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Abstract

In a regression task, a predictor is given a set of instances, along with a real value
for each point. Subsequently, she has to identify the value of a new instance as
accurately as possible. In this work, we initiate the study of strategic predictions in
machine learning. We consider a regression task tackled by two players, where the
payoff of each player is the proportion of the points she predicts more accurately
than the other player. We first revise the probably approximately correct learning
framework to deal with the case of a duel between two predictors. We then devise
an algorithm which finds a linear regression predictor that is a best response to
any (not necessarily linear) regression algorithm. We show that it has linearithmic
sample complexity, and polynomial time complexity when the dimension of the
instances domain is fixed. We also test our approach in a high-dimensional setting,
and show it significantly defeats classical regression algorithms in the prediction
duel. Together, our work introduces a novel machine learning task that lends itself
well to current competitive online settings, provides its theoretical foundations, and
illustrates its applicability.

1 Introduction

Prediction is fundamental to machine learning and statistics. In a prediction task, an algorithm is
given a sequence of examples composed of labeled instances, and its goal is to learn a general rule
that maps instances to labels. When the labels take continuous values, the task is typically referred
to as regression. The quality of a regression algorithm is measured by its success in predicting the
value of an unlabeled instance. Literature on regression is mostly concerned with minimizing the
discrepancy of the prediction, i.e. the difference between the true value and the predicted one.

Despite the tremendous amount of work on prediction and regression, online commerce presents new
challenges. In this context, prediction is not carried out in isolation. New entrants can utilize knowl-
edge of previous expert predictions and the corresponding true values, to maximize their probability
of predicting better than that expert, treated as the new entrant’s opponent. This fundamental task is
the main challenge we tackle in this work.

We initiate the study of strategic predictions in machine learning. We present a regression learning
setting that stems from a game-theoretic point of view, where the goal of the learner is to maximize
the probability of being the most accurate among a set of predictors. Note that this approach may be
in conflict with the traditional prediction goal.

Consider an online real estate expert, who frequently predicts the sale value of apartments. This
expert, having been in the market for a while, has historical data on the values and characteristics
of similar apartments. For simplicity, assume the expert uses simple linear regression to predict the
value of an apartment as a function of its size. When a new apartment comes on the market, the
expert uses her gathered historical data to predict the new apartment’s value. When the apartment is
sold, the true value (and the accuracy of the prediction) is revealed.
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Figure 1: A case where minimizing the square error can be easily beaten. Each point is an instance-
value pair, where the circles are historical points (i.e. their value has been revealed) and the triangles
are new points, unseen by either the expert and the agent. The red (solid) line represents the linear
least squares estimators, employed by the expert. After collecting a sufficient amount of historical
data (circles) on apartments along with their true value and the value predicted by the expert, the
agent comes up with the response represented by the green (dashed) line. For each of the unseen
apartment sizes, both the expert and the agent declare their predictions of the apartment’s value.
Notice that the agent outperforms the expert in the majority of the historical points. In addition, the
agent produces a more accurate prediction in the majority of the new (unseen) points.

At first glance this seems extremely effective, however it is also extremely fragile. An agent who
enters the real estate business may come up with a linear predictor for which the probability (over
all apartments and their values) of being more accurate is high, making it the preferable predictor.
Figure 1 illustrates our approach. The expert uses linear least square estimators (LSE) to minimize
the mean square error (MSE). The agent, after having collected "enough" historical data (circles) and
having observed the predictions of the expert, produces a strategy (regression line). Both the expert
and the agent predict the value of new apartments coming on the market (triangles). As illustrated,
the prediction of the agent is the most accurate in the majority of new instances.

One criticism of this novel approach is that while maximizing the probability of being the most
accurate, the agent may produce "embarrassing" predictions for some instances. Current prediction
algorithms are designed to minimize some measure of overall loss, such as the MSE. Notice that in
many, and perhaps even most, practical scenarios, being a better predictor on more instances is more
important than avoiding such sporadic "embarrassing predictions". In particular, our approach fits
any commerce and advertising setting where the agent offers predictions to users on the value of
different goods or services, aiming at maximizing the number of users that will find her predictions
more accurate than the one provided by the expert. For example, an agent, serving users searching
for small apartments, would be happy to fail completely in predicting the value of very large sized
apartments if this allowed predicting the value of smaller apartments better than an opponent.

Our novel perspective suggests several new fundamental problems:

1. Given a prediction algorithm ALG (e.g. LSE), what would be the best response to ALG, if
we aim at maximizing the probability that the new algorithm would be more accurate than
ALG?

2. In case ALG is unknown, but the agent has access to a labeled set of instances along with
the prediction made by ALG for each instance, how many i.i.d. samples are needed in order
to learn a best response to ALG over the whole population?

3. How poorly do classical regression algorithms preform against such a best response algo-
rithm?

In this work, we focus on a two player scenario and analyze the best response of the agent against an
opponent. We examine the agent’s perspective, and introduce a rigorous treatment of Problems 1-3
above. We model the task of finding a best response as a supervised learning task, and show that it
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fits the probably approximately correct (PAC) learning framework. Specifically, we show that when
the strategy space of the agent is restricted, a best response over a large enough sample set is likely to
be an approximate best response over the unknown distribution.

Our main result deals with an agent employing linear regression in Rn for any constant n. We present
a polynomial time algorithm which computes a linear best response (i.e. from the set of all linear
predictors) to any regression algorithm employed by the opponent. We also show a linearithmic
bound in the number of training samples needed in order to successfully learn a best response. In
addition, we show that in some cases our algorithm can be adapted to have an MSE score arbitrarily
close to that of the given regression algorithm ALG. The theoretical analysis is complemented by
an experimental study, which illustrates the effectiveness of our approach. In order to find a best
linear response in high dimensional space, we provide a mixed integer linear programming (MILP)
algorithm. The MILP algorithm is tested on the Boston housing dataset [7]. Indeed, we show that we
can outperform classical regression algorithms in up to 70% of the points. Moreover, we outperform
classical regression algorithms even in the case where they have full access to both training and test
data, while we restrict our responder algorithm to the use of the training data only.

