
A Geodesic convexity

Recall that we are using the notation

P#tQ := P 1/2(P−1/2QP−1/2)tP 1/2, t ∈ [0, 1], and P,Q ≻ 0,

to denote the geodesic between positive definite matrices P and Q under the Riemannian metric
gP (X,Y ) = tr(P−1XP−1Y ). The midpoint of this geodesic is P#1/2Q, and it is customary to
drop the subscript and just write P#Q.

A.1 Proof of Lemma 3.3

Here we prove the log-g-convexity of Eℓ on the set of psd matrices. As far as we are aware, this
result is novel. By continuity, it suffices to prove midpoint log-g-convexity; that is, it suffices to
prove

Eℓ(P#Q) ≤
√
Eℓ(P )Eℓ(Q).

From basic multilinear algebra (see e.g., [5, Ch. 1]) we know that for any n × n matrix P , there
exists a projection matrix W such that Eℓ(P ) = tr∧ℓP = trW ∗P⊗nW . [40, Lemma 2.23] shows
that

(P#Q)⊗n = P⊗n#Q⊗n.

Thus, it follows that

Eℓ(P#Q) = trW ∗(P#Q)⊗nW = trW ∗[P⊗n#Q⊗n]W

≤ [trW ∗P⊗nW ]1/2[trW ∗Q⊗nW ]1/2

= [Eℓ(P )Eℓ(Q)]1/2,

where the inequality follows from log-g-convexity of the trace map [40, Cor. 2.9].

Observe that this result is stronger than the usual log-convexity result, which it yields as a corollary.

A.2 Proof of Corollary 3.4

We present now a short new proof of the log-convexity of the map Z 7→ Eℓ(A
⊤ZA)−1; we assume

that A has full column rank. As before, it suffices to prove midpoint convexity. Let Z, Y ≻ 0. We
must then show that

logEℓ

(
A⊤ (Z+Y

2

)
A
)−1 ≤ 1

2 logEℓ(A
⊤ZA)−1 + 1

2 logEℓ(A
⊤Y A)−1.

Since (e.g., [6, Ch. 5]) (A⊤ZA)#(A⊤Y A) ≤ A⊤ZA+A⊤Y A
2 , we get

[
A⊤(Z+Y

2

)
A
]−1 ≤

[(A⊤ZA)#(A⊤Y A)]−1. Since logEℓ is monotonic in Löwner order (Prop. 2.1-(i)), we see that

logEℓ

(
A⊤ (Z+Y

2

)
A
)−1 ≤ logEℓ

(
[(A⊤ZA)#(A⊤Y A)]−1

)
= logEℓ[(A

⊤ZA)−1#(A⊤Y A)−1].

But from Lemma 3.3 we know that Eℓ(P#Q) ≤
√
Eℓ(P )Eℓ(Q), which allows us to write

logEℓ[(A
⊤ZA)−1#(A⊤Y A)−1] ≤ 1

2Eℓ(A
⊤ZA)−1 + 1

2Eℓ(A
⊤Y A)−1,

which completes the proof.

B Bounding the support of the continuous relaxation

As mentioned in the main paper, this proof is identical to the proof provided by [44, Lemma 3.5] for
A-optimal design once we derive∇fℓ(z); we reproduce it here for completeness.

Proof. (Theorem 3.6). It is easy to show from (5.1) and Prop. 2.1-(iii) that

∂fℓ(z)

∂zi
= −1

ℓ
x⊤i U

(
Λ−1 −∇em−l(Λ)/em−ℓ(Λ)

)
U⊤︸ ︷︷ ︸

W

xi

11



and that W is positive definite.

