
Supplementary Material for
“On Tensor Train Rank Minimization:

Statistical Efficiency and Scalable Algorithm”

A Proof of Theorem 1

The theorem is obtained immediately by combining Li et al. [12] and Mu et al. [15].

Let ⇧ : Rn ! Rk be a sparse random projection defined by

⇧ij =

8

<

:

+

p

s/k probability 1/2s,

0 probability 1� 1/s,

�
p

s/k probability 1/2s.

(11)

Then the following theorem holds.

Lemma 6 (Lemma 4 in [12]). Let u be a unit vector. Then
p
k(⇧u)i ! N(0, 1) and kk⇧uk22 ! �2

k
in law with the convergence rate

|P (

p
k(⇧u)i < t)� P (N(0, 1) < t)|  0.8

p
s
X

j

|uj |3. (12)

Suppose that
P

j |uj |3  e�k✏2/4/(1.6k
p
s). Then

|P (k⇧uk22 2 [1� ✏, 1 + ✏])� P (�2
k 2 [k(1� ✏), k(1 + ✏)])|  e�k✏2/4. (13)

By using

P (�2
k 2 [k(1� ✏), k(1 + ✏)])  2e�k(✏2�✏3)/4, (14)

we have

P (k⇧uk22 2 [1� ✏, 1 + ✏])  3e�k(✏2�✏3)/4. (15)

The preservation of L2 norm implies the preservation of the Schatten-1 norm as follows.
Lemma 7 (Restatement of Theorem 1 in [15]). Let Z be an m⇥ n matrix with rank r. If k � r and
k⇧uk22 2 [1� ✏, 1 + ✏] for all singular vectors u of Z, we have

p

(1� ✏)/rkZks  k⇧Zks 
p
1 + ✏kZks. (16)

Now we prove Theorem 1. Let Z = Qk(X) be a
Qk

k0=1 Ik0 ⇥
QK

k0=k+1 Ik0 matrix obtained by
reshaping tensor X . Since X is a TT of rank (R1, . . . , RK), the rank of matrix Z is at most Rk. By
applying Lemma 7 twice, we obtain

1� ✏

Rk
kZks  k⇧Zks  (1 + ✏)kZks (17)

with some probability. If
P

j |uj |3  e�k✏2/4/(1.6k
p
s) for all singular vectors of Z, the probability

is at least 1� 6Rke
�k✏2/4 since there are 2Rk singular vectors.

B Proof of Theorem 3

Proof. Since bX is the minimizer of the optimization problem, we have the following basic inequality

1

2n
kY � X( bX)k2 + �n

K�1
X

k=1

kQk(
bX)ks 

1

2n
kY � X( bX⇤

)k2 + �n

K�1
X

k=1

kQk(X
⇤
)ks.
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Using the relation that

kY � X( bX)k2 = k(Y � X(X⇤
))� (X( bX)� X(X⇤

))k2

= kY � X(X⇤
)k2 + kX( bX)� X(X⇤

)k2 � 2hY � X(X⇤
),X( bX)� X(X⇤

)i,
we rewrite the basic inequality as

1

2n
kX( bX)� X(X⇤

)k2  1

n
hX( bX)� X(X⇤

), Ei+ �n

K�1
X

k=1

⇣

kQk(X
⇤
)ks � kQk(

bX)ks
⌘

.

Define the error � :=

bX �X⇤. Applying the Hölder’s inequality, we have

1

n
hX(�), Ei = 1

n
h�,X⇤

(E)i = 1

n

1

K � 1

K�1
X

k=1

hQk(�),X⇤
(E)i

 1

n

1

K � 1

K�1
X

k=1

kEk1kQk(�)ks 
�n

K � 1

K�1
X

k=1

kQk(�)ks,

where X⇤ is an adjoint operator of X and the last inequality holds by the setting of �n. Also, the
triangle inequality and the linearity of Qk(·) yield

kQk(X
⇤
)ks � kQk(

bX)ks  kQk(�)ks.
Then, we bound the inequality as

1

2n
kX(�)k2  �n

K � 1

K�1
X

k=1

kQk(�)ks +
�n

K � 1

K�1
X

k=1

kQk(�)ks =
2�n

K � 1

K�1
X

k=1

kQk(�)ks.