Our contribution. Our contributions are 3-fold. The main conceptual contribution of this paper is
the explicit suggestion that a prediction task may have strategic aspects. We introduce the setting
of best response regression, applicable to a huge variety of scenarios, and revise the PAC-learning
framework to deal with such a duel framework. Then, we show an efficient algorithm dealing with
finding a best-response linear regression in Rn for any constant n, against any regression algorithm.
This best response algorithm maximizes the probability of beating the latter on new instances. Finally,
we present an experimental study showing the applicability of our approach. Together, this work
offers a new machine learning challenge, addresses some of its theoretical properties and algorithmic
challenges, while also showing its applicability.

1.1 Related work

The intersection of learning theory with multi-agent systems is expanding with the rise of data science.
In the field of mechanism design [10], [4, 9] considered prediction tasks with strategic aspects. In
their model, the instances domain is to be labeled by one agent, and the dataset is constructed of
points controlled by selfish users, who have their own view on how to label the instances domain.
Hence, the users can misreport the points in order to sway decisions in their favor. A different line
of work that is related to our model is the analysis of sample complexity in revenue maximizing
auctions. In a recent work [3] the authors reconsider an auction setting where the auctioneer can
sample from the valuation functions of the bidders, thereby relaxing the ubiquitous assumption of
knowing the underlying distribution over bidders’ valuations.

While the above papers consider mechanism design problems inspired by machine learning, our work
considers a novel machine learning problem inspired by game theory.

In work on dueling algorithms [8], an optimization problem is analyzed from the perspective of
competition, rather than from the point of view of a single optimizer. That work examines the dueling
form of several optimization problems, e.g. the shortest path from the source vertex to the target
vertex in a graph with random weights. While minimizing the expected length is a probable solution
concept for a single optimizer, this is no longer the case in the defined duel. While [8] assumes a
commonly-known distribution over a finite set of instances, we have no such assumption. Instead,
we consider a sample set drawn from the underlying distribution with the aim of predicting a new
instance better than the opponent.

Our formulation is also related to the Learning Using Privileged Information paradigm (see, e.g.,
[11, 17, 18]), in which the learner (agent) is supplied with additional information along with the
label of each instance. In this paper, we assume the agent has access to predictions made by another
algorithm (the opponent’s), which can be treated as additional information.

2 Problem formulation

The environment is composed of instances and labels. In the motivating example given above, the
instances are the characteristics of the apartments, and the labels are the values of these apartments.
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A set of N players offer predictive services, where a strategy of a player is a labeling function.
For each instance-label pair (x, y), the players see x, and subsequently each player i, predicts
the value of the y. We call this label estimate ŷi. The player who wins a point (x, y) is the one
with the smallest discrepancy, i.e. mini |ŷi − y|. Under the strategy profile (h1, . . . hN ), where
each entry is the labeling function chosen by the corresponding player, the payoff of Player i is
Pr ({(x, y) : Player i wins (x, y)}).

A strategy of a player is called a best response if it maximizes the payoff of that player, when the
strategies of all the other players are fixed. In this work, we analyze the best response of a player, and
w.l.o.g. we assume she has only one opponent. The model is as follows:

1. We assume a distribution over the examples domain, which is the cross product of the
instances domain X ⊂ Rn and the labels domain Y ⊂ R.

2. The agent and the opponent both predict the label of each instance. The opponent uses a
strategy h̄, which is a conditional distribution over R given x ∈ X .

3. The agent is unaware of the distribution over X × Y or the strategy of the opponent h̄.
Hence, we explicitly address the joint distribution D over Z = X × Y × R, where a triplet
(x, y, p) represents an instance x, its label y, and the discrepancy of the opponent’s predicted
value p, i.e. p = |h̄(x)− y|. We stress that D is unknown to the agent.

4. The payoff of the agent under the strategy h : X → Y is given by

πD(h) = E
(x,y,p)∼D

(
1|h(x)−y)|<p

)
.

5. The agent has access to a sequence of examples S , with which she wishes to maximize her
payoff.

Note that a strategy which outputs yi for every instance xi in S may look promising, but will probably
lead to overfitting, and low payoff for the agent. Since the agent wishes to generalize from S to D,
restricting the strategy set toH ⊂ YX seems justified. We define the goal of the agent:

6. The agent is willing to restrict herself to a strategy from H ⊂ YX . Her goal: to find an
algorithm which, given ε, δ ∈ (0, 1) and a sequence of m = m(ε, δ) examples S sampled
i.i.d. from D, outputs a strategy h∗ such that with probability at least 1− δ (over the choices
of S) it holds that

πD(h∗) ≥ sup
h∈H

πD(h)− ε.

Indeed, the access to a sequence of examples seems realistic, and the size of S depends on the amount
of resources at the agent’s disposal. The size of S also affects the selection of H: if the agent can
gather "many" examples, she might be able to learn a "good" strategy from a more complex strategy
space.

We say that h ∈ H is an approximate best response with factor ε if for all h′ ∈ H it holds that
πD(h′)− πD(h) ≤ ε. Note that the goal of the agent can be interpreted as finding an approximate
best response with high probability. The empirical payoff of the agent is defined by

πS(h) =
1

m
·
∣∣{i : 1|h(xi)−yi)|<pi}

∣∣ ,
and a strategy h ∈ arg maxh′∈H πS(h′) is called an empirical best response (w.r.t S). Next, we
adopt the PAC framework [15] to define under which strategy spaces an empirical best response is
likely to be an approximate best response.

2.1 Approximate best response with PAC learnability

The field of statistical learning addresses the problem of finding a predictive function based on data.
We briefly define some key concepts in learning theory, that will be used later. For a more gentle
introduction the reader is referred to [13].

