
Supplementary Material: Permutation-based Causal
Inference Algorithms with Interventions

Yuhao Wang
Laboratory for Information and Decision Systems

and Institute for Data, Systems and Society
Massachusetts Institute of Technology

Cambridge, MA 02139
yuhaow@mit.edu

Liam Solus
Department of Mathematics

KTH Royal Institute of Technology
Stockholm, Sweden
solus@kth.se

Karren Dai Yang
Institute for Data, Systems and Society
and Broad Institute of MIT and Harvard
Massachusetts Institute of Technology

Cambridge, MA 02139
karren@mit.edu

Caroline Uhler
Laboratory for Information and Decision Systems

and Institute for Data, Systems and Society
Massachusetts Institute of Technology

Cambridge, MA 02139
cuhler@mit.edu

A Counterexample to Consistency of GIES.

In the following, we verify that the example of GIES described in Section 3 is in fact a counterexample
to consistency of GIES with the BIC score function. Recall that the DAG on the left in Figure 1,
which we denote G0, is taken to be the data-generating DAG, and our collection of interventions is
I = {I1 = ∅, I2 = {4}, I3 = {5}}. Suppose that the number of samples, n1, n2, n3, drawn from
the interventional distributions P1,P2,P3, satisfy n1 = Cn2 = Cn3 for some constant C > 1, and
that GIES arrives at the DAG G depicted on the right in Figure 1. Here, we also assume that the
observational distribution P1 is faithful to G0. We claim that this DAG is a local maximum of the
GIES algorithm.

To see this, first notice that since 5→ 4 is the only covered edge in G, then its I-MEC has size one.
Also notice that the DAG G is the minimal I-MAP of Gπ for the permutation π = 1276543. Therefore,
by consistency of GES under faithfulness [1], deleting any edge of G would result in a DAG with
a strictly higher BIC. Thus, it only remains to verify that G is a local maximum with respect to the
turning phase. We begin by checking that turning the only covered arrow in G does not increase the
BIC score function with probablilty 1. In the following, for a node j, we let I−j := I\{k | j ∈ Ik}.
We may then express the score of G as

Score(G, X̂) :=

p∑
j=1

s(j,Paj(G), X̂I−j ) + C − λn|G|,

where s(j,Paj(G), X̂I−j ) is the log of the regression residual when regressing j on Paj(G) using
the data from the truncated intervention set I−j . Formally,

s(j,Paj(G), X̂I−j ) = −
1

2

n−j
n

log

 min
a∈R|Paj(G)|

∑
k∈I−j

‖X̂k
j − X̂k

Paj(G) · a‖
2
2/n−j

 .

Now let G′ denote the DAG produced by reversing the arrow d → c in G, and let ρ̂Ii,j|S denote
the partial correlation testing coefficient of i and j given some S ⊂ [p] using interventional data
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X̂k,∀k ∈ I. If we take S = PaG(i) ∩ PaG(j), then by [5, Lemma 5.1] we have that

Score(G′, X̂)− Score(G, X̂) = s(c, S, X̂I−c)− s(c, S ∪ {d}, X̂I−c)
+ s(d, S ∪ {c}, X̂I−d)− s(d, S, X̂I−d),

= −1

2

n−d
n

log(1− (ρ̂
I−d
c,d|S)

2) +
1

2

n−c
n

log(1− (ρ̂
I−c
c,d|S)

2).

Since n1 = Cn2 = Cn3 it follows that the distributions of ρ̂I−dc,d|S and ρ̂I−cc,d|S are always identical.

Therefore, Score(G′, X̂) < Score(G, X̂) with probability 1
2 .

