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Abstract

Efficiently aggregating data from different sources is a challenging problem, partic-
ularly when samples from each source are distributed differently. These differences
can be inherent to the inference task or present for other reasons: sensors in a sensor
network may be placed far apart, affecting their individual measurements. Con-
versely, it is computationally advantageous to split Bayesian inference tasks across
subsets of data, but data need not be identically distributed across subsets. One prin-
cipled way to fuse probability distributions is via the lens of optimal transport: the
Wasserstein barycenter is a single distribution that summarizes a collection of input
measures while respecting their geometry. However, computing the barycenter
scales poorly and requires discretization of all input distributions and the barycenter
itself. Improving on this situation, we present a scalable, communication-efficient,
parallel algorithm for computing the Wasserstein barycenter of arbitrary distribu-
tions. Our algorithm can operate directly on continuous input distributions and is
optimized for streaming data. Our method is even robust to nonstationary input
distributions and produces a barycenter estimate that tracks the input measures
over time. The algorithm is semi-discrete, needing to discretize only the barycenter
estimate. To the best of our knowledge, we also provide the first bounds on the
quality of the approximate barycenter as the discretization becomes finer. Finally,
we demonstrate the practical effectiveness of our method, both in tracking moving
distributions on a sphere, as well as in a large-scale Bayesian inference task.

1 Introduction

A key challenge when scaling up data aggregation occurs when data comes from multiple sources,
each with its own inherent structure. Sensors in a sensor network may be configured differently or
placed far apart, but each individual sensor simply measures a different view of the same quantity.
Similarly, user data collected by a server in California will differ from that collected by a server in
Europe: the data samples may be independent but are not identically distributed.

One reasonable approach to aggregation in the presence of multiple data sources is to perform
inference on each piece independently and fuse the results. This is possible when the data can be
distributed randomly, using methods akin to distributed optimization [52, 53]. However, when the
data is not split in an i.i.d. way, Bayesian inference on different subsets of observed data yields
slightly different “subset posterior” distributions for each subset that must be combined [33]. Further
complicating matters, data sources may be nonstationary. How can we fuse these different data
sources for joint analysis in a consistent and structure-preserving manner?

We address this question using ideas from the theory of optimal transport. Optimal transport gives us a
principled way to measure distances between measures that takes into account the underlying space on
which the measures are defined. Intuitively, the optimal transport distance between two distributions
measures the amount of work one would have to do to move all mass from one distribution to the
other. Given J input measures {µj}Jj=1, it is natural, in this setting, to ask for a measure ⌫ that
minimizes the total squared distance to the input measures. This measure ⌫ is called the Wasserstein
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barycenter of the input measures [1], and should be thought of as an aggregation of the input measures
which preserves their geometry. This particular aggregation enjoys many nice properties: in the
earlier Bayesian inference example, aggregating subset posterior distributions via their Wasserstein
barycenter yields guarantees on the original inference task [47].

If the measures µj are discrete, their barycenter can be computed relatively efficiently via either
a sparse linear program [2], or regularized projection-based methods [16, 7, 51, 17]. However, 1.
these techniques scale poorly with the support of the measures, and quickly become impractical
as the support becomes large. 2. When the input measures are continuous, to the best of our
knowledge the only option is to discretize them via sampling, but the rate of convergence to the true
(continuous) barycenter is not well-understood. These two confounding factors make it difficult to
utilize barycenters in scenarios like parallel Bayesian inference where the measures are continuous
and a fine approximation is needed. These are the primary issues we work to address in this paper.

Given sample access to J potentially continuous distributions µj , we propose a communication-
efficient, parallel algorithm to estimate their barycenter. Our method can be parallelized to J worker
machines, and the messages sent between machines are merely single integers. We require a discrete
approximation only of the barycenter itself, making our algorithm semi-discrete, and our algorithm
scales well to fine approximations (e.g. n ⇡ 10

6). In contrast to previous work, we provide guarantees
on the quality of the approximation as n increases. These rates apply to the general setting in which
the µj’s are defined on manifolds, with applications to directional statistics [46]. Our algorithm
is based on stochastic gradient descent as in [22] and hence is robust to gradual changes in the
distributions: as the µj’s change over time, we maintain a moving estimate of their barycenter, a task
which is not possible using current methods without solving a large linear program in each iteration.

We emphasize that we aggregate the input distributions into a summary, the barycenter, which is itself
a distribution. Instead of performing any single domain-specific task such as clustering or estimating
an expectation, we can simply compute the barycenter of the inputs and process it later any arbitrary
way. This generality coupled with the efficiency and parallelism of our algorithm yields immediate
applications in fields from large scale Bayesian inference to e.g. streaming sensor fusion.

Contributions. 1. We give a communication-efficient and fully parallel algorithm for computing
the barycenter of a collection of distributions. Though our algorithm is semi-discrete, we stress that
the input measures can be continuous, and even nonstationary. 2. We give bounds on the quality of
the recovered barycenter as our discretization becomes finer. These are the first such bounds which
we are aware of, and they apply to measures on arbitrary compact and connected manifolds. 3. We
demonstrate the practical effectiveness of our method, both in tracking moving distributions on a
sphere, as well as in a real large-scale Bayesian inference task.