Assume now that all choices of m(m + 1)/2 distinct rows of X have their mapping under ϕ̃ be
independent. We now consider the Lagrangian multiplier version of (3.2):

f(z, ui, vi, λ) = fℓ(z)−
∑

i
uizi +

∑
i

(zi − 1) + λ(
∑

i
zi − k)

Let z∗ be the optimal solution, and let A ⊆ [n] be the indices i such that 0 < zi < 1. Assume by
contradiction that |A| > m(m+ 1)/2. By KKT conditions, we have for i ∈ A,

−∂f(z
∗)

∂zi
= x⊤i Wxi = ⟨ϕ(x) | ψ(W )⟩ = µ (B.1)

where ϕ is the mapping defined in Theorem 3.6 and ψ takes the upper triangle of a symmetric matrix
and maps it to a vector of size m(m + 1)/2. Then, (B.1) can be rewritten for m(m + 1)/2 indices
in A as the following linear system of variables: ϕ̃(x1)

. . .

ϕ̃(xm(m+1)/2+1)

(ψ(W )
−λ

)
= 0. (B.2)

By hypothesis, the first matrix is invertible and hence ψ(W ) and λ must be 0, which contradicts the
strict positive definiteness of W .

C Greedy algorithm details

To analyze our greedy algorithm, we need the following lemma, which is an extension of [2, Lemma
3.9] to all elementary symmetric polynomials:
Lemma C.1. Let X ∈ Rn×m(n ≥ m) be a matrix with full column rank, and let k be a budget
m ≤ k ≤ n. Let S be a random variable with probability

PS =
det(X⊤

S XS)∑
T⊆[n],|T |=k det(X

⊤
T XT )

.

Then

E
[
Eℓ

((
X⊤

S XS

)−1
)]
≤

(
ℓ∏

i=1

n−m+ i

k −m+ i

)
Eℓ

((
X⊤X

)−1
)
. (C.1)

Proof. The below calculations depend heavily on the Cauchy-Binet formula, of which we reproduce
a special case here for X ∈ Rn×m:

det(X⊤X) =
∑

S⊆[n],|S|=m

det(X⊤
S XS). (C.2)

We also use the representation (2.2). By definition we have

E
[
Eℓ

((
X⊤

S XS

)−1
)]

=

∑
S⊆[n],|S|=k det(X

⊤
S XS)Eℓ

((
X⊤

S XS

)−1
)

∑
S⊆[n],|S|=k det(X

⊤
S XS)

For the denominator, we have∑
S⊆[n],|S|=k

det(X⊤
S XS) =

∑
S⊆[n],|S|=k

det(X⊤
S XS)

(a)
=

∑
S⊆[n],|S|=k

∑
T⊆S,|T |=m

det(X⊤
T XT )

(b)
=

(
n−m
k −m

) ∑
T⊆S,|T |=m

det(X⊤
T XT )

(c)
=

(
n−m
k −m

)
det(X⊤X)
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where (a) is obtained using the Cauchy-Binet formula (C.2), (b) by noticing that there are
(
n−m
k−m

)
sets of size k that contain a set T of size m, and (c) by reapplying (C.2).

For the numerator, we first use the fact that Eℓ(A
−1) = 1

detAEm−ℓ(A):∑
S⊆[n],|S|=k

det(X⊤
S XS)Eℓ

((
X⊤

S XS

)−1
) (a)

≤
∑

S⊆[n],|S|=k

Em−ℓ(X
⊤
S XS)

=
∑

S⊆[n],|S|=k

∑
L⊆[m],|L|=m−ℓ

(X⊤
S XS)[L|L]

(b)
=

∑
S⊆[n],|S|=k

∑
L⊆[m],|L|=m−ℓ

det((YL)
⊤
S (YL)S)

(c)
=

∑
S⊆[n],|S|=k

∑
L⊆[m],|L|=m−ℓ

∑
T⊆S,|T |=m−ℓ

det((YL)
⊤
T (YL)T )

=

(
n−m+ ℓ

k −m+ ℓ

) ∑
L⊆[m],|L|=m−ℓ

∑
T∈[n],|T |=m−ℓ

det((YL)
⊤
T (YL)T )