It now only remains to verify that turning any non-covered edge in G increases the value of the
BIC score function. Suppose that G′ is a DAG produced from turning some edge in G other than
5→ 4. Since such an edge is not covered, G′ will not be an independence map of the un-intervened
distribution P1. Therefore, there exists some sufficiently large C > 1 such that the score of G is
larger than G′. This is because the score function for C large enough is dominated by the part that
depends on the observational data.Thus, we conclude that G is a local maximum of GIES. �

B Counterexample to Consistency of Algorithm 1 without the Slack Factor

We now verify that the example described in Section 4 shows that Algorithm 1 without the use of the
slack factor δn is not consistent. The proof of this statement is similar to that of the counterexample
to consistency of GIES, and so we adopt the exact same set-up and notation used in the previous
proof. Unlike GIES, Algorithm 1 only uses moves corresponding to reversals of covered edges in the
observational DAG G0, depicted on the right in Figure 1. Thus, the only possible move Algorithm 1
can make is to reverse the covered arrow 5→ 4. If we denote the resulting graph by G′, then similar
to the previous proof, the difference in the scores Score(G′)− Score(G) can be computed as follows:

Score(G′, X̂)− Score(G, X̂) = −1

2

∑
k∈Ij\i

log
(
1− (ρ̂ki,j|S)

2
)
+

1

2

∑
k∈Ii\j

log
(
1− (ρ̂ki,j|S)

2
)

Since n1 = Cn2 = Cn3 and there is no arrow between 4 and 5 in either of G2 or G3, then
the distributions of ρ̂I−5

4,5|S and ρ̂I−4

4,5|S are identical. Therefore, Score(G′, X̂) < Score(G, X̂) with
probability 1

2 . �

C Proof of Theorem 4.1

Recall that a DAGH is called an independence map of a DAG G, denoted G ≤ H, if every CI relation
entailed by the d-separation statements ofH are also entailed by G. The proof of Theorem 4.1 relies
on the transformational relationship between a DAG and an independence map given in [1, Theorem
4]. In short, the theorem states that for an independence map G ≤ H, there exists a sequence of
covered arrow reversals and arrow additions such that after each arrow reversal or addition, the
resulting DAG G′ satisfies G ≤ G′ ≤ H, and after all arrow reversals and additions G′ = H. The
proof of this fact follows from the APPLY-EDGE OPERATION algorithm [1], which describes the
choices that can be made to produce such a transformation of independence maps. In [7] the authors
refer to the sequence of independence maps

G ≤ G(1) ≤ G(2) ≤ · · · ≤ G(m−1) ≤ H

that transforms G intoH as a Chickering sequence.

A key feature of the APPLY-EDGE OPERATION algorithm is that it recurses on the common sink
nodes between G andH. Namely, if G andH have any sink nodes with the same set of parents in both
DAGs, the algorithm first deletes these nodes and compares the resulting subDAGs. This is repeated
until there are no sink nodes in the two graphs with the exact same set of parents. The remaining
set of sink nodes that must be fixed are denoted s1 . . . , sM . Then the algorithm begins to reverse
and add arrows to the relevant subDAG of G until a new common sink node appears, which it then
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deletes, and so on. Once the algorithm corrects one such sink node in the subDAG of G to match the
same node in the subDAG ofH, we say the sink node has been resolved. In [7] the authors observe
that if we have an independence map of minimal I-MAPs Gπ ≤ Gτ , then there exists a Chickering
sequence that adds arrows and reverses arrows so that exactly one sink node is resolved at a time; i.e.,
there is no need to do arrow reversals and additions to any one sink node in order to resolve another.
To prove Theorem 4.1, we utilize this fact and the following two lemmas.
Lemma C.1. Suppose G is an independence map of the data-generating DAG Gπ∗ for the permutation
π. Let i → j denote a covered edge in G, and let S denote the set of nodes that precedes i in
permutation π; i.e.,

S := {` | π(`) < π(i)},
then in Gπ∗ the set of d-connecting paths from i to j given S is the same as the set of d-connecting
paths from i to j given PaG(i).

Proof. We prove this by contradiction. Suppose in Gπ∗ there exists a path Pi→j that d-connects
i and j given S but Pi→j is d-separated given PaG(i). Then there must exist at least one node
a ∈ S \ PaG(i) that is a collider on Pi→j or a descendent of a collider on Pi→j . If a is a collider on
Pi→j , then a d-connects i given S \ {a}. If no such collider exists, then a must be a descendent of a
collider s on Pi→j . Moreover, a d-connects s given S \ {a} and s also d-connects i given S \ {a}.
Since s 6∈ S, a d-connects i given S \ {a}. However, since G is an independence map, a must be a
parent of node i in G, which contradicts with the fact that a 6∈ PaG(i).

