, za,a),Ht) =

m∏
j=1

p(yj | ȳ:j , do(t, zy, za,a),Ht), (9)

where ȳ:j denotes the vector of future outcomes before the jth. We will also use ȳj: to denote all
outcomes measured after the jth (this notation will be used for the other variables as well). First,
consider any factor in the expression above. We define the future and past intervened-on variables at
time tj as

fj , {aj , t̄j:, z̄y,j:, z̄a,j:, āj:} (10)

pj , {t̄:j , z̄y,:j , z̄a,:j , ā:j , tj , zy,j , za,j}. (11)

Using these shorthand definitions, we first prove the following equivalence

p(yj | ȳ:j , do(pj), do(fj),Ht) = p(yj | ȳ:j , do(pj),Ht). (12)

Intuitively, we are showing that actions taken after yj is measured do not affect its value. To justify
the equality, we use “Rule 3” from Pearl’s do-calculus (see Chapter 3 in Pearl 2009). We must show
that yj is d-separated from fj in the mutilated DAG where all incoming edges to nodes in pj and fj

have been removed. To show d-separation, let v ∈ fj \ {aj} be some future intervened-on variable
at time step k > j. Since all incoming edges have been removed, all paths starting at v must be
outgoing. Outgoing edges for v in the original DAG either point to an outcome y` for ` ≥ k or some
other intervened-on variable v′ ∈ fj \ {aj , v}. The latter are removed in the mutilated graph, so
the only edges outgoing from v must point to an outcome y` for ` ≥ k. This implies that all paths
starting at v must begin with an edge v → y` for some ` ≥ k. Because y` is unobserved, the only
unblocked paths must then follow an outgoing edge (otherwise it would be a collider). All outgoing
edges from variables y` for ` ≥ k can only point to outcomes y`′ for `′ > `, which in turn must point
to y`′′ for `′′ > `′, and so on. Therefore, any path starting from v must pass through outcomes y at
strictly increasing times. Eventually, we will reach the final outcome, where there are no outgoing
edges, ending the path. We can conclude that no paths starting at v can reach yj . A similar argument
shows that no path starting from aj can reach yj .

Next, we use “Rule 2” from the do-calculus to prove that

p(yj | ȳ:j , do(pj),Ht) = p(yj | ȳ:j ,pj ,Ht). (13)

This requires showing that yj is d-separated from pj in the mutilated graph where all outgoing edges
from v ∈ pj have been removed. For any v ∈ pj , there are two types of incoming edges. The first
are edges originating from observed direct parents of v, and the second is the edge originating from
the unobserved variable u1. Any path from v to yj must start with one of these edge types, and
therefore all that start with an edge to an observed parent of v will be blocked, and any unblocked
path must start by going through u1. Now, u1 has no parents and any path must then have a second
edge from u1 to one of its children, which are all times tk, indicators zy,k or za,k, and actions ak. We
will analyze these possibilities using two cases. First, the second edge could go from u1 to a time tk
where k ≤ j, indicator zy,k or za,k where k ≤ j, or to an action ak where k < j. The only possible
next step is to go through an incoming edge where the origin is not u1; all such edges will be blocked,
and so cannot reach yj . In the second case, an edge could go from u1 to a time or indicator at step
k > j, or an action at step k ≥ j. These variables are unobserved, and so the only valid next step is
to follow an outgoing edge. Subsequent steps must all also follow outgoing edges by the same logic,

3

and so the path can never return to yj . We therefore can conclude that there are no paths from v ∈ pj

to yj in the mutilated graph, so the equality holds. Together, the two inequalities show

p(y | do(t, zy, za,a),Ht) =

m∏
j=1

p(yj | ȳ:j ,pj ,Ht). (14)

