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Abstract

Learning a regression function using censored or interval-valued output data is an
important problem in fields such as genomics and medicine. The goal is to learn a
real-valued prediction function, and the training output labels indicate an interval of
possible values. Whereas most existing algorithms for this task are linear models,
in this paper we investigate learning nonlinear tree models. We propose to learn
a tree by minimizing a margin-based discriminative objective function, and we
provide a dynamic programming algorithm for computing the optimal solution in
log-linear time. We show empirically that this algorithm achieves state-of-the-art
speed and prediction accuracy in a benchmark of several data sets.

1 Introduction

In the typical supervised regression setting, we are given set of learning examples, each associated
with a real-valued output. The goal is to learn a predictor that accurately estimates the outputs,
given new examples. This fundamental problem has been extensively studied and has given rise to
algorithms such as Support Vector Regression (Basak et al., 2007). A similar, but far less studied,
problem is that of interval regression, where each learning example is associated with an interval
(y
i
, yi), indicating a range of acceptable output values, and the expected predictions are real numbers.

Interval-valued outputs arise naturally in fields such as computational biology and survival analysis.
In the latter setting, one is interested in predicting the time until some adverse event, such as
death, occurs. The available information is often limited, giving rise to outputs that are said to be
either un-censored (−∞ < y

i
= yi < ∞), left-censored (−∞ = y

i
< yi < ∞), right-censored

(−∞ < y
i
< yi =∞), or interval-censored (−∞ < y

i
< yi <∞) (Klein and Moeschberger, 2005).

For instance, right censored data occurs when all that is known is that an individual is still alive after
a period of time. Another recent example is from the field of genomics, where interval regression
was used to learn a penalty function for changepoint detection in DNA copy number and ChIP-seq
data (Rigaill et al., 2013). Despite the ubiquity of this type of problem, there are surprisingly few
existing algorithms that have been designed to learn from such outputs, and most are linear models.

Decision tree algorithms have been proposed in the 1980s with the pioneering work of Breiman et al.
(1984) and Quinlan (1986). Such algorithms rely on a simple framework, where trees are grown by
recursive partitioning of leaves, each time maximizing some task-specific criterion. Advantages of
these algorithms include the ability to learn non-linear models from both numerical and categorical
data of various scales, and having a relatively low training time complexity. In this work, we extend
the work of Breiman et al. (1984) to learning non-linear interval regression tree models.
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1.1 Contributions and organization

Our first contribution is Section 3, in which we propose a new decision tree algorithm for interval
regression. We propose to partition leaves using a margin-based hinge loss, which yields a sequence of
convex optimization problems. Our second contribution is Section 4, in which we propose a dynamic
programming algorithm that computes the optimal solution to all of these problems in log-linear time.
In Section 5 we show that our algorithm achieves state-of-the-art prediction accuracy in several real
and simulated data sets. In Section 6 we discuss the significance of our contributions and propose
possible future research directions. An implementation is available at https://git.io/mmit.

2 Related work

The bulk of related work comes from the field of survival analysis. Linear models for censored
outputs have been extensively studied under the name accelerated failure time (AFT) models (Wei,
1992). Recently, L1-regularized variants have been proposed to learn from high-dimensional data
(Cai et al., 2009; Huang et al., 2005). Nonlinear models for censored data have also been studied,
including decision trees (Segal, 1988; Molinaro et al., 2004), Random Forests (Hothorn et al., 2006)
and Support Vector Machines (Pölsterl et al., 2016). However, most of these algorithms are limited to
the case of right-censored and un-censored data. In contrast, in the interval regression setting, the data
are either left, right or interval-censored. To the best of our knowledge, the only existing nonlinear
model for this setting is the recently proposed Transformation Tree of Hothorn and Zeileis (2017).

Another related method, which shares great similarity with ours, is the L1-regularized linear models
of Rigaill et al. (2013). Like our proposed algorithm, their method optimizes a convex loss function
with a margin hyperparameter. Nevertheless, one key limitation of their algorithm is that it is limited
to modeling linear patterns, whereas our regression tree algorithm is not.