Suppose in Gπ∗ there exists a path Pi→j that d-connects i and j given PaG(i) but is d-separated given
S. Then there must exist some nodes in S \ PaG(i) that are non-colliders on Pi→j . Let a denote one
of such nodes that is closest to i on Pi→j , then a and i must be d-connected given S \ {a}. Since
G is an independence map, a must be a parent of node i in G, which contradicts with the fact that
a 6∈ PaG(i).

Lemma C.2. Given a permutation π consider the sequence of minimal I-MAPs from Gπ to the
data-generating DAG Gπ∗ given by covered arrow reversals

Gπ = Gπ0 ≥ Gπ1 ≥ · · · ≥ GπM = Gπ∗ .
If the edge i→ j is reversed in Gπk−1 to produce Gπk , then in Gπ∗ all d-connecting paths from j to i
given PaG

πk−1
(i) must be pointing towards i (i.e. the edge incident to i on the path points to i).

Proof. By [7, Theorem 15], we know there exists a Chickering sequence from Gπ∗ to Gπ
Gπ∗ = G0 ≤ G1 ≤ · · · ≤ GN = Gπ

that resolves one sink at a time and, respectfully, reverses one edge at a time. Let s1, . . . , sM denote
the list of sink nodes resolved in the Chickering sequence, labeled so that sj is the jth sink node
resolved in the sequence. More specifically, this means that the Chickering sequence can be divided
in terms of a sublist of DAGs Gi1 , · · · ,GiM such that Gij is the DAG produced by resolving sink sj .
It follows that the DAGs in the subsequence

Gij−1+1 ≤ · · · ≤ Gij−1

correspond to the arrow additions and covered arrow reversals that are needed to resolve sink sj . For
t = 1, . . . , qj let zt denote the node such that sj → zt must be reversed in order to produce Gij from
Gij−1 . We label these nodes such that sj → zt is reversed before sj → zt+1 in the given Chickering
sequence. Let Gij,t denote the DAG generated after reversing edge sj → zt Then we can write our
sequence Gij−1 ≤ · · · ≤ Gij as:

Gij−1 ≤ Gij−1+1 ≤ · · · ≤ Gij,t ≤ · · · ≤ Gij,t+1 ≤ · · · ≤ Gij,qj−1 ≤ Gij,qj = Gij .
To prove the lemma, we must then show that for all j and t, all d-connecting paths in Gπ∗ from sj to
zt given PaGij,t (zt) are pointing towards zt.

To prove this, let πj−1 denote a permutation consistent with Gij−1 and let Sπj−1(zt) denote the set
of nodes that precedes zt in the permutation πj−1; i.e.,

Sπj−1(zt) := {` | πj−1(`) < πj−1(zt))}.

3



If πj−1 = . . . sj . . . z1 . . . zt . . . zqj . . ., then for t = 1, . . . , qj , we can always choose a linear
extension πj,t of Gij,t in which πj,t = . . . z1 . . . ztsj . . . zqj . . ., and Sπj−1(zt)\{sj} = Sπj,t(zt)

by moving sj forward in the permutation πj−1 until it directly follows zt. It is always possible to
pick such an extension as πj,t since we can choose the extension of πj−1 so that the only nodes
in between zt−1 and zt are the descendants of zt−1 that are also ancestors of zt. The existence of
such an ordering of π with respect to the ordering of the nodes z1, . . . , zqj is implied by the choice
of the maximal child in each iteration of step 5 of the APPLY-EDGE OPERATION algorithm that
produces the Chickering sequence [1]. Using Lemma C.1, we know that any d-connecting path
from zt to sj given Sπj,t(zt) in Gπ∗ is actually the same as a d-connecting path from zt to sj in Gπ∗
given PaGij,t (zt). Since Sπj,t(zt) = Sπj−1(zt)\{sj} then it remains to show that any d-connecting
path from sj to zt given Sπj−1(zt)\{sj} in Gπ∗ goes to zt. Since sj → zt in Gπj−1 , we prove the
following, slightly stronger, statement: for any edge a→ b ∈ G̃ij−1 , all d-connecting paths from a to
b given Sπj−1(b) \ {a} in Gπ∗ go to b.