1.1 Related work

Optimal transport. A comprehensive treatment of optimal transport and its many applications is
beyond the scope of our work. We refer the interested reader to the detailed monographs by Villani
[49] and Santambrogio [42]. Fast algorithms for optimal transport have been developed in recent
years via Sinkhorn’s algorithm [15] and in particular stochastic gradient methods [22], which we
build off of in this work. These algorithms have enabled several applications of optimal transport
and Wasserstein metrics to machine learning, for example in supervised learning [21], unsupervised
learning [34, 5], and domain adaptation [14]. Wasserstein barycenters in particular have been applied
to a wide variety of problems including fusion of subset posteriors [47], distribution clustering [51],
shape and texture interpolation [45, 40], and multi-target tracking [6].

When the distributions µj are discrete, transport barycenters can be computed relatively efficiently via
either a sparse linear program [2] or regularized projection-based methods [16, 7, 51, 17]. In settings
like posterior inference, however, the distributions µj are likely continuous rather than discrete, and
the most obvious viable approach requires discrete approximation of each µj . The resulting discrete
barycenter converges to the true, continuous barycenter as the approximations become finer [10, 28],
but the rate of convergence is not well-understood, and finely approximating each µj yields a very
large linear program.

Scalable Bayesian inference. Scaling Bayesian inference to large datasets has become an important
topic in recent years. There are many approaches to this, ranging from parallel Gibbs sampling [38, 26]
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to stochastic and streaming algorithms [50, 13, 25, 12]. For a more complete picture, we refer the
reader to the survey by Angelino et al. [3].

One promising method is via subset posteriors: instead of sampling from the posterior distribution
given by the full data, the data is split into smaller tractable subsets. Performing inference on each
subset yields several subset posteriors, which are biased but can be combined via their Wasserstein
barycenter [47], with provable guarantees on approximation quality. This is in contrast to other
methods which rely on summary statistics to estimate the true posterior [33, 36] and that require
additional assumptions. In fact, our algorithm works with arbitrary measures and on manifolds.

2 Background

Let (X , d) be a metric space. Given two probability measures µ 2 P(X ) and ⌫ 2 P(X ) and a cost
function c : X ⇥ X ! [0,1), the Kantorovich problem asks for a solution to

inf

⇢Z

X⇥X
c(x, y)d�(x, y) : � 2 ⇧(µ, ⌫)

�
(1)

where ⇧(µ, ⌫) is the set of measures on the product space X ⇥ X whose marginals evaluate to µ and
⌫ respectively.

Under mild conditions on the cost function (lower semi-continuity) and the underlying space (com-
pleteness and separability), problem (1) admits a solution [42]. Moreover, if the cost function is
of the form c(x, y) = d(x, y)p, the optimal transportation cost is a distance metric on the space of
probability measures. This is known as the Wasserstein distance and is given by

Wp(µ, ⌫) =

✓
inf

�2⇧(µ,⌫)

Z

X⇥X
d(x, y)pd�(x, y)

◆1/p

. (2)

Optimal transport has recently attracted much attention in machine learning and adjacent commu-
nities [21, 34, 14, 39, 41, 5]. When µ and ⌫ are discrete measures, problem (2) is a linear program,
though faster regularized methods based on Sinkhorn iteration are used in practice [15]. Optimal
transport can also be computed using stochastic first-order methods [22].

Now let µ1, . . . , µJ be measures on X . The Wasserstein barycenter problem, introduced by Agueh
and Carlier [1], is to find a measure ⌫ 2 P(X ) which minimizes the functional

F [⌫] :=
1

J

JX

j=1

W 2
2 (µj , ⌫). (3)

Finding the barycenter ⌫ is the primary problem we address in this paper. When each µj is a
discrete measure, the exact barycenter can be found via linear programming [2], and many of the
regularization techniques apply for approximating it [16, 17]. However, the problem size grows
quickly with the size of the support. When the measures µj are truly continuous, we are aware of
only one strategy: sample from each µj in order to approximate it by the empirical measure, and then
solve the discrete barycenter problem.

We directly address the problem of computing the barycenter when the input measures can be
continuous. We solve a semi-discrete problem, where the target measure is a finite set of points, but
we do not discretize any other distribution.

3 Algorithm

We first provide some background on the dual formulation of optimal transport. Then we derive
a useful form of the barycenter problem, provide an algorithm to solve it, and prove convergence
guarantees. Finally, we demonstrate how our algorithm can easily be parallelized.

3.1 Mathematical preliminaries

The primal optimal transport problem (1) admits a dual problem [42]:
OTc(µ, ⌫) = sup

v 1-Lipschitz
{EY⇠⌫ [v(Y )] + EX⇠µ[v

c
(X)]} , (4)
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where vc(x) = infy2X {c(x, y) � v(y)} is the c-transform of v [49]. When ⌫ =

Pn
i=1 wi�yi is

discrete, problem (4) becomes the semi-discrete problem
OTc(µ, ⌫) = max

v2Rn
{hw, vi+ EX⇠µ[h(X, v)]} , (5)

where we define h(x, v) = vc(x) = mini=1,...,n{c(x, yi) � vi}. Semi-discrete optimal transport
admits efficient algorithms [31, 29]; Genevay et al. [22] in particular observed that given sample
oracle access to µ, the semi-discrete problem can be solved via stochastic gradient ascent. Hence
optimal transport distances can be estimated even in the semi-discrete setting.

