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A Implementation

A.1 Inter-domain approximations

Implementation of convolutional kernels requires only straightforward modifications of existing code
that implements an inducing variable GP approximation. All inducing point methods like FITC [1],
variations on (Power-) EP [2] or variational free energy [3, 4] rely on the covariance of inducing
variables and between observations and inducing variables:

Kuu = Cov
[
uuT

]
, (A.1)

Kfu = Cov
[
fuT
]
. (A.2)

In normal inducing point approximations, u and f are simply evaluations of the latent GP of interest:

[f ]n = fn = f(xn) , [u]m = um = f(zm) . (A.3)

The resulting covariances are simply evaluations of the kernel of the GP prior k(x,x′). Inter-domain
approximations [5] simply result in a different expression for elements of Kuu and Kfu, and so
only require a modification to the evaluation of these matrices – the computation of the rest of the
learning objective remains unchanged. As shown in the main text, our proposed inference method is
an inter-domain method, and therefore can be implemented with the same small modification. The
advantage of this is that all changes to the inference can be encapsulated in the kernel.

A.2 Exploiting convolutions

A large bottleneck for the implementation is summation of kernel evaluations over numerous patches.
A general implementation could simply extract the patches from the image, compute the kernel, and
sum:

[Kfu]nm = kfu(xn, zm) =
∑
p

kg(x
[p]
n , zm) . (A.4)

This can be implemented as evaluating a large PN ×M kernel matrix, reshaping to P ×N ×M ,
and summing over the first dimension. For general kernels, this is required. However, if the kernel is
stationary, i.e. kg(p,p′) = kg(|p− p′|), the first step is computing the matrix of pairwise distances
between all patches and inducing points. For general inputs this still doesn’t help, but in this case
neighbouring inputs overlap strongly, since they’re all patches from the same image. By expanding
the euclidean distance as

(x[p]
n − zm)2 = x[p]

n

T
x[p]
n − 2x[p]

n

T
zm + zT

mzm (A.5)

we see that the inner product of zm along all patches of x is a convolution operation (figure 1).
Additionally, the inner product of the patches with themselves is also a convolution of the squared
image with a window of ones. This allows the euclidean distance to be computed in O (logE) rather
than O (E). An additional speed benefit comes from being able to leverage the highly optimised
code for convolutions on GPUs that was developed in light of the popularity of convnets.
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Figure 1: Pictorial representation of convolution required in stationary kernels. A single dot product
with a patch is highlighted.

B The convolutional GP can not learn any function, but is nonparametric

Here we show that there are sets of functions that a convolutional GP places no probability mass on.
As a consequence, these functions will also never have density in the posterior, and can not be learned,
regardless of the amount of observed data. This observation is particularly interesting, as the kernel
still defines a nonparametric model. This places convolutional kernels in an interesting middle-ground,
not seen in common examples of kernels. This constraint helps the convolutional kernel to generalise
well, at the expense of possibly leaving some signal unexplained. However, as discussed in the main
text, it is possible to get the best of both worlds by using a sum of a convolutional kernel and a kernel
which spreads its probability mass more widely, and letting the marginal likelihood determine their
relative weighting.

B.1 Background: nonparametric models and consistency

Nonparametric methods are usually justified by a desire to build a method that is universally consistent,
by which is meant that an optimal solution is found in the limit of infinite data. For example, in
regression the unknown function may be any continuous function, and we would like our solution
to be able to come arbitrarily close. Achieving this would require, at least, being able to represent
any continuous function arbitrarily closely (the universal approximation property), and for Bayesian
models, a prior that places probability mass over this entire space [6].