We prove this stronger statement via induction. If G̃ij−1 = G̃π∗ , the statement is definitely true
since the only possible d-connection between a and b given Sπ∗(b) \ {a} is the arrow a→ b ∈ Gπ∗ .
Suppose it is also true when j = j′ − 1. Recall the only difference between πj

′−1 and πj
′

is the
position of sj′ . If in G̃ij′ there is a new arrow a→ b, then this arrow corresponds to some paths that
d-connect a and b given Sπj′ (b) \ {a}. However, they are d-separated given Sπj′−1(b) \ {a}. Since
Sπj′ (b) = Sπj′−1(b) \ {sj′}, then sj′ must be in the middle of these new paths and is not a collider.
In this case, removing sj′ from the conditioning set would turn these paths into d-connections.

Without loss of generality, we consider one of these new paths from a to b denoted as Pa→b. Since
sj′ is in the middle of Pa→b, let Psj′→b denote the latter part of Pa→b. Obviously, Psj′→b also
d-connects sj′ and b given Sπj′−1(b) \ {sj′}. As Gij′−1 is an independence map of Gπ∗ , sj′ → b

must be an edge in Gij′−1 , and therefore it also exists in G̃ij′−1 . Notice, if sj′ → b ∈ G̃ij′−1 then, in
Gπ∗ , all paths that d-connect sj′ and b given Sπj′−1(b) \ {sj′} go to b. Therefore, Psj→b is a path
that goes to b. In this case, Pa→b is also a path that goes to b. As there is no specification of Pa→b,
this holds for all new paths, and this completes the proof.

Proof of Theorem 4.1. We can now prove Theorem 4.1. Let P be a distribution that is faithful with
respect to an unknown I-MAP Gπ∗ . Suppose that observational and interventional data are drawn
from P for a collection of interventional targets I = {I1 := ∅, I2, . . . , IK}, and that Pk is faithful to
Gkπ∗ for all k ∈ [K]. We must show that Algorithm 1 returns to I-MEC of Gπ∗ . Suppose that we are
at the DAG Gπ for some permutation π of [p]. By [7, Theorem 15] there exists a sequence of minimal
I-MAPS

Gπ∗ = GπM ≤ GπM−1 ≤ · · · ≤ Gπ0 = Gπ,
where Gπk is produced from Gπk−1 by reversing a covered arrow i→ j and then deleting some edges
of Gπk−1 . In particular, this sequence arises from a Chickering sequence that resolves one sink node
at a time, as in Lemma C.2. We would now like to see that for such a path

Score(Gπk) ≥ Score(Gπk−1)− δn,

for all k = 1, 2, . . . ,M . Suppose first that Gπk−1 and Gπk differ only by a covered arrow reversal (i.e.,
they have the same skeleton). Using the notation from the previous proofs, we let ρ̂ki,j|S denote the

value of the partial correlation of i, j | S for some set S ⊂ [p] based on data X̂k from the intervention
Ik. If we take S = Pai(Gπk−1), then by [5, Lemma 5.1] and Lemma C.2 it follows that

Score(Gπk)− Score(Gπk−1) =− 1

2

∑
k∈Ij\i

(
log
(
1− (ρ̂ki,j|S)

2
)
+ λnk

)
+

1

2

∑
k∈Ii\j

(
log
(
1− (ρ̂ki,j|S)

2
)
+ λnk

)
.