To bound kQk(�)ks, we apply the result of Lemma 1 in [16] and Lemma 2 in [28]. Along with
proof of the lemmas, we obtain the property that a rank of Qk(�) is bounded by 2Rk, thus the
Cauchy-Schwartz inequality implies

kQk(�)ks 
p

2RkkQk(�)kF .
Then we obtain

kX(�)k2F  2�n

K � 1

K�1
X

k=1

p

2RkkQk(�)kF .

We apply the completion theory by [3] and [2] to bound kX(�)k2F below. Let k0 2 {1, . . . ,K}
be the index which satisfies Assumption 2, and we have kX(�)k2 = keX(Qk0

(�))k2 where eX is a
rearranging operator for the reshaped tensor. Then, Theorem 7 in [3] yields that

kQk0
(�)kF 

 

r

48min{Ik0 , Ik0<}
n

+ 1

!

keX(Qk0
(�))k,

with probability at least 1� (max{Ik0 , Ik0<})�3 and
n � Cm0µ2

k0 max{Ik0 , Ik0<}Rk0
log

3
max{Ik0 , Ik0<},

with a constant Cm0 > 0. Then we obtain that
1

n
keX(Qk0

(�))k2 � C0kQk0
(�)k2F = C0k�k2F ,

where C = (144min{Ik0 , Ik0<}+ 3n)�1 > 0.

Finally, we have

k�k2F  C�1
0

2�n

K � 1

K�1
X

k=1

p

2RkkQk(�)kF

= C�1
0 k�kF

2�n

K � 1

K�1
X

k=1

p

2Rk

= 3C�1
0 k�kF

�n

K

K�1
X

k=1

p

2Rk.
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Dividing both hands side by k�kF provides the result.

C Proof of Theorem 5

Preliminarily, we introduce an alternative formation of the optimization problem. For each k 2
{1, 2, . . . ,K}, we rewrite the term Xk(G) as

Gk ⇥2 G<k ⇥3 Gk<,

where ⇥j denotes the j-mode product (for detail, see [10]). Here, G<k is a tensor with size
Rk ⇥ I1 ⇥ · · ·⇥ IK�1 and its element is given as

[G<k]r,j1,...,jk�1 = [G1]j1,:,:[G2]j2,:,: · · · [Gk�1]jk�1,:,r,

for jk0
= 1, . . . , Ik0 and r = 1, . . . , Rk. Namely, G<k is the left side of tensor train decomposition

of X than Gk. Similarly, Gk< is a tensor with size Rk+1 ⇥ Ik+1 ⇥ · · ·⇥ IK and its element is given
as

[Gk<]r,jk+1,...,jK = [Gk+1]jk+1,r,: · · · [GK ]jK ,:,:,

for jk0
= 1, . . . , Ik0 and r = 1, . . . , Rk+1. Using the result, the ALS optimization problem (9) is

rewritten as

min

Gk

"

1

2n
kY � X(Gk ⇥2 G<k ⇥3 Gk<)k2 +

�n

K � 1

K�1
X

k0=1

kPk0
(Gk ⇥2 G<k ⇥3 Gk<)ks

#

. (18)

When k = 1, we set G<k = 1. Similarly, when k = K, Gk< = 1 holds.

Using the formula, we investigate the convergence of Gk by fixing other elements as G<k =

eG<k

and Gk< =

eGk<. Let {G⇤
k}Kk⇤=1 be a set of tensor which formulates the true tensor X⇤. Also, G⇤

<k
and G⇤

k< are defined similarly. To evaluate the convergence, we introduce that

⌅(

eG) := max

k2{1,...,K}

h

k eGk �G⇤
kkF

i

.

We obtain the following lemma which evaluates the optimization of (18) with given eG<k and eGk<.
Lemma 8. For each k 2 {1, . . . ,K}, consider the optimization (18) with respect to Gk with given
eG. Then, with probability at least 1� (max{Ik0 , Ik0<})�3 and

n � Cmµ2
k0 max{Ik0 , Ik0<}Rk0

log

n
max{Ik0 , Ik0<},

we obtain

k bGk �G⇤
kk  6(CCK)

�1

(

2(K � 1)CK(1 + n�1
)⌅(

eG) + 2�n(2 + ✏)

K � 1

K�1
X

k0=1

p

2Rk0

)

.

Proof. Our proof takes following four steps: 1) derive a basic inequality from the optimality condition,
2) bound terms of the RHS of the basis inequality, 3) bound below the LHS of the basis inequality,
and 4) combine the result.

Step 1. Derive a basic inequality.