3.2 Deriving the optimization problem

Absolutely continuous measures can be approximated arbitrarily well by discrete distributions with
respect to Wasserstein distance [30]. Hence one natural approach to the barycenter problem (3) is to
approximate the true barycenter via discrete approximation: we fix n support points {yi}ni=1 2 X
and search over assignments of the mass wi on each point yi. In this way we wish to find the discrete
distribution ⌫n =

Pn
i=1 wi�yi with support on those n points which optimizes

min

w2�n

F (w) = min

w2�n

1

J

JX

j=1

W 2
2 (µj , ⌫n) (6)

= min

w2�n

8
<

:
1

J

JX

j=1

max

vj2Rn

�
hw, vji+ EXj⇠µj [h(Xj , v

j
)]

 
9
=

; . (7)

where we have defined F (w) := F [⌫n] = F [

Pn
i=1 wi�yi ] and used the dual formulation from

equation (5). We will discuss in Section 4 the effect of different choices for the support points
{yi}ni=1.

Noting that the variables vj are uncoupled, we can rearrange to get the following problem:

min

w2�n

max

v1,...,vJ

1

J

JX

j=1

⇥
hw, vji+ EXj⇠µj [h(Xj , v

j
)]

⇤
. (8)

Problem (8) is convex in w and jointly concave in the vj , and we can compute an unbiased gradient
estimate for each by sampling Xj ⇠ µj . Hence, we could solve this saddle-point problem via
simultaneous (sub)gradient steps as in Nemirovski and Rubinstein [37]. Such methods are simple
to implement, but in the current form we must project onto the simplex �n at each iteration. This
requires only O(n log n) time [24, 32, 19] but makes it hard to decouple the problem across each
distribution µj . Fortunately, we can reformulate the problem in a way which avoids projection
entirely. By strong duality, Problem (8) can be written as

max

v1,...,vJ
min

w2�n

8
<

:

*
1

J

JX

j=1

vj , w

+
+

1

J

JX

j=1

EXj⇠µj [h(Xj , v
j
)]

9
=

; (9)

= max

v1,...,vJ

8
<

:min

i

8
<

:
1

J

JX

j=1

vji

9
=

;+

1

J

JX

j=1

EXj⇠µj [h(Xj , v
j
)]

9
=

; . (10)

Note how the variable w disappears: for any fixed vector b, minimization of hb, wi over w 2 �n is
equivalent to finding the minimum element of b. The optimal w can also be computed in closed form
when the barycentric cost is entropically regularized as in [9], which may yield better convergence
rates but requires dense updates that, e.g. need more communication in the parallel setting. In either
case, we are left with a concave maximization problem in v1, . . . , vJ , to which we can directly apply
stochastic gradient ascent. Unfortunately the gradients are still not sparse and decoupled, however
this is possible after one final transformation of the problem: by replacing each

PJ
j=1 v

j
i with a

variable si and enforcing this equality with a constraint, we turn problem (10) into the constrained
problem

max

s,v1,...,vJ

1

J

JX

j=1


1

J
min

i
si + EXj⇠µj [h(Xj , v

j
)]

�
s.t. s =

JX

j=1

vj . (11)
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3.3 Algorithm and convergence

Algorithm 1 Subgradient Ascent

s, v1, . . . , vJ  0n

loop
Draw j ⇠ Unif[1, . . . , J ]
Draw x ⇠ µj

iW  argmini{c(x, yi)� vji }
iM  argmini si
vjiW  vjiW � � . Gradient update
siM  siM + �/J . Gradient update
vjiW  vjiW + �/2 . Projection
vjiM  vjiM + �/(2J) . Projection
siW  siW � �/2 . Projection
siM  siM � �/(2J) . Projection

end loop

We can now solve this problem via stochastic pro-
jected subgradient ascent. This is described in Al-
gorithm 1; note that the sparse adjustments after the
gradient step are actually projections onto the con-
straint set with respect to the `1 norm. Derivation
of this sparse projection step is given rigorously in
Appendix A. Not only do we have an optimization al-
gorithm with sparse updates, but we can even recover
the optimal weights w from standard results in online
learning [20]. Specifically, in a zero-sum game where
one player plays a no-regret learning algorithm and
the other plays a best-response strategy, the average
strategies of both players converge to optimal:

Theorem 3.1. Perform T iterations of stochastic
subgradient ascent on u = (s, v1, . . . , vJ) as in
Algorithm 1, and use step size � =

R
4
p
T

, assum-
ing kut � u⇤k1  R for all t. Let it be the
minimizing index chosen at iteration t, and write
wT =

1
T

PT
t=1 eit . Then we can bound

E[F (wT )� F (w⇤
)]  4R/

p
T . (12)

The expectation is with respect to the randomness in the subgradient estimates gt.

