A Partition Function

We recall two easily verified facts about determinants that will be useful in our analysis:
det(K +uv') =det(K)(1+u' K 'v), for K € GL,(R), (A1)
a™ " det(AA" +al,) =det(AT A+ al,,), forAcR™™ (n<m),anda >0. (A.2)
The first one is known as matrix determinant lemma.

The partition function of P(-; A), happens to have a pleasant closed-form formula. Although this
formula is known [6], and follows immediately by an application of the Cauchy-Binet identity,
we present an alternative proof based on the perturbation argument for its conceptual value and
subsequent use.

Theorem 11 (Partition Function [6]). Given A € R™*"™ where r(A) = nandn < |S| =k < m,
we have

det(AgAL) = < . )det(AAT). (A3)
|S|=k,5C[m]

Proof. First note that for n < |S| = k < m and any € > 0, by (A.2) we have
T 1 T
det(ASAS + EIn) = 5167777, det(AS AS + glk)
Taking limits as € — 0 on both sides we have

det(AL Ag +eIy).

1
det(AsAg) = lim det(AsAf +¢l,) = lim ——

Let us focus on det(A:'g—Ag + el}). We construct an identity matrix I,,, € R™*™, then we have
det(Al Ag +ely) = det(AL Ag + eld Is) = det(AL As + (Vels) TVEls)
T
Ag Ag ~ A (A4)
= det P(S; .
(o] [t )< (5[ A )

In other words, this value is proportional to the probability of sampling columns from [ \/:54[ ]
m

using volume sampling. Therefore, using the definition of e; we have

1 1
g > det(AfAs +ely) = e en(ATA+el,)

|S|=k,SC[m]

= E,cl,n er(Diag([(07 (4) + ), (03(A) + ), (o7(4) + ), e, ,€])

- (7:_:) [T, (0?4 +2) +0C).

Now taking the limit as ¢ — 0 we obtain
Ty _ 15 m-n n 2 _[m—n T
lSl_sz:C[m] det(AgAg) = &11_1}(1) <k _ n> H; (07(A)+¢e)+O(e) = (k: 3 n) det(AA").

O

B Marginal Probability

Proof. The marginal probability of a set ' C [m] for dual volume sampling is

> 5o, 5=k det(AsAf)

P(TCS;A) =
resd) 25—k det(As Ag))
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Theorem 11 shows how to compute the denominator, thus our main effort is devoted to the nominator.
We have

Z det(AgAl) = Z det(ArurATLR)
5DT,|S|=k RNT=0,|R|=k—|T)|
Using the e-trick we have
T _ T
RNT=0,|R|=k—|T| RNT=0,|R|=k—|T|
. 1
= lim —— > det (A rATur + €l)).

RNT=0,|R|=k—|T|
By decomposing det(Af g Arur + 1)) we have
det(Af g Arur +eli)

= det(AJ Ap + eljr|) det (AR AR + eljg) — ARAT(AL Ar + el i) ' AL AR) .
Now we let Ar = QTETV]:r be the singular value decomposition of Ay where Q1 € R7x(AT)
Y € RTATXIT] and Vi € RITIXITI Plugging the decomposition in the equation we obtain
ARAT(AT A7 + elyp) YAT AR = ARQrErVy (ViSiSrVy +elip) Vel Q1 Ag

= ARQrSr(S1Sr +elir) T S1 Q1 AR
o} (Ar)

m R 0 ... 0
0 _op{Ar) 0
o5 (Ar)+
= ARQr e Q1 Ar
L
Ir(A )(AT)
0 0 . 70’3(AT?(AT)+E
1
m O - e O
T T T O m DY O T
= ArQrQrAr —cARQr : : QrAR.
: : :
0 0 Ui(AT)(AT)-‘rE
Thus it follows that
AR Ap+elip — ARAT (AL Ar +eljp)) P AL AR
1
U%(AT)-"-E ?
=Ap(I - QrQr)Ar +ARQr 0 ZAr+e | QrAr+elg