By the optimality condition of (18) with given eG<k and eGk<, we have

1

2n
kY � X( bGk ⇥2

eG<k ⇥3
eGk<)k2 +

�n

K � 1

K�1
X

k0=1

kPk0
(

bGk ⇥2
eG<k ⇥3

eGk<)ks

 1

2n
kY � X(G⇤

k ⇥2
eG<k ⇥3

eGk<)k2 +
�n

K � 1

K�1
X

k0=1

kPk0
(G⇤

k ⇥2
eG<k ⇥3

eGk<)ks. (19)
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Using the triangle inequality and the linearity of X and the mode product ⇥j , we obtain

kY � X( bGk ⇥2
eG<k ⇥3

eGk<)k2

= k{Y � X(G⇤
k ⇥2

eG<k ⇥3
eGk<)}� {X( bGk ⇥2

eG<k ⇥3
eGk<)� X(G⇤

k ⇥2
eG<k ⇥3

eGk<)}k2

= k{Y � X(G⇤
k ⇥2

eG<k ⇥3
eGk<)}� X(( bGk �G⇤

k)⇥2
eG<k ⇥3

eGk<)k2

= kY � X(G⇤
k ⇥2

eG<k ⇥3
eGk<)k2 + kX(( bGk �G⇤

k)⇥2
eG<k ⇥3

eGk<)k2

� 2hY � X(G⇤
k ⇥2

eG<k ⇥3
eGk<),X(( bGk �G⇤

k)⇥2
eG<k ⇥3

eGk<)i.

Substituting the result into (19), we obtain that

1

2n
kX(( bGk �G⇤

k)⇥2
eG<k ⇥3

eGk<)k2 +
�n

K � 1

K�1
X

k0=1

kPk0
(

bGk ⇥2
eG<k ⇥3

eGk<)ks

 1

n
hY � X(G⇤

k ⇥2
eG<k ⇥3

eGk<),X(( bGk �G⇤
k)⇥2

eG<k ⇥3
eGk<)i

+

�n

K � 1

K�1
X

k0=1

kPk0
(G⇤

k ⇥2
eG<k ⇥3

eGk<)ks. (20)

About the regularization term, we apply the following inequality

�n

K � 1

K�1
X

k0=1

kPk0
(G⇤

k ⇥2
eG<k ⇥3

eGk<)ks �
�n

K � 1

K�1
X

k0=1

kPk0
(

bGk ⇥2
eG<k ⇥3

eGk<)ks

 �n

K � 1

K�1
X

k0=1

kPk0
((G⇤

k � bGk)⇥2
eG<k ⇥3

eGk<)ks

=

�n

K � 1

K�1
X

k0=1

⇣

kQk0
((G⇤

k � bGk)⇥2
eG<k ⇥3

eGk<)ks

�kPk0
((G⇤

k � bGk)⇥2
eG<k ⇥3

eGk<)ks � kQk0
((G⇤

k � bGk)⇥2
eG<k ⇥3

eGk<)ks
⌘

, (21)

by using the triangle inequality and the linearity of the random projection operator Pk0 . Here, we
apply Theorem 1 with ✏ and obtain

✓

1� ✏

2Rk0
� 1

◆

kQk0
((G⇤

k � bGk)⇥2
eG<k ⇥3

eGk<)ks

 kPk0
((G⇤

k � bGk)⇥2
eG<k ⇥3

eGk<)ks � kQk0
((G⇤

k � bGk)⇥2
eG<k ⇥3

eGk<)ks
 ✏kQk0

((G⇤
k � bGk)⇥2

eG<k ⇥3
eGk<)ks.

Here, the denominator in the left hand side follows Lemma 1 in [16]. Then we have
�

�

�

kPk0
((G⇤

k � bGk)⇥2
eG<k ⇥3

eGk<)ks � kQk0
((G⇤

k � bGk)⇥2
eG<k ⇥3

eGk<)ks
�

�

�

 max{✏, |(1� ✏)/(2Rk0
)� 1|}kQk0

((G⇤
k � bGk)⇥2

eG<k ⇥3
eGk<)ks

 (1 + ✏)kQk0
((G⇤

k � bGk)⇥2
eG<k ⇥3

eGk<)ks.