Theorem 3.1 is proved in Appendix B. The proof combines the zero-sum game idea above, which
itself comes from [20], with a regret bound for online gradient descent [54, 23].

3.4 Parallel Implementation

The key realization which makes our barycenter algorithm truly scalable is that the variables
s, v1, . . . , vJ can be separated across different machines. In particular, the “sum” or “coupling”
variable s is maintained on a master thread which runs Algorithm 2, and each vj is maintained on a
worker thread running Algorithm 3. Each projected gradient step requires first selecting distribution j.
The algorithm then requires computing only iW = argmini{c(xj , yi)� vji } and iM = argmini si,
and then updating s and vj in only those coordinates. Hence only a small amount of information (iW
and iM ) need pass between threads.

Note also that this algorithm can be adapted to the parallel shared-memory case, where s is a variable
shared between threads which make sparse updates to it. Here we will focus on the first master/worker
scenario for simplicity.

Where are the bottlenecks? When there are n points in the discrete approximation, each worker’s
task of computing argmini{c(xj , yi)� vji } requires O(n) computations of c(x, y). The master must
iteratively find the minimum element siM in the vector s, then update siM , and decrease element siW .
These can be implemented respectively as the “find min”, “delete min” then “insert,” and “decrease
min” operations in a Fibonacci heap. All these operations together take amortized O(log n) time.
Hence, it takes O(n) time it for all J workers to each produce one gradient sample in parallel, and
only O(J log n) time for the master to process them all. Of course, communication is not free, but
the messages are small and our approach should scale up well for J ⌧ n.

This parallel algorithm is particularly well-suited to the Wasserstein posterior (WASP) [48] framework
for merging Bayesian subset posteriors. In this setting, we split the dataset X1, . . . , Xk into J subsets
S1, . . . , SJ each with k/J data points, distribute those subsets to J different machines, then each
machine runs Markov Chain Monte Carlo (MCMC) to sample from p(✓|Si), and we aggregate
these posteriors via their barycenter. The most expensive subroutine in the worker thread is actually
sampling from the posterior, and everything else is cheap in comparison. In particular, the machines
need not even share samples from their respective MCMC chains.
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Algorithm 2 Master Thread
Input: index j, distribution µ, atoms
{yi}i=1,...,N , number J of distribu-
tions, step size �
Output: barycenter weights w
c 0n

s 0n

iM  1

loop
iW  message from worker j
Send iM to worker j
ciM  ciM + 1

siM  siM + �/(2J)
siW  siW � �/2
iM  argmini si

end loop
return w  c/(

Pn
i=1 ci)

Algorithm 3 Worker Thread
Input: index j, distribution µ, atoms
{yi}i=1,...,N , number J of distribu-
tions, step size �
v  0n

loop
Draw x ⇠ µ
iW  argmini{c(x, yi)� vi}
Send iW to master
iM  message from master
viM  viM + �/(2J)
viW  viW � �/2

end loop

One subtlety is that selecting worker j truly uniformly
at random each iteration requires more synchronization,
hence our gradient estimates are not actually independent
as usual. Selecting worker threads as they are available
will fail to yield a uniform distribution over j, as at the
moment worker j finishes one gradient step, the prob-
ability that worker j is the next available is much less
than 1/J : worker j must resample and recompute iW ,
whereas other threads would have a head start. If workers
all took precisely the same amount of time, the ordering
of worker threads would be determinstic, and guarantees
for without-replacement sampling variants of stochastic
gradient ascent would apply [44]. In practice, we have no
issues with our approach.

4 Consistency

Prior methods for estimating the Wasserstein barycenter
⌫⇤ of continuous measures µj 2 P(X ) involve first ap-
proximating each µj by a measure µj,n which has finite
support on n points, then computing the barycenter ⌫⇤n of
{µj,n} as a surrogate for ⌫⇤. This approach is consistent,
in that if µj,n ! µj as n ! 1, then also ⌫⇤n ! ⌫⇤.
This holds even if the barycenter is not unique, both in the
Euclidean case [10, Theorem 3.1] as well as when X is
a Riemannian manifold [28, Theorem 5.4]. However, it
is not known how fast the approximation ⌫⇤n approaches
the true barycenter ⌫⇤, or even how fast the barycentric
distance F [⌫⇤n] approaches F [⌫n].

In practice, not even the approximation ⌫⇤n is computed
exactly: instead, support points are chosen and ⌫⇤n is con-
strained to have support on those points. There are various
heuristic methods for choosing these support points, rang-
ing from mesh grids of the support, to randomly sampling
points from the convex hull of the supports of µj , or even optimizing over the support point locations.
Yet we are unaware of any rigorous guarantees on the quality of these approximations.

While our approach still involves approximating the barycenter ⌫⇤ by a measure ⌫⇤n with fixed support,
we are able to provide bounds on the quality of this approximation as n!1. Specifically, we bound
the rate at which F [⌫⇤n]! F [⌫n]. The result is intuitive, and appeals to the notion of an ✏-cover of
the support of the barycenter:

Definition 4.1 (Covering Number). The ✏-covering number of a compact set K ⇢ X , with respect
to the metric g, is the minimum number N✏(K) of points {xi}N✏(K)

i=1 2 K needed so that for each
y 2 K, there is some xi with g(xi, y)  ✏. The set {xi} is called an ✏-covering.