3 Problem

3.1 Learning from interval outputs

Let S def
= {(x1,y1), ..., (xn,yn)} ∼ Dn be a data set of n learning examples, where xi ∈ Rp is

a feature vector, yi
def
= (yi, yi), with yi, yi ∈ R and yi < yi, are the lower and upper limits of a

target interval, and D is an unknown data generating distribution. In the interval regression setting, a
predicted value is only considered erroneous if it is outside of the target interval.

Formally, let ` : R→ R be a function and define φ`(x)
def
= `[(x)+] as its corresponding hinge loss,

where (x)+ is the positive part function, i.e. (x)+ = x if x > 0 and (x)+ = 0 otherwise. In this
work, we will consider two possible hinge loss functions: the linear one, where `(x) = x, and the
squared one where `(x) = x2. Our goal is to find a function h : Rp → R that minimizes the expected
error on data drawn from D:

minimize
h

E
(xi,yi)∼D

φ`(−h(xi) + yi) + φ`(h(xi)− yi),

Notice that, if `(x) = x2, this is a generalization of the mean squared error to interval outputs.
Moreover, this can be seen as a surrogate to a zero-one loss that measures if a predicted value lies
within the target interval (Rigaill et al., 2013).

3.2 Maximum margin interval trees

We will seek an interval regression tree model T : Rp → R that minimizes the total hinge loss on
data set S:

C(T )
def
=

∑
(xi,yi)∈S

[
φ`
(
−T (xi) + yi + ε

)
+ φ` (T (xi)− yi + ε)

]
, (1)

where ε ∈ R+
0 is a hyperparameter introduced to improve regularity (see supplementary material for

details).
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Figure 1: An example partition of leaf τ0 into leaves τ1 and τ2.

A decision tree is an arrangement of nodes and leaves. The leaves are responsible for making
predictions, whereas the nodes guide the examples to the leaves based on the outcome of some
boolean-valued rules (Breiman et al., 1984). Let T̃ denote the set of leaves in a decision tree T .
Each leaf τ ∈ T̃ is associated with a set of examples Sτ ⊆ S, for which it is responsible for making
predictions. The sets Sτ obey the following properties: S =

⋃
τ∈T̃ Sτ and Sτ ∩ Sτ ′ 6= ∅ ⇔ τ = τ ′.

Hence, the contribution of a leaf τ to the total loss of the tree C(T ), given that it predicts µ ∈ R, is

Cτ (µ)
def
=

∑
(xi,yi)∈Sτ

[
φ`(−µ+ yi + ε) + φ`(µ− yi + ε)

]
(2)

and the optimal predicted value for the leaf is obtained by minimizing this function over all µ ∈ R.

As in the CART algorithm (Breiman et al., 1984), our tree growing algorithm relies on recursive
partitioning of the leaves. That is, at any step of the tree growing algorithm, we obtain a new tree T ′

from T by selecting a leaf τ0 ∈ T̃ and dividing it into two leaves τ1, τ2 ∈ T̃ ′, s.t. Sτ0 = Sτ1 ∪ Sτ2
and τ0 6∈ T̃ ′. This partitioning results from applying a boolean-valued rule r : Rp → B to each
example (xi,yi) ∈ Sτ0 and sending it to τ1 if r(xi) = True and to τ2 otherwise. The rules that we
consider are threshold functions on the value of a single feature, i.e., r(xi)

def
= “xij ≤ δ ”. This is

illustrated in Figure 1. According to Equation (2), for any such rule, we have that the total hinge loss
for the examples that are sent to τ1 and τ2 are

Cτ1(µ) =
←−
Cτ0(µ|j, δ) def

=
∑

(xi,yi)∈Sτ0 :xij≤δ

[
φ`(−µ+ yi + ε) + φ`(µ− yi + ε)

]
(3)

Cτ2(µ) =
−→
Cτ0(µ|j, δ) def

=
∑

(xi,yi)∈Sτ0 :xij>δ

[
φ`(−µ+ yi + ε) + φ`(µ− yi + ε)

]
. (4)

The best rule is the one that leads to the smallest total cost C(T ′). This rule, as well as the optimal
predicted values for τ1 and τ2, are obtained by solving the following optimization problem:

argmin
j,δ,µ1,µ2

[
←−
Cτ0(µ1|j, δ) +

−→
Cτ0(µ2|j, δ)

]
. (5)

In the next section we propose a dynamic programming algorithm for this task.