Neural networks have been shown to be able to approximate any function arbitrary closely in the
limit of having an infinite number of basis functions (i.e. hidden units) [7, 8]. Kernel methods such as
Gaussian processes, kernel regression or SVMs all implicitly use basis functions, possibly infinitely
many, through their kernel. We can find a representation of the basis functions they implicitly use
through Mercer’s theorem [9, 10, 11], which represents a kernel in terms of its eigenvalues and
orthogonal eigenfunctions:

k(x,x′) =

∞∑
i=1

λiφi(x)φ
∗
i (x
′) . (B.6)

The span of the functions
{√

λiφi
}
i

determines exactly the functions that a kernel method can
capture. For SVMs and kernel regression, the estimated function lies in the RKHS spanned by
these bases, while the sample paths of a Gaussian process can be constructed as the infinite sum of
eigenfunctions weighted by Gaussian random variables [10, §5.1]:

f(·) =
∞∑
i=1

wiφi(·) , wi ∼ N (0, λi) . (B.7)
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Degenerate kernels We call any kernel with only a finite number of non-zero eigenvalues degener-
ate (following [11]). Degenerate kernels can not lead to models that are universal approximators, as
any function that contains a component of an eigenfunction with a zero eigenvalue will be outside
the RKHS and outside the set of functions the GP can generate. Furthermore, such a function can
have an arbitrarily large deviation from functions that can be represented, simply by adding a larger
component of the eigenfunction with zero eigenvalue. From this, we can easily see that an infinite
number of non-zero eigenvalues is necessary for universal approximation.

We can alternatively see this by considering that a degenerate kernel with B non-zero eigenvalues
can be expressed as a finite basis function model. In these models, we can fully specify any function
with knowledge of B function values. The function value at a B + 1th input is therefore also fully
constrained. We can construct a function outside the RKHS or prior simply by adding a perturbation
to the constrained function which does not pass through the B + 1th output.

Common degenerate kernels arise from considering parametric models, like linear or polynomial
models.

Universal kernels Steinwart [12, def. 4] introduced the concept of a universal kernel, which has
an RKHS which is dense in the space of all continuous functions, i.e. for every continuous function,
there is a function in the RKHS with an arbitrarily small maximum deviation. Gaussian processes
based on universal kernels have sample paths which are arbitrarily close to any continuous function1.
The universal consistency arguments for SVM classification and kernel regression by Steinwart [14]
and Christmann and Steinwart [15] rely on using universal kernels. Micchelli et al. [16] further
characterise the properties required for universal kernels. Most common non-degenerate kernels, like
the squared exponential, are also universal [16].

B.2 Convolutional kernels: nonparametric but not universal

Here, we show that convolutional kernels fall between degenerate and universal kernels in terms of
their representational capacity. We first show that we can construct a collection of inputs which fully
constrains the function value at a different input, as was discussed for degenerate kernels. We then
follow on to show that unlike degenerate kernels, we can still arbitrarily specify the function at an
infinite number of distinct points, showing that the kernel can not implicitly be using a finite number
of basis functions.

Claim. Weighted covariance kernels are not universal, and Gaussian processes based on them do
not place probability on (or near) all continuous functions.

Proof. Consider W ×H sized images with w × h sized patches. If w < W and h < H , we will
have P > 1 patches in each image. There are WH images with a single pixel switched on, and wh
distinct patches {zi}wh

i=1. We can organise the evaluations of g(·) for each of the wh distinct patches
in the vector g ∈ Rwh, where [g]i = g(zi). If we consider N ≤ WH image inputs with a single
pixel switched on, we can obtain the function values f ∈ RN through the linear transformation

f =WQg . (B.8)

W ∈ RN×P has the patch weights as rows, and the matrix Q ∈ RP×wh contains a 1 at Qni when the
nth image contains the patch i, and zero elsewhere. The matrix WQ has size N × wh. This implies
that for N = wh+ 1, one of the function values in f will be fully determined by the responses of
the previous images. As a consequence, the kernel matrix for these inputs has to have some zero
eigenvalues because the matrix

E
[
ffT] = Kff = E

[
WQggTW TQT

]
=WQKGQ

TW T (B.9)

has rank at most wh, which shows that all functions with evaluations f with a component in the null
space of Kff have no density under the prior.

The construction of a singular kernel matrix Kff also implies that the kernel is not strictly positive
definite, and therefore not universal [17].