Definition 4.2 (Inverse Covering Radius). Fix n 2 Z+. We define the n-inverse covering radius of
compact K ⇢ X as the value ✏n(K) = inf{✏ > 0 : N✏(K)  n}, when n is large enough so the
infimum exists.

Suppose throughout this section that K ⇢ Rd is endowed with a Riemannian metric g, where K has
diameter D. In the specific case where g is the usual Euclidean metric, there is an ✏-cover for K with
at most C1✏

�d points, where C1 depends only on the diameter D and dimension d [43]. Reversing
the inequality, K has an n-inverse covering radius of at most ✏  C2n

�1/d when n takes the correct
form.

We now present and then prove our main result:

Theorem 4.1. Suppose the measures µj are supported on K, and suppose µ1 is absolutely continuous
with respect to volume. Then the barycenter ⌫⇤ is unique. Moreover, for each empirical approximation
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size n, if we choose support points {yi}i=1,...,n which constitute a 2✏n(K)-cover of K, it follows
that F [⌫⇤n]� F [⌫⇤]  O(✏n(K) + n�1/d

), where ⌫⇤n =

Pn
i=1 w

⇤
i �yi for w⇤ solving Problem (8).

Remark 4.1. Absolute continuity is only needed to reason about approximating the barycenter
with an N point discrete distribution. If the input distributions are themselves discrete distributions,
so is the barycenter, and we can strengthen our result. For large enough n, we actually have
W2(⌫

⇤
n, ⌫

⇤
)  2✏n(K) and therefore F [⌫⇤n]� F [⌫⇤]  O(✏n(K)).

Corollary 4.1 (Convergence to ⌫⇤). Suppose the measures µj are supported on K, with µ1 absolutely
continuous with respect to volume. Let ⌫⇤ be the unique minimizer of F . Then we can choose support
points {yi}i=1,...,n such that some subsequence of ⌫⇤n =

Pn
i=1 w

⇤
i �yi converges weakly to ⌫⇤.

Proof. By Theorem 4.1, we can choose support points so that F [⌫⇤n]! F [⌫⇤]. By compactness, the
sequence ⌫⇤n admits a convergent subsequence ⌫⇤nk

! ⌫ for some measure ⌫. Continuity of F allows
us to pass to the limit limk!1 F [⌫⇤nk

] = F [limk!1 ⌫⇤nk
]. On the other hand, limk!1 F [⌫⇤nk

] =

F [⌫⇤], and F is strictly convex [28], thus ⌫⇤nk
! ⌫⇤ weakly.

Before proving Theorem 4.1, we need smoothness of the barycenter functional F with respect to
Wasserstein-2 distance:

Lemma 4.1. Suppose we are given measures {µj}Jj=1, ⌫, and {⌫n}1n=1 supported on K, with
⌫n ! ⌫. Then, F [⌫n]! F [⌫], with |F [⌫n]� F [⌫]|  2D ·W2(⌫n, ⌫).

Proof of Theorem 4.1. Uniqueness of ⌫⇤ follows from Theorem 2.4 of [28]. From Theorem 5.1
in [28] we know further that ⌫⇤ is absolutely continuous with respect to volume.

Let N > 0, and let ⌫N be the discrete distribution on N points, each with mass 1/N , which minimizes
W2(⌫N , ⌫⇤). This distribution satisfies W2(⌫N , ⌫⇤)  CN�1/d [30], where C depends on K, the
dimension d, and the metric. With our “budget” of n support points, we can construct a 2✏n(K)-cover
as long as n is sufficiently large. Then define a distribution ⌫n,N with support on the 2✏n(K)-cover
as follows: for each x in the support of ⌫N , map x to the closest point x0 in the cover, and add mass
1/N to x0. Note that this defines not only the distribution ⌫n,N , but also a transport plan between ⌫N
and ⌫n,N . This map moves N points of mass 1/N each a distance at most 2✏n(K), so we may bound
W2(⌫n,N , ⌫N ) 

p
N · 1/N · (2✏n(K))

2
= 2✏n(K). Combining these two bounds, we see that

W2(⌫n,N , ⌫⇤) W2(⌫n,N , ⌫N ) +W2(⌫N , ⌫⇤) (13)

 2✏n(K) + CN�1/d. (14)

For each n, we choose to set N = n, which yields W2(⌫n,n, ⌫
⇤
)  2✏n(K) + Cn�1/d. Applying

Lemma 4.1, and recalling that ⌫⇤ is the minimizer of J , we have

F [⌫n,n]� F [⌫⇤]  2D · (2✏n(K) + Cn�1/d
) = O(✏n(K) + n�1/d

). (15)

However, we must have F [⌫⇤n]  F [⌫n,n], because both are measures on the same n point 2✏n(K)-
cover, but ⌫⇤n has weights chosen to minimize J . Thus we must also have

F [⌫⇤n]� F [⌫⇤]  F [⌫n,n]� F [⌫⇤]  O(✏n(K) + n�1/d
).