(d)
=

(
n−m+ ℓ

k −m+ ℓ

) ∑
L⊆[m],|L|=m−ℓ

det((YL)
⊤(YL))

=

(
n−m+ ℓ

k −m+ ℓ

) ∑
L⊆[m],|L|=m−ℓ

(X⊤X)[L|L]

=

(
n−m+ ℓ

k −m+ ℓ

)
Em−ℓ(X

⊤X)

Here, (a) is just (2.2); we have equality if all subsets S of size k produce strictly positive definite
matrices X⊤

S XS . For (b), we note YL the submatrix of X with all columns but those in L removed;
then, (YL)⊤S (YL)S = [X⊤

S XS ] for all subsets S. (d) is an application of Cauchy-Binet. Hence,

E
[
Eℓ

((
X⊤

S XS

)−1
)]

=

∑
S⊆[n],|S|=k det(X

⊤
S XS)Eℓ

((
X⊤

S XS

)−1
)

∑
S⊆[n],|S|=k det(X

⊤
S XS)

=

(
n−m+ℓ
k−m+ℓ

)
Em−ℓ(X

⊤X)(
k−m
n−m

)
det(X⊤X)

=

(
ℓ∏

i=1

n−m+ i

k −m+ i

)
Eℓ(
(
X⊤X

)−1
)

We can now prove Theorem 4.3:

Proof. We recursively show that greedily removing j items constructs a set S (of size (n− j)) s.t.

Eℓ

((
X⊤

S XS

)−1
)
≤

(
ℓ∏

i=1

n−m+ i

n− j −m+ i

)
Eℓ

((
X⊤X

)−1
)
. (C.3)

(C.3) is trivially true for j = 0. Assume now that (C.3) holds for j ≥ 0, and let Sj be the correspond-
ing set of size (n− j). Let now Sj+1 be the set of size |Sj | − 1 that minimizes Eℓ(X

T
Sj+1

XSj+1).

From lemma 4.2, we know that for sets S of size |Sj |−1 drawn according to dual volume sampling,

E
[
Eℓ

((
X⊤

S XS

)−1
)]
≤

(
ℓ∏

i=1

|Sj | −m+ i

(|Sj | − 1)−m+ i

)
Eℓ

((
X⊤

Sj
XSj

)−1
)
.
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In particular, the minimum of Eℓ(X
T
SXS) over all sets of size |Sj | − 1 is upper bounded by the

expectancy: Eℓ(X
T
Sj+1

XSj+1) ≤
(∏ℓ

i=1
n−j−m+i

n−j−1−m+i

)
Eℓ

((
X⊤

Sj
XSj

)−1
)

.

By recursion hypothesis applied to Sj , we then have

Eℓ(X
T
Sj+1

XSj+1
) ≤

(
ℓ∏

i=1

n− j −m+ i

n− j − 1−m+ i

)
Eℓ

((
X⊤

Sj
XSj

)−1
)

≤

(
ℓ∏

i=1

n− j −m+ i

n− j − 1−m+ i

)(
ℓ∏

i=1

n−m+ i

n− j −m+ i

)
Eℓ

((
X⊤X

)−1
)

≤

(
ℓ∏

i=1

n−m+ i

n− (j + 1)−m+ i

)
Eℓ

((
X⊤X

)−1
)
,

which concludes the recursion. Then, constructing a set of size k amounts to setting j = n − k in
Eq.(C.3), which proves Eq. (4.2).

D Obtaining the dual formulation

We first show that (5.2) hasH ≻ 0: by contradiction, assume that there exists x such that x⊤Hx < 0
and ∥x∥ = 1. Then setting A = I − t

1+txx
⊤ has g(A) go to infinity with t.

Next, g(A) = − 1
ℓ logEℓ(A) − tr(HA−1) reaches its maximum on S++

m : if ∥A∥ → ∞, we easily
have g → −∞. The same holds for A→ ∂S++

m .