Let G be a class of functions from Z to {0, 1} and let S = {z1, . . . , zm} ⊂ Z . The restriction of
G to S, denoted G(S), is defined by G(S) = {(g(z1), g(z2), . . . , g(zm)) : g ∈ G}. Namely, G(S)
contains all the binary vectors induced by the functions in G on the items of S . We say that G shatters
S if G(S) contains all binary vectors of size m, i.e. |G(S)| = 2m.
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Definition 1 (VC dimension,[16]). The VC dimension of a class G, denoted VCdim(G), is the
maximal size of a set S ⊂ Z that can be shattered by G.
Definition 2 (PAC learnability,[15]). A hypothesis classH is PAC-learnable with respect to a domain
set Z and a loss function l : H × Z → R+ , if there exists a function τH : (0, 1)2 → N and a
learning algorithm ALG such that for every ε, δ ∈ (0, 1) and for every distribution D over Z , when
running ALG on m ≥ τH(ε, δ) i.i.d. examples generated by D, it returns a hypothesis h ∈ H such
that with probability of at least 1− δ it holds that

LD(h) ≤ inf
h′∈H

LD(h′) + ε, (1)

where LD(h) = Ez∼Z l(h, z).

LetH be a class of functions from X to Y , and let Z = X ×Y ×R, as defined earlier in this section.
Typically in a regression task, the hypothesis class is restricted in order to decrease the distance
between the predicted labels and the true label. In the aforementioned model, however, the agent may
want to deliberately harm her accuracy on some subset of the instances domain. She will do this as
long as it increases the number of instances having a better prediction, thereby improving her payoff.

Since h ∈ H can either win a point (x, y, p) or lose it, the model resembles a binary classification
task, where the "label" of (x, y, p) is the identity of the winner. That is, a triplet (x, y, p) would be
labeled 1 if the agent produced a better prediction than the opponent, and zero otherwise. However,
notice that the agent’s strategy is involved in the labeling. This is, of course, not the case of binary
classification. Our approach is to introduce a corresponding binary classification problem, and by
leveraging former results obtained on binary classification, deduce sufficient learnability conditions
for our model. The complete reduction is described in detail in the appendix.

Adjusting to the loss function framework, define:

∀z = (x, y, p) ∈ Z : l(h, z) =

{
1 |h(x)− y| ≥ p
0 |h(x)− y| < p

.

Observe that l(h, z) = 0 whenever the agent wins a point and l(h, z) = 1 otherwise. If we set
LD(h) = Ez∼D l(h, z), Equation (1) can be reformulated as πD(h) ≥ suph′∈H πD(h′) − ε. Our
goal is to find sufficient conditions forH to be PAC-learnable w.r.t Z and l.

GivenH, let GH = {gh : h ∈ H} such that

∀h ∈ H,∀z ∈ Z : gh(z) = 1− l(h, z) =

{
1 |h(x)− y| < p

0 |h(x)− y| ≥ p .

Note that GH is a class of functions from Z to {0, 1}. Sufficient learnability conditions can now be
stated.
Lemma 1. LetH be a class of functions from X to Y with VCdim(GH) = d <∞. Then there is a
constant C, such that for every ε, δ ∈ (0, 1) and every distribution D over Z = X × Y × R, if we
sample a sequence of examples S of size m ≥ C · d+log 1

δ

ε2 i.i.d. from D and pick an empirical best
response h ∈ H w.r.t. S, then with probability of at least 1− δ it holds that

πD(h) ≥ sup
h′∈H

πD(h′)− ε.

3 Best linear response

We assume throughout this section that the agent uses a linear response. In what follows, we first
show thatH is PAC-learnable with respect to Z and the payoff function. Afterwards, we devise an
empirical best response algorithm with respect to a sequence of examples. Hence, according to the
previous section, this empirical payoff maximization algorithm outputs, with high probability, an
approximate best response with respect to D. The proofs of all theorems and the supporting lemmas
are in the appendix.

For ease of presentation, we re-denote the dimension of the instances domain to be n − 1, i.e.
X ⊂ Rn−1. Every h ∈ Rn defines a linear predictor of a point x ∈ Rn−1 via dot product, namely
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h · (xi, 1). Thus, Rn is referred to as the strategy spaceH, where axis i represents the i’th entry in h,
1 ≤ i ≤ n+ 1. We study the case where n is fixed, although the complementary case is discussed in
the end of the section.

Recall that the empirical payoff of the agent w.r.t to a sequence of examples S = (xi, yi, pi)
m
i=1 is de-

fined as πS(h) = 1
m

∑m
i=1 1|h·(xi,1)−yi|<pi , and the best response w.r.t. to S is arg maxh∈H πS(h).

Observe that there is a mappingMHS : H → {0, 1}m from any h ∈ H to a vector v ∈ {0, 1}m
such that entry i in v equals one if h gains the i’th point, and zero otherwise. Put differently,
MHS (h) = v = (v1, . . . vm) such that:

∀i ∈ [m] : vi = 1⇔ |h · (xi, 1)− yi| < pi.

Hence, the target set ofMHS is GH(S), which is the restriction of GH to S. The size of GH(S) is
essentially the effective size ofH, since any two strategies which are mapped to the same vector will
gain the same points, and thus are equivalent. The following theorem puts a bound on the size of
GH(S).
Theorem 1. Let H be the hypothesis class of all linear functions in Rn−1. For any sequence of
examples S of size m, GH(S) is polynomial in m. Specifically, |GH(S)| ≤∑n

i=0 2i
(
m
i

)
.

The VC-dimension of GH can be bounded using the Sauer - Shelah lemma [12]:
Lemma 2. It holds that VCdim(GH) ≤ max{b2n · log(n)c, 20}.
We now devise an empirical payoff maximizing algorithm. Our approach is to first explicitly
characterize the vectors in GH(S), and afterwards to pick a strategy from{

h :
∥∥MHS (h)

∥∥
1

= max
v∈GH(S)

‖v‖1
}
.

For each vector v, one can formulate a linear program which outputs a strategy in {h :MHS (h) = v}
in case this set is not empty, or outputs none in case it is. Naively, 2m such feasibility problems can
be solved, although this is very inefficient. Instead, we will recursively construct the set of feasible
vectors. The Partial Vector Feasibility problem aids in recursively partitioning the hypothesis space.
Note that it is solvable in time poly(n,m) using Linear Programming.