The high-level view of the above result is that choosing support points yi to form an ✏-cover with
respect to the metric g, and then optimizing over their weights wi via our stochastic algorithm, will
give us a consistent picture of the behavior of the true barycenter. Also note that the proof above
requires an ✏-cover only of the support of v⇤, not all of K. In particular, an ✏-cover of the convex hull
of the supports of µj is sufficient, as this must contain the barycenter. Other heuristic techniques to
efficiently focus a limited budget of n points only on the support of ⌫⇤ are advantageous and justified.

While Theorem 4.1 is a good start, ideally we would also be able to provide a bound on W2(⌫
⇤
n, ⌫

⇤
).

This would follow readily from sharpness of the functional F [⌫], or even the discrete version F (w),
but it is not immediately clear how to achieve such a result.
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Figure 1: The Wasserstein barycenter of four von Mises-Fisher distributions on the unit sphere S2.
From left to right, the figures show the initial distributions merging into the Wasserstein barycenter.
As the input distributions are moved along parallel paths on the sphere, the barycenter accurately
tracks the new locations as shown in the final three figures.

5 Experiments

We demonstrate the applicability of our method on two experiments, one synthetic and one per-
forming a real inference task. Together, these showcase the positive traits of our algorithm: speed,
parallelization, robustness to non-stationarity, applicability to non-Euclidean domains, and immediate
performance benefit to Bayesian inference. We implemented our algorithm in C++ using MPI, and
our code will be made available on Github. Full experiment details are given in Appendix D.

5.1 Von Mises-Fisher Distributions with Drift

We demonstrate computation and tracking of the barycenter of four drifting von Mises-Fisher
distributions on the unit sphere S2. Note that W2 and the barycentric cost are now defined with
respect to geodesic distance on S2.

The distributions are randomly centered, and we move the center of each distribution 3⇥10

�5 radians
(in the same direction for all distributions) each time a sample is drawn. A snapshot of the results is
shown in Figure 1. Our algorithm is clearly able to track the barycenter as the distributions move.

5.2 Large Scale Bayesian Inference

50 100 150 200 250 300
25

30

35

40

45

Figure 2: Convergence of our algorithm
with n ⇡ 10

4 for different stepsizes. In
each case we recover a better approxima-
tion than what was possible with the LP
for any n, in as little as ⇡ 30 seconds.

We run logistic regression on the UCI skin segmentation
dataset [8]. There are 245057 datapoints which are col-
ors represented in R3, each with a binary label determing
whether that color is a skin color. We split consecutive
blocks of the dataset into 127 subsets, and due to locality
in the dataset, the data in each subsets is not identically
distributed. Each subset is assigned one thread of an Infini-
Band cluster on which we simultaneously sample from the
subset posterior via MCMC and optimize the barycenter
estimate. This is in contrast to [47], where the barycenter
can be computed via linear program (LP) only after all the
samplers are run.

Since the full dataset is tractable, we can compare the two
methods via W2 distance to the posterior of the full dataset,
which we can estimate via the large-scale optimal transport
algorithm in [22] or by LP depending on the support size.
For each method, we fix n barycenter support points on a
mesh determined by samples from the subset posteriors.
After 317 seconds, or about 10000 iterations per subset
posterior, our algorithm has produced a barycenter on
n ⇡ 10

4 support points with W2 distance about 26 from
the full posterior. Similarly competitive results hold even for n ⇡ 10

5 or 106, though tuning the
stepsize becomes more challenging. Even in the 10

6 case, no individual 16 thread node used more
than 2GB of memory. For n ⇡ 10

4, over a wide range of stepsizes we can in seconds approximate
the full posterior better than is possible with the LP as seen in Figure 2 by terminating early.

In comparsion, in Table 1 we attempt to compute the barycenter LP as in [47] via Mosek [4],
for varying values of n. Even n = 480 is not possible on a system with 16GB of memory, and

8



Table 1: Number of support points n versus computation time and W2 distance to the true posterior.
Compared to prior work, our algorithm handles much finer meshes, producing much better estimates.

Linear program from [47] This paper

n 24 40 60 84 189 320 396 480 10

4

time (s) 0.5 0.97 2.9 6.1 34 163 176 out of memory 317
W2 41.1 59.3 50.0 34.3 44.3 53.7 45 out of memory 26.3

feasible values of n result in meshes too sparse to accurately and reliably approximate the barycenter.
Specifically, there are several cases where n increases but the approximation quality actually decreases:
the subset posteriors are spread far apart, and the barycenter is so small relative to the required
bounding box that likely only one grid point is close to it, and how close this grid point is depends on
the specific mesh. To avoid this behavior, one must either use a dense grid (our approach), or invent a
better method for choosing support points that will still cover the barycenter. In terms of compute
time, entropy regularized methods may have faired better than the LP for finer meshes but would still
not give the same result as our method. Note also that the LP timings include only optimization time,
whereas in 317 seconds our algorithm produces samples and optimizes.