We now derive the dual form:

(5.2) ⇐⇒ inf
µ∈R,

H∈Rm×m

sup
A≻0,z≥0

−1

ℓ
logEℓ(A)− tr(HA−1) + tr(HX⊤ Diag(z)X)− µ(1⊤z − k)

(5.2) ⇐⇒ inf
µ∈R,H⪰0

[
f⋆ℓ (−H) + sup

z≥0
tr(HX⊤ Diag(z)X)− µ(1⊤z − k)

]
(5.2) ⇐⇒ inf

µ∈R,H⪰0

[
f⋆ℓ (−H) + sup

z≥0

∑
i

zi(x
⊤
i Hxi − µ) + µk

]
(5.2) ⇐⇒ inf

x⊤
i Hxi≤µ,
H⪰0

f⋆ℓ (−H) + kµ

(5.2) ⇐⇒ sup
x⊤
i Hxi≤1,
H⪰0,µ>0

−f⋆ℓ (−µH)− kµ

(5.2) ⋆⇐⇒ sup
x⊤
i Hxi≤1,
H⪰0

−f⋆ℓ (−H)

Where ⋆⇐⇒ follows from f⋆ℓ (−µH) = supA≻0− tr(HA)− fℓ(A/µ) = f⋆ℓ (−H)− logµ.

Finally, we saw that by definition of a(H), f⋆ℓ (−H) = g(a(H)) = −Eℓ(a(H))− tr(H (a(H))
−1

),
and that the eigenvalues Λ of a(H) verify

λ2i
eℓ−1(λ1, . . . , λi−1, λi+1, . . . , λm)

eℓ(λ1, . . . , λm)
= hi, 1 ≤ i ≤ m.
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Then,

eℓ(λ1, . . . , λm) tr(H (a(H))
−1

) =
∑
i

1

λi
λ2i eℓ−1(λ1, . . . , λi−1, λi+1, . . . , λm)

=
∑
i

λieℓ−1(λ1, . . . , λi−1, λi+1, . . . , λm)

=
∑
i

∑
J⊆[n],|J|=ℓ,i∈J

∏
j∈J

λj

Each subset J is hence going to appear ℓ times, once for each of its elements; finally

tr(H (a(H))
−1

) = ℓ
∑

J⊆[n],|J|=ℓ

∏
j∈J

λj/eℓ(λ1, . . . , λm) = ℓ

and hence

sup
x⊤
i Hxi≤1,
H⪰0

−f⋆ℓ (−H) ⇐⇒ sup
x⊤
i Hxi≤1,
H⪰0

−g(a(H)) = sup
x⊤
i Hxi≤1,
H⪰0

1

ℓ
logEℓ(a(H)) + ℓ.

E Additional synthetic experimental results

To compare to [44], we generated the experimental matrix X by sampling n vectors of size m from
the multivariate Gaussian distribution of mean 0 and covariance Σ = Diag(1−α, . . . ,m−α) for
various sizes of α and multiple budgets k, with m = 50, n = 1000; α controls hows skewed the
distribution is.

Table 4: ∥z∥0 for n = 500, m = 30, ℓ = 15

k = 60 k = 120 k = 180 k = 240 k = 300

α = 1 167 ± 9 192 ± 6 241 ± 5 290 ± 4 335 ± 4
α = 2 160 ± 4 187 ± 5 240 ± 2 284 ± 3 331 ± 6
α = 3 160 ± 4 190 ± 3 237 ± 5 281 ± 4 333 ± 3
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Figure 3: Synthetic experiments, n = 500, m = 30, ℓ = 1.
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Figure 4: Synthetic experiments, n = 500, m = 30, ℓ = 10.
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Figure 5: Synthetic experiments, n = 500, m = 30, ℓ = 30.
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Figure 6: Synthetic experiments, n = 500, m = 30, ℓ = 1.
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Figure 7: Synthetic experiments, n = 500, m = 30, ℓ = 15.
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Figure 8: Synthetic experiments, n = 500, m = 30, ℓ = 30.
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