Problem: PARTIAL VECTOR FEASIBILITY (PVF)
Input: a sequence of examples S = (xi, yi, pi)

m
i=1, and a vector v ∈ {1, 0, a, b}m

Output: a point h ∈ Rn satisfying
1. If vi = 1 then |h · (xi, 1)− yi| < pi.
2. If vi = a then h · (xi, 1)− yi > pi.
3. If vi = b then h · (xi, 1)− yi < −pi.

if such exists, and φ otherwise.

The following algorithm partitions Rn according to GH(S), where in each iteration it "discovers" one
more point in the sequence S.

Algorithm: EMPIRICAL PAYOFF MAXIMIZATION (EPM)
Input: S = (xi, yi, pi)

m
i=1

Output: Empirical payoff maximizer w.r.t. S
1 v ← {0}m // v = (v1, v2, . . . , vm)
2 R0 ← {v}
3 for i = 1 to m do
4 Ri ← ∅
5 for v ∈ Ri−1 do
6 for α ∈ {1, a, b} do
7 if PVF (S, (v−i, α)) 6= φ then
8 add (v−i, α) toRi // (v−i, α) = (v1, . . . vi−1, α, vi+1, . . . , vm)
9 return v∗ ∈ arg maxv∈Rm ‖v‖1
Theorem 2. When running EPM on a sequence of examples S , it finds an empirical best response in
poly(|S|) time.
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Figure 2: An example of simple linear regression with linear strategies. On the left we have
a sample sequence of size 3, along with the strategy h̄ = (ā, b̄) of the opponent (the solid line)
and a best response strategy of the agent (the dashed line). On the right the hypothesis space is
presented, where each pair (a, b) represents a possible strategy, and each bounded set Ri is defined by
Ri =

{
(a, b) ∈ R2 : |a · xi + b− yi| < pi

}
, i.e. the set of hypotheses which give xi better prediction

than h̄. Notice that (ā, b̄) relies on the boundaries of all Ri, 1 ≤ i ≤ 3. In addition, since (a∗, b∗) is
inside R1 ∩R2 ∩R3, the strategy h∗ = (a∗, b∗), i.e. the line y = a∗ · x+ b∗, predicts all the points
better than the opponent. Observe that by taking any convex combination of h∗, h̄, the agent not only
perserves her empirical payoff but also improves her MSE score.

When we combine Theorem 2 with Lemmas 2 and 1, we get:

Corollary 1. Given ε, δ ∈ (0, 1), if we run EPM on m ≥ C
ε2 ·

(
max{b2n · log(n)c, 20}+ log 1

δ

)
examples sampled i.i.d. from D (for a constant C), then it outputs h∗ such that with probability at
least 1− δ satisfies

πD(h∗) ≥ sup
h′∈H

πD(h′)− ε.

A desirable achievement would be if the best response prediction algorithm would also keep the loss
small in the original (e.g. MSE) measure. We now show that in some cases the agent can, by slightly
modifying the output of EPM, find a strategy that is not only an approximate best response, but is
also robust with respect to additive functions of discrepancies. See Figure 2 for illustration.

Lemma 3. Assume the opponent uses a linear predictor h̄, and denote by h∗ the strategy output by
EPM. Then, h∗ can be efficiently modified to a strategy which is not only an empirical best response,
but also performs arbitrarily close to h̄ w.r.t. to any additive function of the discrepancies.

Finaly, we discuss the case where the dimension of the instances domain is a part of the input. It is
known that learning the best halfspace is NP-hard in binary classification (w.r.t. to a given sequence
of points), when the dimension of the data is not fixed (see e.g. [1]). We show that the empirical best
(linear) response problem is of the same flavor.

Lemma 4. In case H is the set of linear functions in Rn−1 and n is not fixed, the empirical best
response problem is NP-hard.

4 Experimental results

We note that when n is large, the proposed method for finding an empirical best response may not be
suitable. Nevertheless, if the agent is interested in finding a "good" response to her opponents, she
should come up with something. With slight modifications, the linear best response problem can be
formulated as a mixed integer linear program (MILP).1 Hence, the agent can exploit sophisticated
solvers and use clever heuristics. Further, one implication of Lemma 1 is that the true payoffs

1See the appendix for the mixed integer linear programming formulation.
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Table 1: Experiments on Boston Housing dataset

The opponent’s strategy Scenario Train payoff Test payoff

Least square errors (LSE)
TRAIN 0.699 0.641

ALL 0.711 0.645

Least absolute errors (LAE)
TRAIN 0.621 0.570

ALL 0.625 0.528

Results obtained on the Boston Housing dataset. Each cell in the table represents the average payoff
of the agent over 1000 simulations (splits into 80% train and 20% test). The "train payoff" is the
proportion of points in the training set on which the agent is more accurate, and the "test payoff"
payoff is the equivalent proportion with respect to the test (unseen) data.

uniformly converge, and hence any empirical payoff obtained by the MILP is close to its real payoff
with high probability.

In this section, we show the extent to which classical linear regression algorithms can be beaten
using the Boston housing dataset [7], a built-in dataset in the leading data science packages (e.g.
scikit-learn in Python and MASS in R). The Boston housing dataset contains 506 instances, where
each instance has 13 continuous attributes and one binary attribute. The label is the median value of
owner-occupied homes, and among the attributes are the per capita crime rate, the average number of
rooms per dwelling, the pupil-teacher ratio by town and more. The R-squared measure for minimizing
the square error in the Boston housing dataset is 0.74, indicating that the use of linear regression is
reasonable.

As possible strategies of the opponent, we analyzed the linear least squares estimators (LSE) and
linear least absolute estimators (LAE). The dataset was split into training (80%) and test (20%) sets,
and two scenarios were considered:

Scenario TRAIN - the opponent’s model is learned from the training set only.
Scenario ALL - the opponent’s model is learned from both the training and the test sets.