6 Conclusion and Future Directions

We have proposed an original algorithm for computing the Wasserstein barycenter of arbitrary
measures given a stream of samples. Our algorithm is communication-efficient, highly parallel,
easy to implement, and enjoys consistency results which to the best of our knowledge are new. Our
method has immediate impact in large-scale Bayesian inference and sensor fusion tasks: for Bayesian
inference in particular, we obtain far finer estimates of the Wasserstein-averaged subset posterior
(WASP) [47] than was possible before, enabling faster and more accurate inference.

There are many directions for future work: we have barely scratched the surface in terms of new
applications of large-scale Wasserstein barycenters, and there are still many possible algorithmic
improvements. One implication of Theorem 3.1 is that a faster algorithm for solving the concave
problem (11) immediately yields faster convergence to the barycenter. Incorporating variance reduc-
tion [18, 27] is a promising direction, provided we maintain communication-efficiency. Recasting
problem (11) as distributed consensus optimization [35, 11] would further help scale up the barycenter
computation to huge numbers of input measures.
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A Sparse Projections

Our algorithms for solving the barycenter problem in the parallel setting relied on the ability to efficiently project
the matrix A = (s, v1, . . . , vJ) back onto the constraint set s =

PJ
j=1 v

j . For the sake of completion, we
include a proof that our sparse updates actually result in projection with respect to the `1 norm.

At any given iteration of gradient ascent, we start with some iterate A = (s, v1, . . . , vJ) which does satisfy the
constraint. Suppose we selected distribution j. The gradient estimate is a sparse n⇥ (J + 1) matrix M which
has Mu1 = 1/J and Mvj = �1, for some indices u and v, with column 1 corresponding to s and column j

corresponding to v

j . After the gradient step with stepsize �, we have A + �M . Now, our constraint can be
written in matrix form as Az = 0, where

z =

2

664

�1
1
...
1

3

775 , (16)

and so the problem of projecting A+ �M onto this constraint set can be written as

minB kA+ �M �Bk1
s.t. Bz = 0. (17)

Equivalently, we want to find the matrix C solving

minC kCk1
s.t. (A+ �M + C)z = 0. (18)

Note that

(A+ �M + C)z = 0 , Cz = ��Mz = �

✓
1
J

eu + ev

◆
. (19)

Consider the sparse matrix C given by Cu1 = ��/(2J), Cuj = �/(2J), Cv1 = �/2, and Cvj = ��/2.
Define a sparse vector � 2 Rn by �u = �v = �1. We wish to show that the primal dual pair (C,�) solves
problem (18). We can do this directly by looking at the Karush–Kuhn–Tucker conditions. It is easy to check that
C is primal feasible, so it remains only to show that

0 2 @C(kCk1 + �

T
Cz) , �z�

T 2 @C(kCk1). (20)

The subgradients of the `1 norm at C are matrices G which satisfy kGk1  1 and hG,Ci = kCk1. It is easy
to check that kz�T k1 = 1. Finally,

h�z�

T
, Ci = ��

T
Cz = ���

T

✓
1
J

eu + ev

◆
(21)

= � ·
✓
1
J

+ 1

◆
(22)

= kCk1. (23)

Hence after the gradient step we can project onto the feasible set with respect to `1, simply by adding the sparse
matrix C.

B Stochastic Gradient Bound

We first need a lemma which gives a regret bound for online gradient ascent:

Lemma B.1 (Adapted from [23, Theorem 3.1]). Run online gradient ascent on concave functions ft with
subgradients gt 2 @ft(xt). Assume kxt � x

⇤k  R for some optimizer x⇤ of
PT

t=1 ft, and assume E[kgtk] 
G. Using stepsize � = R

G
p
T

, the expected regret after T iterations is bounded by 2RG

p
T .

Proof of Theorem 3.1. This is adapted from [20, 57].

Define f(s, v, w) = hs, wi+ 1
J

PJ
j=1 EXj⇠µj [h(Xj , v

j)] as in (11). For simplicity, concatenate s and v into
a vector u, with f(u,w) = f(s, v, w). Write w

⇤(u) = argminw2�n
hs, wi and note that our objective in

Equation (11) is f(u) := f(u,w⇤(u)).

Recall the online optimization setup: at time step t we play ut, then receive ft and reward ft(ut), then update ut

and repeat. Note that if ft is given by f(ut, w
⇤(ut)), then online gradient ascent on ft is effectively subgradient

ascent on f . Suppose we play online subgradient ascent and achieve average expected regret "(T ) after T
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timesteps, where the expectation is with respect to the gradient estimates in the learning algorithm. Then by the
definition of expected regret,

"(T ) � E
"
sup
u

1
T

TX

t=1

ft(u)�
1
T

TX

t=1

ft(ut)

#
= E

"
sup
v

1
T

TX

t=1

f(u,wt)�
1
T

TX

t=1

f(ut, wt)

#
. (24)

where we write wt = w

⇤(ut). Simultaneously, we have

1
T

TX

t=1

f(ut, wt)� inf
w

1
T

TX

t=1

f(ut, w)  1
T

TX

t=1

f(ut, wt)�
1
T

TX

t=1

f(ut, wt) = 0 (25)

because wt are each chosen optimally. Summing, we have

E
"
sup
u

1
T

TX

t=1

f(u,wt)� inf
w

1
T

TX

t=1

f(ut, w)