4 Algorithm

First note that, for a given j, δ, the optimization separates into two convex minimization sub-problems,
which each amount to minimizing a sum of convex loss functions:

min
j,δ,µ1,µ2

[
←−
Cτ (µ1|j, δ) +

−→
Cτ (µ2|j, δ)

]
= min

j,δ

[
min
µ1

←−
Cτ (µ1|j, δ) + min

µ2

−→
Cτ (µ2|j, δ)

]
. (6)
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We will show that if there exists an efficient dynamic program Ω which, given any set of hinge
loss functions defined over µ, computes their sum and returns the minimum value, along with a
minimizing value of µ, the minimization problem of Equation (6) can be solved efficiently.

Observe that, although there is a continuum of possible values for δ, we can limit the search to
the values of feature j that are observed in the data (i.e., δ ∈ {xij ; i = 1, ... , n}), since all other
values do not lead to different configurations of Sτ1 and Sτ2 . Thus, there are at most nj ≤ n unique
thresholds to consider for each feature. Let these thresholds be δj,1 < ... < δj,nj . Now, consider
Φj,k as the set that contains all the losses φ`(−µ + yi + ε) and φ`(µ− yi + ε) for which we have
(xi,yi) ∈ Sτ0 and xij = δj,k. Since we now only consider a finite number of δ-values, it follows
from Equation (3), that one can obtain

←−
Cτ (µ1|j, δj,k) from

←−
Cτ (µ1|j, δj,k−1) by adding all the losses

in Φj,k. Similarly, one can also obtain
−→
Cτ (µ1|j, δj,k) from

−→
Cτ (µ1|j, δj,k−1) by removing all the

losses in Φj,k (see Equation (4)). This, in turn, implies that minµ
←−
Cτ (µ|j, δj,k) = Ω(Φj,1∪...∪Φj,k)

and minµ
−→
Cτ (µ|j, δj,k) = Ω(Φj,k+1 ∪ ... ∪ Φj,nj ) .

Hence, the cost associated with a split on each threshold δj,k is given by:

δj,1 : Ω(Φj,1) + Ω(Φj,2 ∪ · · · ∪ Φj,nj )
. . . . . . . . .
δj,i : Ω(Φj,1 ∪ · · · ∪ Φj,i) + Ω(Φj,i+1 ∪ · · · ∪ Φj,nj )
. . . . . . . . .

δj,nj−1 : Ω(Φj,1 ∪ · · · ∪ Φj,nj−1) + Ω(Φj,nj )

(7)

and the best threshold is the one with the smallest cost. Note that, in contrast with the other thresholds,
δj,nj needs not be considered, since it leads to an empty leaf. Note also that, since Ω is a dynamic
program, one can efficiently compute Equation (7) by using Ω twice, from the top down for the first
column and from the bottom up for the second. Below, we propose such an algorithm.

4.1 Definitions

A general expression for the hinge losses φ`(−µ+ yi + ε) and φ`(µ− yi + ε) is φ`(si(µ− yi) + ε),
where si = −1 or 1 respectively. Now, choose any convex function ` : R→ R and let

Pt(µ)
def
=

t∑
i=1

φ`(si(µ− yi) + ε) (8)

be a sum of t hinge loss functions. In this notation, Ω(Φj,1 ∪ ... ∪ Φj,i) = minµ Pt(µ), where
t = |Φj,1 ∪ ... ∪ Φj,i|.
Observation 1. Each of the t hinge loss functions has a breakpoint at yi − siε, where it transitions
from a zero function to a non-zero one if si = 1 and the converse if si = −1.