In both scenarios the agent had access to the training set only, along with the opponent’s discrepancy
for each point in the training set. Obviously, achieving payoff of more than 0.5 (that is, more than
50% of the points) in the ALL scenario is a real challenge, since the opponent has seen the test set in
her learning process. We ran 1000 simulations, where each simulation is a random split of the dataset.
We employed the MILP formulation, and used Gurobi software [6] in order to find a response, where
the running time of the solver was limited to one minute.2

Our findings are reported in Table 1. Notice that against both opponent strategies, and even in
case where the opponent had seen the test set, the agent still gets more than 50% of the points. In
both scenarios, LAE guarantees the opponent more than LSE. This is because absolute error is less
sensitive to large deviations. We also noticed that when the opponent learns from the whole dataset,
the empirical payoff of the agent is greater. Indeed, the latter is reasonable as in the ALL scenario the
agent’s strategy fits the training set while the opponent strategy does not.

Beyond the main analysis, we examined the success (or lack thereof) of the agent with respect to
the additive loss function optimized by the opponent (corresponding to the MSE for LSE, and the
MAE (mean absolute error) for LAE), hereby referred to as the "classical loss". Recall that Lemma 3
guarantees that the agent’s classical loss can be arbitrarily close to that of the opponent when she
plays a best response; however, the response we consider in this section (using the MILP) does not
necessarily converge to a best response. Therefore, we find it interesting to consider the classical loss
as well, thereby presenting the complementary view.

We report in Table 2 the average ratio between the agent’s classical loss and that of the opponent
under the TRAIN scenario with respect to the training and test sets. Notice that the agent suffers from
less than a 0.7% increase with respect to the classical loss optimized by the opponent. In particular,

2Code for reproducing the experiments is available at https://github.com/omerbp/
Best-Response-Regression

8

https://github.com/omerbp/Best-Response-Regression
https://github.com/omerbp/Best-Response-Regression


Table 2: Ratio of the classical loss

The opponent’s strategy

LSE LAE

Training set 1.007 1.005
Test set 0.999 1.002

Ratio of the agent’s loss and the opponent’s loss, where the loss function corresponds to the original
optimization function of the opponent, under scenario TRAIN. For example, the upper leftmost cell
represents the agent’s MSE divided by the opponents MSE on the training set, where the opponent
uses LSE. Similarly, the lower rightmost cell represents the agent’s MAE (mean absolute error)
divided by the opponents MAE on the test data, when the opponent uses LAE.

the MSE of the agent (when she responds to LSE) on the test set is less than that of the opponent.
The same phenomenon, albeit on a smaller scale, occurs against LAE: the training set ratio is greater
than the test set ratio.

To conclude, the agent is not only able to obtain the majority of the points (and in some cases, up to
70%), but also to keep the classical loss optimized by her opponent within less than 0.2% from the
optimum on the test set.

5 Discussion

This work introduces a game theoretic view of a machine learning task. After finding sufficient
conditions for learning to occur, we analyzed the induced learning problem, when the agent is
restricted to a linear response. We showed that a best response with respect to a sequence of examples
can be computed in polynomial time in the number of examples, as long as the instance domain has a
constant dimension. Further, we showed an algorithm that for any ε, δ computes an ε-best response
with a probability of at least 1 − δ, when it is given a sequence of poly

(
1
ε2

(
n log n+ log 1

δ

))
examples drawn i.i.d.

As the reader may notice, our analysis holds as long as the hypothesis is linear in its parameters,
and therefore is much more general than linear regression. Interestingly, this is a novel type of
optimization problem and so rich hypothesis, which are somewhat unnatural in the traditional task of
regression, might be successfully employed in the proposed setting.

From an empirical standpoint, the gap between the empirical payoff and the true payoff calls for
applying regularization methods for the best response problem and encourages further algorithmic
research. Exploring whether or not a response in the form of hyperplanes can be effective against a
more complex strategy employed by the opponent will be intriguing. For instance, showing that a
deep learner is beatable in this setting will be remarkable.

The main direction to follow is the analysis of the competitive environment introduced in the beginning
of Section 2 as a simultaneous game: is there an equilibrium strategy? Namely, is there a linear
predictor which, when used by both the agent and the opponent, is a best response to one another?
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Proof of Lemma 1 For convenience, we restate the definition of GH: Let GH = {gh : h ∈ H}
such that

∀h ∈ H,∀z ∈ Z : gh(z) = 1− l(h, z) =

{
1 |h(x)− y| < p

0 |h(x)− y| ≥ p .

In the following analysis, we use the tilde notation to denote the objects of the binary classification
problem.
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For Z̃ = Z × {0, 1}, a distribution D̃ over Z̃ and a sequence of examples S̃ = (zi, ỹi)
m
i=1 of size m

drawn i.i.d. from D̃, define:

L̃S̃(gh) =
1

m

m∑
i=1

1gh(zi)6=ỹi , L̃D̃(gh) = E
(z,ỹ)∼D̃

(
1gh(z)6=ỹ

)
.

L̃S̃ is called the empirical risk, and an algorithm that minimizes L̃S̃ for any S̃ is called empirical risk
minimizer (ERM). A fundamental result in the field of learning theory is the following [2]:
Theorem 3. Let G be a hypothesis class of functions from Z to {0, 1}, let the loss function be the 0-1
loss, and assume that VCdim(G) = d <∞. There is a constant C, such that for every distribution D̃
and for every ε, δ ∈ (0, 1), when taking an ERM hypothesis gh ∈ G over m ≥ C · d+log 1

δ

ε2 examples
sampled i.i.d. from D̃, with probability of at least 1− δ it holds that

L̃D̃(gh) ≤ inf
g′h∈G

L̃D̃(g′h) + ε. (2)

Equation (2) holds for every distribution D̃ over Z×{0, 1}, and in particular for D̃0, which is defined
by

∀B ⊆ Z : D̃0(B, ỹ) =

{D(B) ỹ = 1

0 ỹ = 0
.

Note that classification is trivial under D̃0, since every instance z ∈ Z gets the label 1. Nevertheless,
since the class of hypothesis considered is GH, finding an ERM is a greater challenge. Observe that
under D̃0:

L̃D̃0
(gh) = E

(z,ỹ)∼D̃0

(
1gh(z)6=ỹ

)
= E
z∼D

(
1gh(z)6=1

)
= E
z∼D

(l(h, z)) = LD(h).