Using this result and continue (21) then we have

(21)  �n

K � 1

K�1
X

k0=1

(2 + ✏)kQk0
((G⇤

k � bGk)⇥2
eG<k ⇥3

eGk<)ks. (22)

14



About the first term of the RHS of (20), we decompose it as

1

n
hY � X(G⇤

k ⇥2
eG<k ⇥3

eGk<),X(( bGk �G⇤
k)⇥2

eG<k ⇥3
eGk<)i

=

1

n
hY � X(G⇤

k ⇥2 G
⇤
<k ⇥3 G

⇤
k<),X(( bGk �G⇤

k)⇥2
eG<k ⇥3

eGk<)i

+

1

n
hX(G⇤

k ⇥2 (
eG<k �G⇤

<k)⇥3 G
⇤
k<),X(( bGk �G⇤

k)⇥2
eG<k ⇥3

eGk<)i

+

1

n
hX(G⇤

k ⇥2 G
⇤
<k ⇥3 (

eGk< �G⇤
k<)),X(( bGk �G⇤

k)⇥2
eG<k ⇥3

eGk<)i

+

1

n
hX(G⇤

k ⇥2 (
eG<k �G⇤

<k)⇥3 (
eGk< �G⇤

k<)),X(( bGk �G⇤
k)⇥2

eG<k ⇥3
eGk<)i

=: T0 + T1 + T2 + T3.

About the term T0, we use the observation model (2) and the adjoint operator X⇤ then obtain

T0 =

1

n
hE ,X(( bGk �G⇤

k)⇥2
eG<k ⇥3

eGk<)i

=

1

n
hX⇤

(E), ( bGk �G⇤
k)⇥2

eG<k ⇥3
eGk<i.

Since the reshaping does not affect the value of the inner product, we continue to evaluate T0 as

T0 =

1

n
hX⇤

(E), ( bGk �G⇤
k)⇥2

eG<k ⇥3
eGk<i

=

1

n(K � 1)

K�1
X

k0=1

hQk0
(X⇤

(E)), Qk0
((

bGk �G⇤
k)⇥2

eG<k ⇥3
eGk<)i

 1

n(K � 1)

K�1
X

k0=1

kQk0
(X⇤

(E))k1kQk0
((

bGk �G⇤
k)⇥2

eG<k ⇥3
eGk<)ks

=

1

n(K � 1)

kX⇤
(E)k1

K�1
X

k0=1

kQk0
((

bGk �G⇤
k)⇥2

eG<k ⇥3
eGk<)ks

 �n

(K � 1)

K�1
X

k0=1

kQk0
((

bGk �G⇤
k)⇥2

eG<k ⇥3
eGk<)ks.

The first inequality follows the Hölder’s inequality, and the second inequality is derived by the setting
of �n.

Substituting (22) and the bounds with T1, T2, T3 and T0 into (20), finally we obtain

1

2n
kX(( bGk �G⇤

k)⇥2
eG<k ⇥3

eGk<)k2

 T1 + T2 + T3 +
�n

K � 1

K�1
X

k0=1

(2 + ✏)kQk0
((G⇤

k � bGk)⇥2
eG<k ⇥3

eGk<)ks
| {z }

=:T4

. (23)

Here, we obtain the basic inequality.

Step 2. Bound the RHS of the basic inequality.

For brevity, we introduce notation

e

�k := (

bGk �G⇤
k)⇥2

eG<k ⇥3
eGk<.
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We bound T1 by using the Cauchy-Schwartz inequality as

T1 =

1

n
hX(G⇤

k ⇥2 (
eG<k �G⇤

<k)⇥3 G
⇤
k<),X(( bGk �G⇤

k)⇥2
eG<k ⇥3

eGk<)i

 1

n
kX(G⇤

k ⇥2 (
eG<k �G⇤

<k)⇥3 G
⇤
k<)kkX(( bGk �G⇤

k)⇥2
eG<k ⇥3

eGk<)k

 1

n
kG⇤

k ⇥2 (
eG<k �G⇤

<k)⇥3 G
⇤
k<kF k( bGk �G⇤

k)⇥2
eG<k ⇥3

eGk<kF

 1

n
kG⇤

k ⇥2 (
eG<k �G⇤

<k)⇥3 G
⇤
k<kF ke�kkF ,

here we use the relation kX(X)k2  kXk2F for all X 2 ⇥. We introduce a constant ck for
k = 1, . . . ,K which satisfying ck � kA⇥kG

⇤
kkF /kAkF where A is a tensor with proper size. Since

we suppose that the reshaped matrix from G⇤
k has Rk row rank, we can guarantee that ck is positive

and finite. Using ck, we have

kG⇤
k ⇥2 (

eG<k �G⇤
<k)⇥3 G

⇤
k<k

 ck
Y

k0>k

ck0k eG<k �G⇤
<kkF

 ck
Y

k0>k

ck0

X

k0<k

k eGk0 �G⇤
k0kF

Y

`<k,` 6=k0

c`


Y

k0�k

ck0
(k � 1)

Y

`<k

c`⌅(eG)

= (k � 1)

K
Y

k0=1

ck0
⌅(

eG).