For the sake of simplicity, we will now consider the case where these breakpoints are all different;
the generalization is straightforward, but would needlessly complexify the presentation (see the
supplementary material for details). Now, note that Pt(µ) is a convex piecewise function that can be
uniquely represented as:

Pt(µ) =



pt,1(µ) if µ ∈ (−∞, bt,1]

. . .

pt,i(µ) if µ ∈ (bt,i−1, bt,i]

. . .

pt,t+1(µ) if µ ∈ (bt,t,∞)

(9)

where we will call pt,i the ith piece of Pt and bt,i the ith breakpoint of Pt (see Figure 2 for an
example). Observe that each piece pt,i is the sum of all the functions that are non-zero on the interval
(bt,i−1, bt,i]. It therefore follows from Observation 1 that

pt,i(µ) =

t∑
j=1

`[sj(µ− yj) + ε] I[(sj = −1 ∧ bt,i−1 < yj + ε) ∨ (sj = 1 ∧ yj − ε < bt,i)] (10)

where I[·] is the (Boolean) indicator function, i.e., I[True] = 1 and 0 otherwise.
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t = 1 before optimization t = 1 after optimization t = 2

b1,1 = 3

f1,1(µ) = µ− 3

P1(µ)

p1,1(µ)

p1,2(µ) = µ− 3

j1 = 2

M1(µ) = p1,1(µ) = 0
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Predicted value (µ)

C
os

t

Figure 2: First two steps of the dynamic programming algorithm for the data y1 = 4, s1 = 1, y2 =
1, s2 = −1 and margin ε = 1, using the linear hinge loss (`(x) = x). Left: The algorithm begins by
creating a first breakpoint at b1,1 = y1− ε = 3, with corresponding function f1,1(µ) = µ− 3. At this
time, we have j1 = 2 and thus b1,j1 =∞. Note that the cost p1,1 before the first breakpoint is not
yet stored by the algorithm. Middle: The optimization step is to move the pointer to the minimum
(J1 = j1 − 1) and update the cost function, M1(µ) = p1,2(µ)− f1,1(µ). Right: The algorithm adds
the second breakpoint at b2,1 = y2 + ε = 2 with f2,1(µ) = µ − 2. The cost at the pointer is not
affected by the new data point, so the pointer does not move.

Lemma 1. For any i ∈ {1, ..., t}, we have that pt,i+1(µ) = pt,i(µ) + ft,i(µ), where ft,i(µ) =
sk`[sk(µ− yk) + ε] for some k ∈ {1, ..., t} such that yk − skε = bt,i.

Proof. The proof relies on Equation (10) and is detailed in the supplementary material.

4.2 Minimizing a sum of hinge losses by dynamic programming

Our algorithm works by recursively adding a hinge loss to the total function Pt(µ), each time, keeping
track of the minima. To achieve this, we use a pointer Jt, which points to rightmost piece of Pt(µ)
that contains a minimum. Since Pt(µ) is a convex function of µ, we know that this minimum is global.
In the algorithm, we refer to the segment pt,Jt as Mt and the essence of the dynamic programming
update is moving Jt to its correct position after a new hinge loss is added to the sum.

At any time step t, let Bt = {(bt,1, ft,1), ..., (bt,t, ft,t) | bt,1 < ... < bt,t} be the current set of
breakpoints (bt,i) together with their corresponding difference functions (ft,i). Moreover, assume the
convention bt,0 = −∞ and bt,t+1 =∞, which are defined, but not stored in Bt.