Further, if S̃ = (z̃i)
m
i=1 is a sequence of examples sampled from D̃0, then z̃i = zi ⊕ 1, hence if we

denote S = (zi)
m
i=1 we have:

Proposition 1.
h∗ ∈ arg min

h∈H
LS(h)⇐⇒ gh∗ ∈ arg min

gh∈GH
L̃S̃(gh).

Proof.

h∗ ∈ arg min
h∈H

LS(h)⇔

∀h ∈ H : LS(h) ≥ LS(h∗)⇔
∀gh ∈ GH : L̃S̃(gh) ≥ L̃S̃(gh∗)⇔
gh∗ ∈ arg min

gh∈GH
L̃S̃(gh).

Thus, by choosing ERM for LS we are essentially minimizing L̃S̃ . This concludes the proof of the
lemma.

6 Omitted proofs from Section 3

The tools we use for the proofs involve arrangement of hyperplanes. Although self-contained, we
refer the curious reader to [14, Chapter 3].

Every h ∈ Rn defines a linear predictor of a point x ∈ Rn−1 via dot product, i.e. h ·(xi, 1) = yi, and
we refer to this space as the parameter space, where axis i represents the i’th entry in h, 1 ≤ i ≤ n.
Fix a sequence of examples S = (xi, yi, pi)

m
i=1.

The forthcoming analysis treats every triplet (xi, yi, pi) separately, by asking which strategies of the
agent, i.e. elements inH = Rn, will entail true value for the indicator 1|h·(xi,1)−yi|<pi .
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Denote:
Ri = {h ∈ Rn : |h · (xi, 1)− yi| < pi} .

The empirical payoff of the agent under the strategy h w.r.t. to S can thus be interpreted as the
number of sets Ri that contain h:

πS(h) =
1

m
|{i : h ∈ Ri}| .

Notice that Ri is bounded between two parallel affine hyperplanes :

A+
i = {h ∈ Rn : (xi, 1) · h− yi = pi} , A−i = {h ∈ Rn : (xi, 1) · h− yi = −pi} .

A collection of affine hyperplanes is called hyperplane arrangement. For our purposes, given a
sequence S, we denote the induced hyperplane arrangement by

A(S) =
⋃

s∈{±1}
1≤i≤m

{
Asi
}
.

A region of hyperplane arrangement A is a connected component in Rn \ ∪H∈AH . We denote the
set of regions of A byR(A), and the cardinality ofR(A) by r(A).

Observe that if h1,h2 are in the same region inR(A(S)) it follows that they are mapped byMHS to
the same vector v. Therefore, r(A) is essentially |GH(S)|. Next, we bound r(A):
Lemma 5. Given hyperplane arrangement A that consists of m pairs of parallel hyperplanes in Rn,
the maximal number of regions that can be formed is bounded by:

r(A) ≤
n∑
i=0

2i
(
m

i

)
.

Proof. We begin the proof by stating a known result in hyperplane arrangements:3

Claim 1. Given an arrangement A and a hyperplane H /∈ A, define AH = {K ∩H : K ∈ A}. It
holds that:

r (A ∪ {H}) = r(A) + r(AH).

The proof of this claim appears in [14]. In order to bound the number of regions, we look at the worst
case scenario, where the hyperplanes are in generic position, i.e. slightly moving a pair of parallel
hyperplanes will not change the number of regions.

Next, we use inductive arguments - notice that A has two parameters, n and m, thus we ought to
have induction with two integer values. Denote:

T (m,n) = The maximal number of regions induced by m pairs of hyperplanes in Rn.

We seek to show that

T (m,n) =

n∑
i=0

2i
(
m

i

)
.

• Base Cases

1. For m ∈ N+ it holds that T (m, 1) = 2m+ 1, since each hyperplane is essentially a
dot, and 2m dots cut R into 2m− 1 bounded segments and two unbounded ones.

2. For m ∈ N+ and n = 2, we need to show that T (m, 2) =
∑2
i=0 2i

(
m
i

)
= 1 + 2m2.

The base case for m = 1 is identical to the previous one, and assuming it holds for
m− 1 parallel lines, each of the lines {A−m, A+

m} can intersect all other 2(m− 1) lines,
thus

T (m, 2) = 1 + 2 · (m− 1)2 + 2 · (1 + 2m− 2) = 1 + 2m2.

3An alternative proof for using mobius function is also provided.
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3. For n ∈ N+, T (1, n) =
∑n
i=0 2i

(
1
i

)
= 3, as any two parallel hyperplanes cut Rn into

3 sub-spaces.

• Inductive step: In case that the assumption is true for T (m− 1, n) and T (m− 1, n− 1), we
need to show that it also holds for T (m,n). Denote by A an arrangement with m− 1 pairs
of hyperplanes in Rn, and consider two additional parallel hyperplanes A+

m, A
−
m. According

to the claim above it follows that:

r
(
A ∪ {A+

m}
)

= r(A) + r
(
AA+

m

)
.

By invoking the claim one more time we get:

r
(
A ∪ {A+

m, A
−
m}
)

= r
(
A ∪ {A+

m}
)

+ r
((
A ∪ {A+

m}
)A−m) .

Observe that (
A ∪ {A+

m}
)A−m =

{
K ∩A−m : K ∈ A ∪ {A+

m}
}

A+
m,A

−
m are

parallel
=

{
K ∩A−m : K ∈ A

}
= AA−m .

So altogether we know that

r
(
A ∪ {A+

m, A
−
m}
)

= r(A) + r
(
AA+

m

)
+ r

(
AA−m

)
symmetry

= r(A) + 2r
(
AA+

m

)
.

Since A is composed of (m− 1) pairs of hyperplanes in Rn, we have r(A) = T (m− 1, n).
In addition, since A+

m is a hyperplane in Rn, it is isomorphic to Rn−1, and every intersection
of A+

m with K ∈ A is a hyperplane in Rn−1. Hence, r
(
AA+

m

)
= T (m− 1, n− 1).