Note that the value of
∑

k∈Ii\j

(
log
(
1− (ρ̂ki,j|S)

2
)
+ λnk

)
will be zero when the set Ii\j is empty. It

then follows from Lemma C.2 that Score(Gπk) ≥ Score(Gπk−1)− δn, for all k = 1, . . . ,M .
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The above argument shows that if two minimal I-maps Gπk and Gπk−1 along the given sequence are
in the same MEC then their relative scores in Algorithm 1 are at most nondecreasing. Thus, it only
remains to show that if Gπk−1 is not in the I-MEC of Gπ∗ then

Score(Gπ∗) > Score(Gπk−1).

Since Gπk−1 and Gπ∗ are not I-Markov equivalent then, by [2, Theorem 10], there is at least one
It ∈ I such that Gtπk−1 and Gtπ∗ have different skeletons. However, in this case Score(Gπ∗) >
Score(Gπk−1) since the interventional distribution Pt is faithful to the DAG Gtπ∗ . �

D Proof of Theorem 4.4

We would now like to prove that Algorithm 2 is consistent under the faithfulness assumption. That is,
suppose we are given a collection of interventional targets I = {I1 = ∅, I2, . . . , IK} and data drawn
from the distributions P1, . . . ,PK , all of which are faithful to the (respective) interventional DAGs
G1π∗ , . . . ,GKπ∗ . Then Algorithm 2 will return a DAG that is I-Markov equivalent to Gπ∗ . In [7], the
authors show that there exists a sequence of I-MAPs given by covered arrow reversals

Gπ ≥ Gπ1 ≥ · · · ≥ Gπm−1 ≥ Gπm ≥ · · · ≥ GπM ≥ Gπ∗

taking us from any Gπ to the data-generating DAG Gπ∗ . We must now show that there exists such a
sequence using only I-covered arrow reversals.
Theorem D.1. For any permutation π, there exists a list of I-covered arrow reversals from Gπ to the
data-generating DAG Gπ∗

Gπ = Gπ0 ≥ Gπ1 ≥ · · · ≥ Gπm−1 ≥ Gπm ≥ · · · ≥ GπM−1 ≥ GπM = Gπ∗

Proof. Suppose that Gπm is produced from Gπm−1 via reversing the covered arrow i→ j in Gπm−1

and let S = PaGπm−1 (i). By Lemma C.2, it must be that i and j are d-connected in Gπ∗ given S only
by paths for which the arrow incident to i points towards i. It follows that for k ∈ Ii\j there are no
paths d-connecting i and j in Gkπ∗ . Therefore, i→ j /∈ Gπm−1 for all k ∈ Ii\j ; i.e., the arrow i→ j
is I-covered in Gπm−1 .

The previous theorem states that we can use only I-covered arrow reversals to produce a sequence
of I-MAPs taking us from any DAG Gπ to the data-generating DAG Gπ∗ . In the case that Gπm−1

and Gπm are in different MECs it follows from the construction of such a sequence of minimal
I-MAPs under the faithfulness assumption in the observational setting that Gπm−1 has strictly more
arrows than Gπm . It remains to show that if Gπm−1 and Gπm are in the true MEC then Gπm−1 has
strictly more I-contradicting arrows than Gπm whenever they are not in the same I-MEC and they
have exactly the same I-contradicting arrows when in the same I-MEC. This is the content of the
following theorem.
Theorem D.2. Suppose that the distributions P1, . . . ,PK are faithful to their respective interven-
tional DAGs G1π∗ , . . . ,GKπ∗ . For any permutation π such that Gπ and Gπ∗ are in the same MEC there
exists a list of I-covered arrow reversals from Gπ to Gπ∗

Gπ = Gπ0 ≥ Gπ1 ≥ · · · ≥ Gπm−1 ≥ Gπm ≥ · · · ≥ GπM−1 ≥ GπM = Gπ∗

such that, for all m ∈ [M ], either Gπm−1 and Gπm are in the same I-MEC or Gπm is produced from
Gπm−1 by the reversal of an I-contradicting arrow. Moreover, the number of I-contradicting arrows
in Gπm is strictly less than the number of I-contradicting arrows in Gπm−1 .

Proof. Suppose that Gπm is produced from Gπm−1 by reversing the I-covered arrow i → j in
Gπm−1 . If Ii\j = Ij\i = ∅ then Gπm−1 and Gπm are in the same I-MEC and hence i→ j is not an
I-contradicting arrow.