The initialization (t = 0) is
B0 = {}, J0 = 1, M0(µ) = 0 . (11)

Now, at any time step t > 0, start by inserting the new breakpoint and difference function. Hence,

Bt = Bt−1 ∪ {(yt − stε, st `[st(µ− yt) + ε])} . (12)

Recall that, by definition, the set Bt remains sorted after the insertion. Let jt ∈ {1, . . . , t+ 1}, be
the updated value for the previous minimum pointer (Jt−1) after adding the tth hinge loss (i.e., the
index of bt−1,Jt−1 in the sorted set of breakpoints at time t). It is obtained by adding 1 if the new
breakpoint is before Jt−1 and 0 otherwise. In other words,

jt = Jt−1 + I[yt − stε < bt−1,Jt−1 ] . (13)

If there is no minimum of Pt(µ) in piece pt,jt , we must move the pointer from jt to its final position
Jt ∈ {1, ..., t+ 1}, where Jt is the index of the rightmost function piece that contains a minimum:

Jt = max
i∈{1,...,t+1}

i, s.t. (bt,i−1, bt,i] ∩ {x ∈ R | Pt(x) = min
µ
Pt(µ)} 6= ∅ . (14)

See Figure 2 for an example. The minimum after optimization is in piece Mt, which is obtained by
adding or subtracting a series of difference functions ft,i. Hence, applying Lemma 1 multiple times,
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Figure 3: Empirical evaluation of the expected O(n(m+ log n)) time complexity for n data points
and m pointer moves per data point. Left: max and average number of pointer moves m over all real
and simulated data sets we considered (median line and shaded quartiles over all features, margin
parameters, and data sets of a given size). We also observed m = O(1) pointer moves on average for
both the linear and squared hinge loss. Right: timings in seconds are consistent with the expected
O(n log n) time complexity.

we obtain:

Mt(µ)
def
= pt,Jt(µ) = pt,jt(µ) +


0 if jt = Jt∑Jt−1
i=jt

ft,i(µ) if jt < Jt

−
∑jt−1
i=Jt

ft,i(µ) if Jt < jt

(15)

Then, the optimization problem can be solved using minµ Pt(µ) = minµ∈(bt,Jt−1,bt,Jt ]
Mt(µ). The

proof of this statement is available in the supplementary material, along with a detailed pseudocode
and implementation details.

4.3 Complexity analysis

The ` functions that we consider are `(x) = x and `(x) = x2. Notice that any such function can be
encoded by three coefficients a, b, c ∈ R. Therefore, summing two functions amounts to summing
their respective coefficients and takes time O(1). The set of breakpoints Bt can be stored using any
data structure that allows sorted insertions in logarithmic time (e.g., a binary search tree).

Assume that we have n hinge losses. Inserting a new breakpoint at Equation (12) takes O(log n)
time. Updating the jt pointer at Equation (13) takes O(1). In contrast, the complexity of finding the
new pointer position Jt and updating Mt at Equations (14) and (15) varies depending on the nature
of `. For the case where `(x) = x, we are guaranteed that Jt is at distance at most one of jt. This is
demonstrated in Theorem 2 of the supplementary material. Since we can sum two functions in O(1)
time, we have that the worst case time complexity of the linear hinge loss algorithm is O(n log n).
However, for the case where `(x) = x2, the worst case could involve going through the n breakpoints.
Hence, the worst case time complexity of the squared hinge loss algorithm is O(n2). Nevertheless, in
Section 5.1, we show that, when tested on a variety real-world data sets, the algorithm achieved a
time complexity of O(n log n) in this case also.

Finally, the space complexity of this algorithm is O(n), since a list of n breakpoints (bt,i) and
difference functions (ft,i) must be stored, along with the coefficients (a, b, c ∈ R) of Mt. Moreover,
it follows from Lemma 1 that the function pieces pt,i need not be stored, since they can be recovered
using the bt,i and ft,i.

5 Results

5.1 Empirical evaluation of time complexity

We performed two experiments to evaluate the expected O(n(m + log n)) time complexity for n
interval limits and m pointer moves per limit. First, we ran our algorithm (MMIT) with both squared
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Figure 4: Predictions of MMIT (linear hinge loss) and the L1-regularized linear model of Rigaill
et al. (2013) (L1-Linear) for simulated data sets.