Here, we define CK :=

QK
k0=1 ck0 , we obtain

T1  1

n
(k � 1)CK⌅(

eG). (24)

Similarly, we obtain

T2  1

n
(K � k)CK⌅(

eG). (25)

About T3, we have

T3 =

1

n
hX(G⇤

k ⇥2 (
eG<k �G⇤

<k)⇥3 (
eGk< �G⇤

k<)),X(( bGk �G⇤
k)⇥2

eG<k ⇥3
eGk<)i

 1

n
kG⇤

k ⇥2 (
eG<k �G⇤

<k)⇥3 (
eGk< �G⇤

k<)kF k�kkF .

We evaluate the first norm as

kG⇤
k ⇥2 (

eG<k �G⇤
<k)⇥3 (

eGk< �G⇤
k<)kF

 ck

⇣

k eG<k ⇥3 (
eGk< �G⇤

k<)kF + kG⇤
<k ⇥3 (

eGk< �G⇤
k<)kF

⌘

 2

n
(K � 1)CK⌅(

eG).

Then, we have

T3  2

n
(K � 1)CK⌅(

eG). (26)

To bound T4, we apply the same line of the proof of Theorem 3. Along with Lemma 1 in [16], we
bound the Schatten norm of Qk(

e

�k) and apply the Cauchy-Schwartz inequality, then obtain

T4  2�n(2 + ✏)

K � 1

K�1
X

k0=1

p

2Rk0kQk0
(

e

�k)k =

2�n(2 + ✏)

K � 1

K�1
X

k0=1

p

2Rk0ke�kk.
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Combining the bound with (24), (25) and (26), we update the bound (23) as

1

2n
kX(e�k)k2  3(K � 1)CK

n
⌅(

eG)kX(e�k)k+
2�n(2 + ✏)

K � 1

K�1
X

k0=1

p

2Rk0ke�kk

 3(K � 1)CK

n
⌅(

eG)ke�kkF +

2�n(2 + ✏)

K � 1

K�1
X

k0=1

p

2Rk0ke�kk. (27)

Step 3. Bound below the LHS of the basic inequality.

We apply the matrix completion theory developed by [3] and [2]. Let k0 2 {1, . . . ,K} be the index
satisfying Assumption 2. Since the value of the L2-norm and the Frobenius norm is invariant to
the shape of tensors, we compare the value of kQk0

(�k)kF and keX(Qk0
(�k))kF with k0 instead of

k�kkF and kX(�k)kF .

For the matrix Qk0
(X⇤

), we apply Assumption 2 and obtain that Qk0
(X⇤

) has the µk0 -incoherence
property. Then, we apply Theorem 2 and Theorem 7 in [3], we obtain the following inequality as

kQk0
(

e

�k)kF 
 

r

48min{Ik0 , Ik0<}
n

+ 1

!

kX(Qk0
(

e

�k))k,

with probability at least 1� (max{Ik0 , Ik0<})�3 and

n � Cmµ2
k0 max{Ik0 , Ik0<}Rk0

log

3
max{Ik0 , Ik0<},

with a constant Cm > 0. Then we obtain that
1

n
kX(e�k)k2 =

1

n
keX(Qk0

(

e

�k))k2

� (144min{Ik0 , Ik0<}+ 3n)�1kQk0
(

e

�k)k2F =: CkQk0
(

e

�k)k2F = Cke�kk2F ,
where C > 0 since n 

Q

k Ik. Using this result into (27), we have

C

6

ke�kk2F  3(K � 1)CK

n
⌅(

eG)ke�kkF +

2�n(2 + ✏)

K � 1

K�1
X

k0=1

p

2Rk0ke�kkF .

Then we obtain the inequality

C

6

ke�kk2F  3(K � 1)CK

n
⌅(

eG)ke�kkF +

2�n(2 + ✏)

K � 1

K�1
X

k0=1

p

2Rk0ke�kkF .