Otherwise, they must belong to different I-MECs and we have that Ii\j ∪ Ij\i 6= ∅. Let S =
PaGπm−1 (i), by Lemma C.2. It must be that i and j are d-connected in Gπ∗ given S only by paths
for which the arrow incident to i points towards i. Since Gπm−1 is in the true MEC then i and j
must be adjacent in Gπ∗ . It then follows from Lemma C.2 that the arrow between i and j points
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to i. In other words, j → i ∈ Gπ∗ . In this case, for all k ∈ Ij\i we have, under the faithfulness
assumption, that Pk satisfies i 6⊥⊥ j since the arrow j → i in Gπ∗ is not deleted in the interventional
DAG (Gπ∗)k. Similarly, for all k ∈ Ii\j we know i ⊥⊥ j in Pk since all d-connecting paths between
i and j in the interventional DAG (Gπ∗)k must be given by conditioning on some descendants of
i. Thus, i and j are d-separated given ∅ in (Gπ∗)k, and it follows from the Markov assumption that
i ⊥⊥ j in (Gπ∗)k. Therefore, by Definitions 4.2 and 4.3, we know that i→ j is an I-covered arrow
that is also I-contradicting. Furthermore, since the reversal of an I-contradicting arrow makes it not
I-contradicting and the I-contradicting arrows of Gπm are contained in the I-contradicting arrows
of Gπm−1 , it follows that Gπm has strictly less I-contradicting arrows than Gπm−1 .

Proof of Theorem 4.4 The proof of this theorem follows immediately from Theorem D.1 and The-
orem D.2. This is because Theorem D.1 implies that under the faithfulness assumption there is a
sequence of I-covered arrow reversals by which we can reach the true MEC, and Theorem D.2
implies that we then use I-contradicting arrows to reach the true I-MEC within the true MEC. More-
over, Theorem D.2 implies that the true I-MEC will contain DAGs with the fewest I-contradicting
arrows. �

E Supplementary Material for Real Data Analysis

This section contains supplementary information about the real data analysis. Table E.1 and Figure E.1
present additional details about the perturb-seq experiments. Table E.2 shows more details about
the flow cytometry dataset. Table E.3 compares the results of IGSP and k-IGSP with other methods
that allow latent confounders as applied to the Sachs et al. [6] dataset. Figures E.2 and E.3 are our
reconstructions of the causal gene network for the perturb-seq data set and the protein signaling
network for the Sachs et al. dataset, respectively.

Figure E.1: Heatmap of the true effects of each gene deletion on each measured gene. All 56 guide
RNAs used in the experiment are listed on the x-axis and measured genes are listed on the y-axis. 18
of 56 guides, which target 8 genes in total, were selected for analysis because they were effective.
Red (positive on q-value scale) indicate gene deletions that increase abundance of the measured gene.
Blue (negative on q-value scale) indicate gene deletions that decrease abundance of the measured
gene. White (zero on q-value scale) indicates no observed effect of gene deletion.

Table E.1: Number of samples under each gene deletion for processed perturb-seq dataset

Intervention: None Stat2 Stat1 Rel Hif1a Spi1 Nfkb1 Rela Cebpb
# Samples: 992 2426 3337 1513 301 796 3602 1068 392
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Table E.2: Number of samples under each protein intervention for flow cytometry dataset

Intervention: None Akt PKC PIP2 Mek PIP3
# Samples: 1755 911 723 810 799 848

Table E.3: Interaction prediction results of IGSP and k-IGSP and other methods that allow for
latent variables. Here the consensus network from [6] is denoted by [6]a and their reconstructed
network by [6]b. For [4] we provide results from both ICP and hidden ICP, denoted by [4]a and [4]b
respectively. For IGSP and k-IGSP, we chose the standardly used significance level α = 0.05 as the
cut-off for CI testing, which resulted in a similar number of predicted interactions as in [4].