and linear hinge loss solvers on a variety of real-world data sets of varying sizes (Rigaill et al., 2013;
Lichman, 2013), and recorded the number of pointer moves. We plot the average and max pointer
moves over a wide range of margin parameters, and all possible feature orderings (Figure 3, left). In
agreement with our theoretical result (supplementary material, Theorem 2), we observed a maximum
of one move per interval limit for the linear hinge loss. On average we observed that the number of
moves does not increase with data set size, even for the squared hinge loss. These results suggest that
the number of pointer moves per limit is generally constant m = O(1), so we expect an overall time
complexity of O(n log n) in practice, even for the squared hinge loss. Second, we used the limits of
the target intervals in the neuroblastoma changepoint data set (see Section 5.3) to simulate data sets
from n = 103 to n = 107 limits. We recorded the time required to run the solvers (Figure 3, right),
and observed timings which are consistent with the expected O(n log n) complexity.

5.2 MMIT recovers a good approximation in simulations with nonlinear patterns

We demonstrate one key limitation of the margin-based interval regression algorithm of Rigaill
et al. (2013) (L1-Linear): it is limited to modeling linear patterns. To achieve this, we created three
simulated data sets, each containing 200 examples and 20 features. Each data set was generated in
such a way that the target intervals followed a specific pattern f : R→ R according to a single feature,
which we call the signal feature. The width of the intervals and a small random shift around the true
value of f were determined randomly. The details of the data generation protocol are available in the
supplementary material. MMIT (linear hinge loss) and L1-Linear were trained on each data set, using
cross-validation to choose the hyperparameter values. The resulting data sets and the predictions of
each algorithm are illustrated in Figure 4. As expected, L1-Linear fails to fit the non-linear patterns,
but achieves a near perfect fit for the linear pattern. In contrast, MMIT learns stepwise approximations
of the true functions, which results from each leaf predicting a constant value. Notice the fluctuations
in the models of both algorithms, which result from using irrelevant features.

5.3 Empirical evaluation of prediction accuracy

In this section, we compare the accuracy of predictions made by MMIT and other learning algorithms
on real and simulated data sets.

Evaluation protocol To evaluate the accuracy of the algorithms, we performed 5-fold cross-
validation and computed the mean squared error (MSE) with respect to the intervals in each of the
five testing sets (Figure 5). For a data set S = {(xi,yi)}ni=1 with xi ∈ Rp and yi ∈ R2

, and for a
model h : Rp → R, the MSE is given by

MSE(h, S) =
1

n

n∑
i=1

(
[h(xi)− yi] I[h(xi) < yi] + [h(xi)− yi] I[h(xi) > yi]

)2
. (16)
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Figure 5: MMIT testing set mean squared error is comparable to, or better than, other interval
regression algorithms in seven real and simulated data sets. Five-fold cross-validation was used to
compute 5 test error values (points) for each model in each of the data sets (panel titles indicate data
set source, name, number of observations=n, number of features=p, proportion of intervals with finite
limits and proportion of all interval limits that are upper limits).

At each step of the cross-validation, another cross-validation (nested within the former) was used
to select the hyperparameters of each algorithm based on the training data. The hyperparameters
selected for MMIT are available in the supplementary material.

Algorithms The linear and squared hinge loss variants of Maximum Margin Interval Trees (MMIT-
L and MMIT-S) were compared to two state-of-the-art interval regression algorithms: the margin-
based L1-regularized linear model of Rigaill et al. (2013) (L1-Linear) and the Transformation Trees
of Hothorn and Zeileis (2017) (TransfoTree). Moreover, two baseline methods were included in the
comparison. To provide an upper bound for prediction error, we computed the trivial model that
ignores all features and just learns a constant function h(x) = µ that minimizes the MSE on the
training data (Constant). To demonstrate the importance of using a loss function designed for interval
regression, we also considered the CART algorithm (Breiman et al., 1984). Specifically, CART was
used to fit a regular regression tree on a transformed training set, where each interval regression
example (x, [y, y]) was replaced by two real-valued regression examples with features x and labels
y + ε and y − ε. This algorithm, which we call Interval-CART, uses a margin hyperparameter and
minimizes a squared loss with respect to the interval limits. However, in contrast with MMIT, it does
not take the structure of the interval regression problem into account, i.e., it ignores the fact that no
cost should be incurred for values predicted inside the target intervals.