1This follows from Ghosal and Roy [13, theorem 4], which shows that Gaussian processes assign non-zero
probability to functions that are close to functions in the RKHS of their kernel.
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Claim. Convolutional kernels are nonparametric, in that they can not be represented as a finite basis
function model.

Proof. If the kernel only had a finite number of non-zero eigenvalues and the model could be
expressed as a finite basis function model, all functions would admit the representation:

f(x) = φ(x)Tw . (B.10)

where φ : RD → RI . The corresponding kernel matrix would have at most rank I .

We choose N distinct images by with a distinct patch in the top left corner of the image of size
w × h, all other pixels being zero. Because patches overlap, we get wh distinct patch responses
which influence f(x) as well as the influence from all the zero patches:

f(x) =
∑
i

g(x[i])wi + w0g(0) (B.11)

We collect the patch responses in G ∈ RN×wh, with the weights w ∈ Rwh, with the image
evaluations becoming f = Gw. We obtain the covariance of f :

[Kff ]nn′ = Eg

 wh∑
i=1

wh∑
j=1

g
(
x[i]
n

)
g
(
x
[j]
n′

)
wiwj

 =

wh∑
i=1

wh∑
j=1

kg

(
x[i]
n ,x

[j]
n′

)
wiwj . (B.12)

This covariance matrix can be obtained by reducing down the Nwh × Nwh covariance matrix
between all patches. If we choose a universal kernel for kg(·, ·), this matrix will always be positive
definite. The reduced matrix is also positive definite since:

aTKffa =
∑
nn′

anan′

wh∑
i=1

wh∑
j=1

[Kgg]nin′j wiwj =
∑
nin′j

[Kgg]nin′j anwian′wj > 0 (B.13)

This contradicts the model being parametric, which would allow the rank of Kff to be at most I .

B.3 Remarks

The existence of non-degenerate kernels which are not universal may not come as a surprise to
theoreticians, particularly due to the effort required for proving universality. For example, Micchelli
et al. [16] place strong requirements on the form of the implicit features of the kernel, which are
likely not satisfied by convolutional kernels. Despite the prescience of theory, convolutional kernels
provide an interesting and practically useful example of such kernels.

C Variational bound for separate representation of latent GPs

In the main text (sections 3.3 & 3.4) we saw two examples of models with additive structure
that required separate representation of their inducing outputs. The weighted convolution + RBF
experiment required this due to the inducing inputs lying in separate spaces, while the multi-channel
convolutional kernel required this due to separate inter-domain inducing outputs being required to
find the distribution over the GP output. In both cases, we can construct the GP output of interest
from components in the same space as the inducing variables:

fsum(x) = frbf (x) +
∑
p

wpg(x
[p]) fmulti(x) =

P∑
p=1

C∑
c=1

wpcgc

(
x[pc]

)
(C.14)

frbf (·) ∼ GP (0, krbf (·, ·)) gc(·) ∼ GP (0, kg(·, ·)) (C.15)
g(·) ∼ GP (0, kg(·, ·)) (C.16)

Here we show in detail how inference is done in these models, and how no expensive operations are
performed on matrices larger than M ×M .
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C.1 Defining the inducing variables

We first choose our inducing variables. For the summed GP, we choose M evaluations of frbf (·) and
g(·) each (giving 2M inducing variables), while for the multi-channel GP we choose M evaluations
of all C colour channel outputs gc(·) (giving MC inducing variables). We can construct the sparse
approximate posterior by conditioning the prior on these variables. The form of the posterior is
exactly the same as usual:

f(·)|u ∼ GP
(
ku(·)TK−1uuu, k(·, ·)− ku(·)TK−1uuku(·)

)
. (C.17)

As with usual inter-domain approximations, the task is to find the correct covariances, again by
finding the covariances from equations (10) and (11).