#
 "(T ). (26)

Now we merely need combine this with the standard bound:

inf
w

1
T

TX

t=1

f(ut, w)  inf
w

f(uT , w)  sup
v

inf
w

f(u,w) (27)

 inf
w

sup
u

f(u,w)  sup
u

f(u,wT )  sup
u

1
T

TX

t=1

f(u,wt). (28)

The extreme bounds on either side of this chain of inequalities are within "(T ), hence we also have

E

sup
u

f(u,wT )� inf
w

sup
u

f(u,w)

�
 "(T ). (29)

By definition of f , the left hand side is precisely E[F (wT )�F (w⇤)]. Now, noting that our gradient estimates g
are always sparse (we always have two elements of magnitude 1, so kgk1 = 2), we simply replace "(T ) with
the particular regret bound of Lemma B.1 for online gradient ascent.

C Smoothness of barycenter functional

Proof of Lemma 4.1. For any two measures ⌘, ⌘0 supported on K, we can bound W2(⌘, ⌘
0)  D: the worst-case

⌘, ⌘

0 are point masses distance D apart, so that the transport plan sends all the mass a distance of D.

It follows that |W2(µ, ⌫n) +W2(µ, ⌫)|  2D and therefore

|W 2
2 (µ, ⌫n)�W

2
2 (µ, ⌫)|  2D · |W2(µ, ⌫n)�W2(µ, ⌫)| (30)

 2D ·W2(⌫n, ⌫) (31)

by the triangle inequality. Summing over all µ = µj , we find that

|F [⌫n]� F [⌫]|  1
J

JX

j=1

|W 2
2 (µj , ⌫n)�W

2
2 (µj , ⌫)| (32)

 1
J

JX

j=1

2D ·W2(⌫n, ⌫) = 2D ·W2(⌫n, ⌫), (33)

completing the proof.

D Experiment details

D.1 Von Mises-Fisher Distributions with Drift

The distributions are randomly centered with concentration parameter  = 30. To verify that the barycenter
accurately tracks when the input distributions are non-stationary, we move the center of each distribution
3⇥ 10�5 radians (in the same direction for all distributions) each time a sample is drawn. A snapshot of the
results is shown in Figure 1.

We use a sliding window of T = 105 timesteps with step size � = 1 and on N = 104 evenly-distributed support
points. Each thread is run for 5⇥ 105 iterations on a separate thread of an 8 core workstation. The total time is
roughly 80 seconds, during which our algorithm has processed a total of 2⇥ 106 samples. Clearly our algorithm
is efficient and is able to perform the specified task.
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D.2 Large Scale Bayesian Inference

Subset assignment. The skin segmentation dataset is given with positive samples grouped all together, then
negative samples grouped together. To ensure even representation of positive and negative samples across all
subsets, while simulating the non-i.i.d data setting, each subset is composed of a consecutive block of positive
samples and one of negative samples.

MCMC chains. We used a simple Metropolis-Hastings sampler with Gaussian proposal distribution
N (0,�2

I), for � = 0.05. We used a very conservative 105 burn-in iterations, and afterwards took every
fifth sample.

Mesh selection. During the burn-in phase, we compute a minimum axis-aligned bounding box containing
all samples from all MCMC chains. Then, for a desired mesh size of n, we choose a granularity � so that
cutting each axis into evenly-spaced values differing by � results in approximately n points total. For Table 1 in
particular, the bounding box was selected as roughly

[�21.4, 114.4]⇥ [�121.8, 42.9]⇥ [�50.8, 6.1]

for the LP code, and
[�21.4, 114.2]⇥ [�121.5, 42.8]⇥ [�50.7, 6.1]

for an arbitrary n ⇡ 104 instance of our stochastic algorithm. That these match so well supports the consistency
of our implementation. The griddings assigned for the LPs are given in Table 2.

Table 2: Grid sizes chosen for LP experiments.
n grid dimensions

24 3⇥ 4⇥ 2

40 4⇥ 5⇥ 2

60 5⇥ 6⇥ 2

84 6⇥ 7⇥ 2

189 7⇥ 9⇥ 3

320 8⇥ 10⇥ 4

396 9⇥ 11⇥ 4

480 10⇥ 12⇥ 4

Optimization. We experimented with different stepsizes in {0.01, 0.1, 1, 10, 100} for n in
{103, 104, 105, 106}. As expected, more aggressive step sizes are needed as n grows, but competitive
barycenter estimates were possible for all n given sufficient iterations. The 317 seconds value corresponds to
127⇥ 104 iterations total, or 10000 per sampler. The barycenter estimate wT = 1

T

PT
t=1 eit was maintained

over all 127⇥ 104 iterations. We found that it is sometimes helpful to use a sliding window, to quicker move
away from initial bad barycenter estimates.

Error metric. We stored 104 samples from the true posterior, and computed the W2 distance between these
samples and each candidate barycenter.
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