Results in changepoint data sets The problem in the first two data sets is to learn a penalty
function for changepoint detection in DNA copy number and ChIP-seq data (Hocking et al., 2013;
Rigaill et al., 2013), two significant interval regression problems from the field of genomics. For the
neuroblastoma data set, all methods, except the constant model, perform comparably. Interval-CART
achieves the lowest error for one fold, but L1-Linear is the overall best performing method. For the
histone data set, the margin-based models clearly outperform the non-margin-based models: Constant
and TransfoTree. MMIT-S achieves the lowest error on one of the folds. Moreover, MMIT-S tends
to outperform MMIT-L, suggesting that a squared loss is better suited for this task. Interestingly,
MMIT-S outperforms Interval-CART, which also uses a squared loss, supporting the importance of
using a loss function adapted to the interval regression problem.

Results in UCI data sets The next two data sets are regression problems taken from the UCI
repository (Lichman, 2013). For the sake of our comparison, the real-valued outputs in these data
sets were transformed into censored intervals, using a protocol that we detail in the supplementary
material. For the difficult triazines data set, all methods struggle to surpass the Constant model.
Neverthess, some achieve lower errors for one fold. For the servo data set, the margin-based tree
models: MMIT-S, MMIT-L, and Interval-CART perform comparably and outperform the other
models. This highlights the importance of developping non-linear models for interval regression and
suggests a positive effect of the margin hyperparameter on accuracy.
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Results in simulated data sets The last three data sets are the simulated data sets discussed in the
previous section. As expected, the L1-linear model tends outperforms the others on the linear data set.
However, surprisingly, on a few folds, the MMIT-L and Interval-CART models were able to achieve
low test errors. For the non-linear data sets (sin and abs), MMIT-S, MMIT-L and Interval-Cart clearly
outperform the TransfoTree, L1-linear and Constant models. Observe that the TransfoTree algorithm
achieves results comparable to those of L1-linear which, in Section 5.2, has been shown to learn
a roughly constant model in these situations. Hence, although these data sets are simulated, they
highlight situations where this non-linear interval regression algorithm fails to yield accurate models,
but where MMITs do not.

Results for more data sets are available in the supplementary material.

6 Discussion and conclusions

We proposed a new margin-based decision tree algorithm for the interval regression problem. We
showed that it could be trained by solving a sequence of convex sub-problems, for which we proposed
a new dynamic programming algorithm. We showed empirically that the latter’s time complexity is
log-linear in the number of intervals in the data set. Hence, like classical regression trees (Breiman
et al., 1984), our tree growing algorithm’s time complexity is linear in the number of features and
log-linear in the number of examples. Moreover, we studied the prediction accuracy in several real
and simulated data sets, showing that our algorithm is competitive with other linear and nonlinear
models for interval regression.

This initial work on Maximum Margin Interval Trees opens a variety of research directions, which
we will explore in future work. We will investigate learning ensembles of MMITs, such as random
forests. We also plan to extend the method to learning trees with non-constant leaves. This will
increase the smoothness of the models, which, as observed in Figure 4, tend to have a stepwise nature.
Moreover, we plan to study the average time complexity of the dynamic programming algorithm.
Assuming a certain regularity in the data generating distribution, we should be able to bound the
number of pointer moves and justify the time complexity that we observed empirically. In addition,
we will study the conditions in which the proposed MMIT algorithm is expected to surpass methods
that do not exploit the structure of the target intervals, such as the proposed Interval-CART method.
Intuitively, one weakness of Interval-CART is that it does not properly model left and right-censored
intervals, for which it favors predictions that are near the finite limits. Finally, we plan to extend
the dynamic programming algorithm to data with un-censored outputs. This will make Maximum
Margin Interval Trees applicable to survival analysis problems, where they should rank among the
state of the art.

Reproducibility

• Implementation: https://git.io/mmit
• Experimental code: https://git.io/mmit-paper
• Data: https://git.io/mmit-data

The versions of the software used in this work are also provided in the supplementary material.
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