Summed kernels For fsum(·), the cross-covariance kfu(x, z) will be the regular kernel evaluation
for inducing points on frbf (·), and the appropriate cross-covariance for the inducing patches. We order
the inducing point covariances above the inducing patch covariances in the matrix Kfu. Additionally,
Kuu will be a block-diagonal 2M × 2M matrix, with the inducing point M ×M matrix for frbf (·)
in the top left, and the inducing patch covariances in the bottom right. No cross terms between frbf (·)
and g(·) appear, as they are independent in the prior.

k(x, zimg) = Efrbf ,g

[(
frbf (x) +

∑
p

wpg(x
[p])

)
frbf (zimg)

]
= krbf (x, zimg) (C.18)

k(x, zpatch) = Efrbf ,g

[(
frbf (x) +

∑
p

wpg(x
[p])

)
g(zpatch)

]
= kg(x, zpatch) (C.19)

k(zimg, zpatch) = Efrbf ,g [frbf (zimg)g(zpatch)] = 0 (C.20)

Multi-channel kernels For fmulti(·) the situation is similar, with the difference that we only have
M inducing inputs, but MC inducing outputs. If we order the inducing variables by colour, we get
an N ×MC Kfu matrix (as in equation (21)), and a block-diagonal Kuu, as:

E{gc}Cc=1
[gc(z)gc′(z

′)] = kg(z, z
′)δcc′ . (C.21)

This process is slightly different compared to usual inducing variable approximations, and the even
the case for summed kernels, as the number of inducing variables is larger than the number of
inducing inputs. As a curiosity, and not necessarily a practical method of implementation, we would
like to point out that we could view this process as having multi-output inducing variables. The
function g : Rwh → RC could collect all gc(·)s, as one RC variable.

C.2 Inference with block-diagonal Kuu matrices

In the previous section, we saw how to find the conditional process. Here we show that the marginal
likelihood bound

ELBO =
∑
i

Eq(f(xi)) [log p(yi | f(xi))]− KL[q(u)||p(u)] (C.22)

can be computed without operations on matrices larger than M ×M , despite using more than M
inducing variables, regardless of the mean-field assumptions between inducing variables.

Approximate posterior marginals The bound requires computation of the marginals of the ap-
proximate posterior q(f(xi)). This requires marginalising the conditional approximate posterior over
u (the same procedure as in [4, 18]). This is where equations (6-8) come from. We simply substitute
in the Kfu and Kuu matrices from the previous section, and simplify using the block-diagonal
structure in Kuu. We refer to each group of inducing variables (C in total) that are correlated in a
block of Kuu as uc, and the corresponding covariance matrices Kucuc′ and kuc

(x). We similarly
split the variational parameters m and S into blocks of the same size mc and Scc′ .

µi = ku(x)
TK−1uum =

∑
c

kuc
(x)TK−1ucuc

mc (C.23)

σ2
i = k(xi,xi) + kT

u(x)K
−1
uu(S−Kuu)K

−1
uuku(x)

= k(xi,xi) +
∑
cc′

kuc(x)
TK−1ucuc′

Scc′K
−1
ucuc′

kuc(x) +
∑
c

kuc(x)
TK−1ucuc

kuc
(x) (C.24)
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In both cases outlined above, Kucuc′ is M ×M . If a mean-field approximation is chosen Scc′ = 0
when c 6= c′. This does not impact the number or size of any inverses, only requiring less parameters
and avoiding a summation over c′.

KL divergence The second term in the bound requires the KL divergence between the prior and
posterior distribution over the inducing variables, which we can again simplify using knowledge of
the block-diagonal structure.

KL (q(u)||p(u)) = 1

2

(
Tr
(
K−1uuS

)
+ µTK−1uuµ−MC + log

|Kuu|
|S|

)
(C.25)

=
1

2

(∑
c

Tr
(
K−1ucuc

Scc

)
+
∑
c

µT
cK
−1
ucuc

µc −MC +
∑
c

log |Kucuc
| − log |S|

)
(C.26)

Now, the determinant of S, which may be of size MC ×MC remains. Luckily, we are free to
choose the parameterisation of this matrix. We parameterise this matrix as S = LLT, which makes
log |S| = 2

∑
log diagL.

C.3 Summary

Here we showed that when the prior covariance of the inducing outputs is block-diagonal, the
inference only requires expensive matrix operations on each of the blocks separately, regardless of
the posterior correlations taken into account. This allows efficient inference for the summed and
multi-channel convolutional kernels considered here.