This shows that the structural dependencies encoded in the graph shown in Figure 1 can be used in
place of Assumption 3. In addition, we no longer need Assumption 1 (consistency), which highlights
an interesting difference between the potential outcomes and causal Bayesian network frameworks.
In Pearl’s causal DAGs, consistency is in fact a theorem derived from the axioms of the framework,
whereas it is assumed in the potential outcomes framework. This is shown in Corollary 7.3.2 in
Pearl [2009], which follows from the Composition axiom and the definition of a “null” intervention.
Intuitively, the fact that consistency is a theorem in Pearl’s framework reflects the assumption that the
parent-child relationships in the DAG are sufficiently stable, autonomous, or “local” [Pearl, 2009].
See Section 7.2.4 in Pearl [2009] for further information. Finally, Assumption 4 remains unchanged
and simply allows us to treat measured outcomes yj as unbiased samples of the process Ytj .

C Simulation and Policy Details

For each patient, we randomly sample outcome measurement times from a homogeneous Poisson
process with with constant intensity λ over the 24 hour period. Given the measurement times,
outcomes are sampled from a mixture of three GPs. The covariance function is shared between all
classes, and is defined using a Matérn 3/2 kernel (variance 0.22, lengthscale 8.0) and independent
Gaussian noise (scale 0.1) added to each observation. Each class has a distinct mean function
parameterized using a 5-dimensional, order-3 B-spline. The first class has a declining mean trajectory,
the second has a trajectory that declines then stabilizes, and the third has a stable trajectory.1 All
classes are equally likely a priori. At each measurement time, the treatment policy π determines
a probability p of treatment administration (we use only a single treatment type). The treatments
increase the severity marker by a constant amount for 2 hours. If two or more actions occur within
2 hours of one another, the effects do not add up (i.e. it is as though only one treatment is active).
Additional details about the simulator and policies can be found in the supplement.

Policies πA and πB determine a probability of treatment at each outcome measurement time. They
each use the average of the observed outcomes over the previous two hours, which we denote using
ŷ(t−2):t, as a feature, which is then multiplied by a weight wA = −0.5 (wB = 0.5 for regime B) and
passed through the inverse logit to determine a probabilty. The policy πC for regime C depends on
the patient’s latent class. The probability of treatment at any time t is p = αzσ(wA · ŷ(t−2):t), where
αz ∈ (0, 1) is a weight that depends on the latent class z. We set α1 = 0.2, α2 = 0.9, and α3 = 0.5.

D Mixture Estimation Details

For both the simulated and real data experiments, we analytically sum over the component-specific
densities to obtain an explicit mixture density involving no latent variables. We then estimate the
parameters using maximum likelihood. The likelihood surface is highly non-convex. To account for
this, we used different parameter initialization strategies for the simulated and real data.

On the simulated data experiments, the mixture components for both the CGP and baseline GP
are primarily distinguished by the mean functions. We initialize the mean parameters for both the
baseline GP and CGP by first fitting a linear mixed model with B-spline bases using the EM algorithm,
computing MAP estimates of trace-specific coefficients, clustering the coefficients, and initializing
with the cluster centers.

On the real data, traces have similar mean behavior (trajectories drift around the initial creatinine
value), but differed by length and amplitude of variations from the mean. We therefore centered
each trace around its initial creatinine measurement (which we condition on), and use a mean
function that includes only the short-term and long-term response functions. For each mixture, the
response function parameters are initialized randomly: parameters a, b, and r are initialized using

1The exact B-spline coefficients can be found in the simulation code included in the supplement.

4

a LogNormal(mean = 0.0, std = 0.1); heights h1 and h2 are initialized using a Normal(mean =
0.0, std = 0.1). For each mixture, Σ (L300) is initialized to the identity matrix; α and ν are drawn
from a LogNormal(mean = 0.0, std = 0.1).

References
J. Pearl. Causality: models, reasoning and inference. Cambridge University Press, 2009.

5

	Equivalence of MPP Outcome Model and Counterfactual Model
	Causal Bayesian Network
	Simulation and Policy Details
	Mixture Estimation Details