Finally:

T (m,n) = r
(
A ∪ {A+

m, A
−
m}
)

= r(A) + 2r
(
AA+

m

)
= T (m− 1, n) + 2 · T (m− 1, n− 1)

Inductive
assumption

=

n∑
i=0

2i
(
m− 1

i

)
+ 2

n−1∑
i=0

2i
(
m− 1

i

)

=

n∑
i=0

2i
(
m− 1

i

)
+

n∑
i=0

2i
(
m− 1

i− 1

)
Pascal’s
triangle

=

n∑
i=0

2i
(
m

i

)
.

Proof of Theorem 1: Follows directly from Lemma 5, since
∣∣MHS ∣∣ = r(A).

Another proof of Lemma 5: The proof uses basic results in hyperplane arrangements, thus we
start with a few definitions. Given an arrangementA, the partially ordered set (poset) I(A) is defined
as the set of all possible intersection of elements in A, where Rn ∈ I(A) as the empty intersection.
The binary relation ≤ is inverse inclusion, where A ⊆ B if and only if A ≥ B, and the minimal
element in I(A) is Rn, denoted 0̂. The mobius function µ on the poset I(A) is defined recursively
by the two following properties:

• µ(x, x) = 1 for all x ∈ I(A).

•
∑

x≤z≤y
µ(x, z) = 0 for all x < y in I(A).
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In order to bound the number of regions, we look at the worst case scenario, where the elements of
A(S) are in generic position, .i.e slightly moving a hyperplane will not change the number of regions.
Next, we claim that µ(0̂, y) = (−1)n−dim(y). This is a standard result in enumerative combinatorics,
but appears here for completeness. Denote rk(y) = n − dim(y). Clearly, if rk(y) = 0, we have
y = 0̂ = Rn thus the claim holds by definition of µ. For y such that rk(y) = k > 0, y is the
intersection of k hyperplanes in A(S), and since these hyperplanes in generic position it follows that
the number of z ∈ I (A(S)) such that rk(z) = i and z ≤ y is

(
k
i

)
. Thus

∑
0̂≤z≤y

µ(0̂, z) =

k∑
i=0

(−1)i ·
(
k

i

)
= 0,

hence proving the claim. The characteristic polynomial associated with A is defined as:

χ(A, q) =
∑

x∈I(A)

µ(0̂, x) · qdim(x).

Observe that the number of elements x in I (A(S)) such that rk(x) = i is 2i ·
(
m
i

)
, since we can

first choose i points out of m and afterwards decide one of the two hyperplanes associated with point
j we choose (whether we take A+

j or A−j ). As a result, the characteristic polynomial of I (A(S)) is:

χ (I (A(S)) , q) =

n∑
i=0

2i
(
m

i

)
· (−1)n−i · qn−i =

n∑
i=0

2i · (−q)n−i
(
m

i

)
.

Finally, due to Zaslavsky’s theorem [19] we know that r(A) = χ(A,−1), therefore:

r(A(S)) = χ(I (A(S)) ,−1) =

n∑
i=0

2i
(
m

i

)
.

Proof of Lemma 2 Recall that:

∀h ∈ H,∀z ∈ Z : gh(z) =

{
1 |h(x)− y| ≥ p
0 |h(x)− y| < p

.

Fix a sample set S of size m, and denote

GH(S) = {(gh(c1), gh(c2), . . . , gh(cm)) : ci = (xi, yi, pi), gh ∈ GH} .
If GH(S) is shattered, it follows that

2m ≤ r (A(S)) =

n∑
i=0

2i
(
m

i

)
.4

By the Sauer - Shelah lemma [12] we know that
∑n
i=1

(
m
i

)
≤
(
em
n

)n
. Hence:

2m ≤
n∑
i=0

2i
(
m

i

)
≤
(

2em

n

)n
. (3)

Conversely, if Equation (3) does not hold for some m, then m is an upper bound of VCdim(GH).
When plugging m = 2n log(n) on the negation of Equation (3) we get

22n log(n) >

(
4en log(n)

n

)n
⇒
(

2log(n
2)
)n

> (4elog(n))
n ⇒ n2 > 4e log(n),

and the latter holds for all n ≥ 6. In addition, it can be verified that 220 >
∑5
i=1 2i

(
20
i

)
, thus

VCdim(GH) ≤ 20 if n ≤ 5.

4Recall that GH(S) = r (A(S)).
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Proposition 2. The Partial Vector Feasibility problem is solvable in polynomial time in m and n.

Proof. Consider the following LP:

max
h,ε

ε

subject to
h · (xi, 1)− yi ≤ pi − ε for ui = 1
h · (xi, 1)− yi ≥ −pi + ε for ui = 1
h · (xi, 1)− yi ≥ pi + ε for ui = a (above)
h · (xi, 1)− yi ≤ −pi − ε for ui = b (below)
ε ≤ B (B is a large constant)

(P1)

The vector u is feasible if ε is greater than zero. If so, return h, and otherwise return φ

Proof of Theorem 2: Observe that EPM performs recursive partitioning of Rn: in each iteration of
the for loop in Line 3, it partitions the subspace that corresponds to the partial vector v according to
the affine hyperplanes induced by the i’th point in S. Thus, in Line 9 it considers the payoff of all
the regions inR (A(S)), and returns a feasible vector with the highest payoff. It is easy to choose a
best response once we have v∗: we just run PVF(S,v∗) and pick the vector h achieving the optimal
solution.

The for loop in Line 3 iterates m times. For each i, the algorithm iterates through all elements in
Ri−1, and for each element solves three instances of PVF. Thus, if we show that for all indices iRi
is poly(m), we will deduce that the time complexity of EPM is poly(m). Indeed, by Lemma 5 we
know that |Rm| ≤ r (A(S)), so it is sufficient to show that

|R0| ≤ |R1| · · · ≤ |Rm| .
We use inductive arguments: the base case is true because |R0| = 1 and |R1| = 3, since (α, 0, . . . 0)
is feasible for all α ∈ {2, 1,−2}. Assume that the claim is correct for i − 1, and fix v ∈ Ri−1.
Since v defines a subspace in Rn, which is the union of the sub-spaces that correspond to the vectors
(v−i, 1), (v−i, a), (v−i, b) along with A+

i , A
−
i , at least one of these vectors is feasible. As a result,

v contributes at least one element toRi. This concludes the proof of Theorem 2.