We divide the both hands side by ke�kkF about the first term, and consider the root about the second
term, then we have

C

6

ke�kkF  3(K � 1)CK

n
⌅(

eG) + 2�n(2 + ✏)

K � 1

K�1
X

k0=1

p

2Rk0 , (28)

by using the property kX(X)k  kXk for all X 2 X .

Finally, we define

�k := (

bGk �G⇤
k)⇥2 G

⇤
<k ⇥3 G

⇤
k<,

and compare �k and e�k as

k�kk  ke�kk+ ke�k ��kk.
We evaluate the last term by the same way of the step 2 as

ke�k ��kkF


�

�

�

(

bGk �G⇤
k)⇥2 (G

⇤
<k ⇥3 G

⇤
k< � eG<k ⇥3

eGk<)

�

�

�

F

 2ck

n

�

�

�

(G⇤
<k � eG<k)⇥3 G

⇤
k<

�

�

�

F
+

�

�

�

eG<k ⇥3 (G
⇤
k< � eGk<)

�

�

�

F

o

 2(K � 1)CK⌅(

eG).
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Then, we have

k�kkF � 2(K � 1)Ck⌅(
eG)  ke�kkF .

Substituting the result into (28), we obtain

C

6

k�kkF  2(K � 1)CK(1 + n�1
)⌅(

eG) + 2�n(2 + ✏)

K � 1

K�1
X

k0=1

p

2Rk0 . (29)

Step 4. Combining the results.

Substituting the result of the step 3 into (29), we finally obtain

k bGk �G⇤
kk  6(CCK)

�1
2(K � 1)CK(1 + n�1

)⌅(

eG) + 2�n(2 + ✏)

K � 1

K�1
X

k0=1

p

2Rk0 .

We back to the proof of Theorem 5. Based on the result of Lemma 8, we will take two steps: (a)
evaluate the distance between X(

eG) and X(G⇤
), and (b) show the convergence as the ALS iteration

proceeds.

Step (a). Evaluate the distance between X(

eG) and X(G⇤
).

For brevity, we introduce new notation for X(G). Using the tensor product, we denote

X(G) = G1 ⇥2 G2 ⇥3 · · ·⇥K�1 GK�1 ⇥K GK .

Then, we evaluate the distance between X(G) and X(G⇤
) as

X(

eG)�X(G⇤
)

=

eG1 ⇥2 · · ·⇥K
eGK �G⇤

1 ⇥2 · · ·⇥K G⇤
K

= (

eG1 ⇥2 · · ·⇥K�1
eGK�1 ⇥K

eGK � eG1 ⇥2 · · ·⇥K�1
eGK�1 ⇥K G⇤

K)

+ (

eG1 ⇥2 · · ·⇥K�1
eGK�1 ⇥K G⇤

K � eG1 ⇥2 · · ·⇥K�1 G
⇤
K�1 ⇥K G⇤

K)

· · ·
+ (

eG1 ⇥2 G
⇤
2 ⇥3 · · ·⇥K�1 G

⇤
K�1 ⇥K G⇤

K �G⇤
1 ⇥2 · · ·⇥K G⇤

K)

=

K
X

k=1

eG<k ⇥k (

eGk �G⇤
k)⇥k+1 G

⇤
k<.

Then, we consider the Frobenius norm as

kX(

eG)�X(G⇤
)k2F

=

�

�

�

�

�

K
X

k=1

eG<k ⇥k (

eGk �G⇤
k)⇥k+1 G

⇤
k<

�

�

�

�

�

2

F

=

K
X

k=1

K
X

k0=1

D

eG<k ⇥k (

eGk �G⇤
k)⇥k+1 G

⇤
k<, eG<k0 ⇥k0

(

eGk0 �G⇤
k0)⇥k0+1 G

⇤
k0<

E

=

K
X

k=1

�

�

�

eG<k ⇥k (

eGk �G⇤
k)⇥k+1 G

⇤
k<

�

�

�

2

F

+

K
X

k=1

X

k0 6=k

D

eG<k ⇥k (

eGk �G⇤
k)⇥k+1 G

⇤
k<, eG<k0 ⇥k0

(

eGk0 �G⇤
k0)⇥k0+1 G

⇤
k0<

E

.
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As same as the proof of Lemma 8, we bound the first term as
�

�

�

eG<k ⇥k (

eGk �G⇤
k)⇥k+1

eGk<

�

�

�

2

F
 C2

K⌅

2
(

eG).