D Inter-domain inducing variables for general invariances

We finally briefly show that the inter-domain trick used for convolutional kernels can also be applied
to kernels that give rise to Gaussian processes with arbitrary invariances. Invariant kernels have been
discussed before, notably by Kondor [19] and Ginsbourger et al. [20, 21, 22]. Duvenaud [23, 24]
also provides an accessible discussion. Here, we review the connection between kernels resulting in
invariant functions and a summation structure which allows our inter-domain trick to be applied.

D.1 Specifying invariances in kernels

An invariance can be formalised by placing equality constraints on f(·) under transformations of the
input. Consider a collection of transformations from the input space to itself gi : X → X . Making
f(·) invariant to these transformations specifies that

f(x) = f(gi(x)) ∀x ∈ X ∀i . (D.27)

Kondor [19] and Ginsbourger et al. [20] discuss that this requirement is equivalent to invariance
under every composition of transformations as well. For example, if g1(·) and g2(·) are translations
upwards and to the right respectively, we must also have invariance to a translation up and to the right
f(x) = f(g1(g2(x))). The set of compositions of all transformations forms a group G. Ginsbourger
et al. [20, theorem 3.1] show that in order for samples f(·) to be invariant to all compositions of
transformations, the kernel must be argumentwise invariant:

k(x,x′) = k(g(x), g′(x′)) ∀x,x′ ∈ X g, g′ ∈ G . (D.28)

The elements of the group g ∈ G are all compositions of the transformations gi, defined above.

D.2 Constructing invariant kernels

The requirement stated above does not directly help with constructing invariant models. Three main
methods have been proposed, which are neatly discussed by Duvenaud [23, §2.7]. For our purposes,
we are mainly interested in the “summation over orbit” method, as this gives a structure almost
identical to the convolutional kernel.

Kondor [19] and Ginsbourger et al. [20] show that an argumentwise invariant kernel can be constructed
by summing some base kernel over the orbits of x and x′. The orbit of a point x with respect to
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a group G is defined as the set of all points obtained from applying each element of G to x:
OG(x) = {g(x) | g ∈ G}. The resulting kernel becomes:

kinvariant(x,x
′) =

∑
x̃∈OG(x)

∑
x̃′∈OG(x′)

kbase(x̃, x̃
′) . (D.29)

The relation between invariances and the addition structure is further investigated by Ginsbourger
et al. [25].

Kernels constructed in this way have the same computational issues as convolutional kernels: evaluat-
ing the kernel for a single pair of points requires P 2 base kernel evaluations, where P is the size of
the orbit. For example, we could make a fully translation invariant kernel by considering translations
by 1 pixel upwards, downwards and to the left and right, while clipping and zero-padding edges. For
images of size W ×H the orbit would consist of all W − 1×H − 1 translated images. For MNIST
this would give P 2 = (27× 27)2 = 5.3 · 105, which is again impractical.

D.3 Inter-domain inducing variables for invariant kernels

The invariant kernel above can also be obtained by considering a model that sums a base function
fbase(x) ∼ GP (0, kbase(·, ·)) over the orbit of x:

f(x) =
∑

x̃∈OG(x)

fbase(x̃) . (D.30)

In this construction, the base function fbase(·) takes the place of the patch response function g(·)
from the convolutional kernel, allowing us to use the same inter-domain trick. Instead of using normal
inducing inputs, we place the inducing inputs in fbase(·) instead. We then obtain the covariances:

k(x, z) =
∑

x̃∈OG(x)

kbase(x̃, z) , (D.31)

k(z, z′) = kbase(z, z
′) . (D.32)

Just like with the convolutional kernel, this reduces the cost of evaluating the required kernels
significantly.

D.4 Summary

The structure of kernels resulting in GPs that are invariant to specified transformations is almost
identical to that of convolutional kernels, allowing the same inter-domain trick to be used to speed up
inference. We present the derivation here, but leave empirical demonstration and evaluation to future
work.
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