Proof of Lemma 3: If the opponent is using a linear strategy, by definition of A+
i , A

−
i , every triplet

in (xi, yi, zi) ∈ S is either in A+
i or A−i . Observe that

Claim 2. If h∗ ∈ arg maxh′∈Rn πS
(
h′
)
, there exists a region F ∈ R (A(S)) such h∗ ∈ F and h̄

is on the exterior of F .

This is proved by contradiction: suppose the region h∗ lies in does not have h̄ on its exterior. By
definition of A+

i , A
−
i , every triplet in (xi, yi, zi) ∈ S is either in A+

i or A−i , thus there exist a region
F ′ with h̄ on its exterior. Fix a point h′ on the line between h̄ and h∗, such that h′ ∈ F ′.
Since h′ and h∗ are not in the same region, when traveling on the straight line from h′ to h∗ we
must cross at least one hyperplane, denoted Aσi . Since A−σi passes in h̄, it follows that h′ is inside
Ri, and that h∗ is outside Ri. Hence, for every hyperplane we cross on the traversal from h′ to h∗

we necessarily lose the i’th point since we exit Ri, thus achieving the desired contradiction.

Next, denote ĥ = λ · h∗ + (1 − λ) · h̄, for λ ∈ (0, 1). Since h′ and . Since ĥ,h∗ are in the same
region, πD(ĥ) = πD(h∗). In addition:

MEANERROR(ĥ,S) =
1

m

m∑
i=1

∥∥∥ĥ · (xi, 1)− yi
∥∥∥

=
1

m

m∑
i=1

‖λ (h∗ · (xi, 1)− yi) + (1− λ) (h∗ · (xi, 1)− yi)‖

≤ λ ·MEANERROR(h∗,S) + (1− λ) ·MEANERROR(h̄,S).

Thus MEANERROR(ĥ,S) can be arbitrarily close to MEANERROR(h̄,S), by setting λ properly.
Due to uniform converges onH, the same principle holds w.r.t. the distribution as well.
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Proof of Lemma 4: Let

LINEARRESPONSE =

{
(S, k) : ∃h ∈ Rn, πS(h) =

k

|S|

}
.

We show polynomial time reduction from the Independent Set problem, which is known to be
NP-complete (see e.g. [5]), and is defined by

INDSET = {(V,E, k) : G = (V,E) has an indepenent set of size k} .
Given (V,E, k), we construct (S, k′) such that k′ = (|V | + 1) · (|E| + 1) + k and S induces the
indicator functions that correspond to

(Type 1) ∀(vi, vj) ∈ E |hi + hj + h0 + 1| < 1.5
(Type 2) ∀vi ∈ V |hi + h0 − 1| < 0.5
(Type 3) |h0 + 0.5ε| < 0.5ε

for some small positive rational constant ε. We duplicate |V |+ 1 times every point of Types 1 and
3. Indeed, the empirical payoff can be constructed by this set of constraints, and the reduction is
polynomial.

Let (V,E, k) ∈ INDSET, and denote an arbitrary independent set by I ⊆ V . Define h =
(h0, h1, . . . h|V |) such that:

hi =


− ε

2 i = 0

1 vi ∈ I
−1 vi /∈ I

.

h gains Type 2 point if and only if it corresponds to a vertex in I . In addition, all Type 1 points are
gained by h since at most one of {vi, vj} is in I if (vi, vj) ∈ E. Clearly, all Type 3 are gained as
well. As a result πS(h) = (|V |+ 1) · (|E|+ 1) + k = k′, thus (S, k′) ∈ LINEARRESPONSE.

Conversely, assume (S, k′) ∈ LINEARRESPONSE. By definition of LINEARRESPONSE there exists
h which grabs all points of Types 1 and 3, since each Type {1, 3} point has more than |V | copies,
whereas h loses less than |V | points. We consider the set I ⊆ V containing all nodes that correspond
to Type 2 points gained by h. Hence |I| = k, and we verify that I is an independent set: suppose that
I contains (vi, vj) ∈ E. If so, the Type 2 points corresponding to vi, vj are gained by h, thus{|hi + h0 − 1| < 0.5

|hj + h0 − 1| < 0.5
⇒ 1 + ε < hi + hj < 3 + ε. (4)

On the other hand, h gains all Type 1 points, and in particular the point associated with the edge
(vi, vj), hence ∣∣∣hi + hj −

ε

2
+ 1
∣∣∣ < 1.5⇒ −2.5 +

ε

2
< hi + hj < 0.5 + ε. (5)

Since Equations (4) and (5) cannot be satisfied at the same time, the assumption is false and I is an
independent set. Thus, (V,E, k) ∈ INDSET.

7 Mixed integer linear programming formulation

We slightly change the payoff function, by introducing a prediction tolerance in the following sense:
a point (xi, yi) will be associated with the agent if and only if |h(xi)− yi| ≤ pi − ε, for some small
and fixed ε. As a result, the empirical payoff of the agent is now defined as:

πS
(
h̄,h

)
=

1

m

m∑
i=1

1|h·(xi,1)−yi|≤pi−ε. (6)

For each summand of the sum in Equation (6), we define a binary variable zi as follows:

zi =

{
0, if |h · (xi, 1)− yi| ≤ pi − ε
1, otherwise

.
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Next, we formulate the problem of maximizing the expression in Equation (6) as -

min
h,z1,...,zm

m∑
i=1

zi

subject to
yi − h · (xi, 1)−B · zi ≤ pi − ε, i = 1, ...,m
−yi + h · (xi, 1)−B · zi ≤ pi − ε, i = 1, ...,m
zi ∈ {0, 1}, i = 1, ...,m

where B is chosen to be large enough so that the constraints for the i’th point will always hold if
zi = 1, namely |yi − h · (xi, 1)| ≤ pi − ε+B for all h ∈ Rn, i ∈ {1, . . . ,m}. Note that it has 3m
constraints and m+ n variables.
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