For the second term, we obtain
D

eG<k ⇥k (

eGk �G⇤
k)⇥k+1

eGk<, eG<k0 ⇥k0
(

eGk0 �G⇤
k0)⇥k0+1

eGk0<

E


�

�

�

eG<k ⇥k (

eGk �G⇤
k)⇥k+1

eGk<

�

�

�

F

�

�

�

eG<k0 ⇥k0
(

eGk0 �G⇤
k0)⇥k0+1

eGk0<

�

�

�

F

 C2
K⌅

2
(

eG).

Combining the results, we obtain

kX(

eG)�X(G⇤
)k2F  (K +K2

)C2
k⌅

2
(

eG).

Step (b). Show convergence with the ALS iteration.

Let Gt be a set G obtained by t-th ALS iteration. By the result of the step (a), we have

kX(Gt
)�X(G⇤

)k2F  (K +K2
)C2

K⌅(Gt
).

Applying the result of Lemma 8, let bGt
k be the minimizer of optimization of (18) with the t-th ALS

iteration, we obtain for each t = 1, 2, . . .,

⌅(Gt
) = max

k
k bGt

k �G⇤
kkF  6(CCK)

�1
2(K � 1)CK(1 + n�1

)⌅(

eG) + 2�n(2 + ✏)

K � 1

K�1
X

k0=1

p

2Rk0 .

The inequality holds since Gt�1 is the fixed eG for the t-th ALS iteration. We define the contraction
coefficient

� := 12C�1
 (K � 1)CK(1.5 + n�1

),

and using the assumption that � < 1, we have

⌅(Gt
)  max

(

�t
⌅(G0

), 6(CCK)

�1 2�n(2 + ✏)

K

K�1
X

k0=1

p

2Rk0

)

, (30)

where G0 is an initial value of G. With Assumption 4, we set t sufficiently large as

t � (log�)�1

(

log

 

6(CCK)

�1

 

2�n(2 + ✏)

K

K�1
X

k0=1

p

2Rk0

!!

� log⌅(G0
)

)

,

we obtain

kX(Gt
)�X(G⇤

)k2F  12C�1
 K2CK

 

2�n(2 + ✏)

K

K�1
X

k0=1

p

2Rk0

!2

.

As we set bX := X(Gt
), we obtain the result.

D Time Complexity of TT-RAM

To update g
(`+1)
k , we need to compute

• A = ⌦

T
⌦, which requires O(nI2R4

),

• B =

PK�1
k0=1 �

T
k0�k0 , which requires O(KD2I2R4

),

• the inversion of an IR2 ⇥ IR2 matrix (A+B), which requires O(I3R6
),
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• c = ⌦

TY , which requires O(nIR2
),

• d =

eVk(W
(`)
k0 ), which requires O(D2

),

• e = 1
K�1

PK�1
k0=1 �

T
k0(⌘d� �

(`)
k0 , which requires O(KD2IR2

),

To update W
(`+1)
k0 , we need to compute

• a = �k0g
(`+1)
k , which requires O(D2IR2

),

• eV �1
k (a+ �

(`)
k0 ), which requires O(D2

),

• the proximal operation, which requires O(D3
).

To update �
(`+1)
k0 , we need to compute

• a = �k0g
(`+1)
k , which requires O(D2IR2

),

• b = eVk(W
(`+1)
k0 ), which requires O(D2

),

Because there are g
(`+1)
k for k = 1, . . . ,K, W (`+1)

k0 for k, k0 = 1, . . . ,K, and �
(`+1)
k0 for k, k0 =

1, . . . ,K, the total time complexity is

O(K(nI2R4
+KD2I2R4

+ I3R6
+ nIR2

+D2
+KD2IR2

))

+O(K2
(D2IR2

+D2
+D3

)) +O(K2
(D2IR2

+D2
))

= O(K(nI2R4
+KD2I2R4

+ I3R6
)) +O(K2

(D2IR2
+D3

))

= O(K(nI2R4
+KD2I2R4

+ I3R6
)) +O(K2D2IR2

)

= O(nKI2R4
+K2D2I2R4

+KI3R6
)

= O(nKI2R4
+K2D2I2R4

)

In the third line and the last line, we assumed D = O(IR2
) and IR2

= O(n), respectively.
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