Edge [6]a [6]b [4]a [4]b ACI [3] COmbINE [8] IGSP k-IGSP
RAF→MEK X X X X
RAF→ JNK X
MEK→ RAF X X X X X
MEK→ ERK X X X
MEK→ AKT X
MEK→ JNK X
PLCg→ PIP2 X X X X X
PLCg→ PIP3 X X X
PLCg→ PKC X
PIP2→ PLCg X X X X
PIP2→ PIP3 X
PIP2→ PKC X
PIP3→ PLCg X X X
PIP3→ PIP2 X X X X X X
PIP3→ AKT X
AKT→ ERK X X X X X
AKT→ PKA X X
AKT→ JNK X
ERK→ AKT X X X X
PKA→ RAF X X X
PKA→MEK X X X X
PKA→ ERK X X X X X X
PKA→ AKT X X X X X
PKA→ PKC
PKA→ P38 X X X
PKA→ JNK X X X
PKC→ RAF X X X
PKC→MEK X X X
PKC→ PLCg X
PKC→ PIP2 X
PKC→ PIP3 X
PKC→ ERK X
PKC→ AKT X
PKC→ PKA X
PKC→ P38 X X X X X X
PKC→ JNK X X X X X X X
P38→ JNK X X X
P38→ PKC X
JNK→ PKC X
JNK→ P38 X X
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Figure E.2: Partial causal gene networks from perturb-seq data. Gray nodes represent genes receiving
interventions (a) Ground truth partial causal network obtained from perturb-seq data, i.e. from
thresholding the values in the heatmap from Figure 5(a). (b) Reconstruction of partial causal gene
network using Algorithm 2 with Gaussian CI test (cut-off value α = 0.15). Here, blue edges are the
true positive edges, and green edges are the false positive edges.
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Figure E.3: Protein signaling network from flow cytometry data. (a) Ground truth network according
to the conventionally accepted model from [6]. (b) Reconstruction of protein signaling network using
Algorithm 2 with Gaussian CI test (cut-off value α = 0.005). Here blue edges are the true positive
edges; purple edges are the reversed edges that share the same skeleton as ground truth edges but
the arrows are different; green edges are the false positives. (c) Reconstruction of protein signaling
network using Algorithm 2 with kernel-based CI test (cut-off value α = 0.0001). Here we choose
different significance level cut-offs for kernel-based test and Gaussian test such that the number of
true positive directed edges are the same.

[2] A. Hauser and P. Bühlmann. Characterization and greedy learning of interventional Markov
equivalence classes of directed acyclic graphs. Journal of Machine Learning Research 13.Aug
(2012): 2409-2464.

[3] S. Magliacane, T. Claassen, and J. M. Mooij. Ancestral causal inference. Advances In Neural
Information Processing Systems. 2016.

[4] N. Meinshausen, A. Hauser, J. M. Mooij, J. Peters, P. Versteeg, and P. Bühlmann. Methods
for causal inference from gene perturbation experiments and validation. Proceedings of the
National Academy of Sciences, USA. 113.27 (2016): 7361-7368.

8



[5] P. Nandy, A. Hauser, and M. H. Maathuis. High-dimensional consistency in score-based and
hybrid structure learning. ArXiv preprint arXiv: 1507.02608 (2015).

[6] K. Sachs, O. Perez, D. Pe’er, D. A. Lauffenburger and G. P. Nolan. Causal protein-signaling
networks derived from multiparameter single-cell data. Science 308.5721 (2005): 523-529.

[7] L. Solus, Y. Wang, C. Uhler, and L. Matejovicova. Consistency guarantees for permutation-
based causal inference algorithms. Submitted to Annals of Statistics. ArXiv preprint arXiv:
1702.03530 (2017).

[8] S. Triantafillou and I. Tsamardinos. Constraint-based causal discovery from multiple inter-
ventions over overlapping variable sets. Journal of Machine Learning Research 16 (2015):
2147-2205.

9


	Counterexample to Consistency of GIES.
	Counterexample to Consistency of Algorithm 1 without the Slack Factor
	Proof of Theorem 4.1
	Proof of Theorem 4.4
	Supplementary Material for Real Data Analysis