= BgBr+¢CrCr + ¢l
where By is the projection of columns of Ar on the orthogonal space of columns of Ap. Let
Q# € R"*(n=7(A1)) be the complement column space of Qr, then we have Br = (Q#) Ap €
R=r(Ar)xIEl Moreover,

1
Voi(Ar)+e )
CR: 0 m Q;AReRT(AT)X‘R‘.

We further let By, = (Q%)" Az, € R(r=r(A7)x(m=ITl) apnd
1

\/af(AT)Jre )
OTC — 0 \/W . Q;ATC c RT(AT)X(mf‘TD

12



where T, = [m]\T. Then we have
> det(Af rArur +€I})
RNT=0,|R|=k—|T|
= det(A] Az + elp)) > det(BgBr + CLCR + el

RNT=0,|R|=k—|T|

Br, B
= det(A;AT + €I‘T‘) X €—|T| VeUr, VeUr.
VeCr, VeCr,

—|T)x (m—|T)

T

whose columns are basis vectors.

Since we are free to chose any orthonormal U, we simply letitbe I. Let W, = { éTT , we have

where we construct an orthonormal matrix U € R(™

T
BTC BTC BT BT T
AL AIRENE
VeCr, Velr, VEW | Ve,
— FTL. c R(m+n—|T|)><(m+n—|T|)
The properties of characteristic polynomials imply that

eojr/(Pr) = Y det((Fr,)s,s)

|51k |T|
= > det((Fr,)s,.s,) det((Fr.)s,.5, — (Fr.)s..5 (Fr.)s, s, (Fr.)s,.55)
S1,S52

where S; = SN [r(Br,)] and Sy = [m + n — |T'|]\\S1. Further we have

> det((Fr,)s,.s,) det((Fr.)s,.5, — (Fr.)s..5 (Fr.)s, s, (Fr.)s,.s.)
S1,SQ

= Y F TS det((Br, )5, (Br,) ;) %
S1,52

det((Wr,)s,(Wr.)s, — (Wr,)s,(Br,) s, (Br.)s, (Br.)s,) " (Br.)s,(Wr.)§,)
Hence it follows that

1
T - T
gl_I)r(l)ek —~ Z det(Ap prArur +eli) = Eh_r% i det(Ap Ap + EI‘T|) X ek—\T\(FTC)
ROT=0,|R|=k—|T|
1 r(Ar
_n |T|—r(Ar)
= 31:% gkina T 1:[ AT —|— 6 X
> IS det((Br,)s, (Br.) g, ) x
|S|=k—|T|

det((Wr,)s,(Wr.)§, — (Wr,)s,(Br.)s,(Br.)s, (Br,)$,) " (Br.)s, (Wr,)4,)
(Since r(Ar) + r(Br,) = nand |Si| < r(Br,))
1 r(Ar)
= lim ——¢/TI=7(47) H (02 (A7) + )| x

e—0 gh—n
1=1

> b B det(Br, By,) det((Wr,)s, (Wr.)§, — (Wr.)s, Bt (Br, Br,) ' Br.(Wr,)§,) + O(e)
|51k |7
r(Ar) r(Br,)

= H o} (Ar)| x H o} (Br.)| D det((Wr,)s,(Wr,)§, — (Wr.)s, BE, (Br. Bf,) ™' Br.(Wr.)5,)
Sa
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where Sy C [m +n — |T|]\[r(Br,)] and |S2| = k — |T| — r(Br.).
Let Qp,, diag(o?(Br,))Qp, be the eigenvalue decomposition of Bj. By, where Qp, €
RI7elxr(Bre) Fuyrther, let QJB:T‘ be the complement column space of (), , thus we have

Qp L

[ Q55T ] [ @br. @By, | =limy = Lo
Te
Then for any Sy C [m + n — |T|]\[r(Br,)] we have
det((Wr,)s,(Wr,)§, — (Wr,)s, B, (Br, Bf,) ' Br,(Wr,)4,) = det(Ws, (In_j7| — Qpr, Qp,, )(Wr.)§,)
= det((Wr,)s, (@5, (Q5,,) ) (Wz,)8,)

It follows that

> det(Ws, (Wr,) g, — (Wr,)s, B, (Br.Bf,) ' Br,(Wr,)3,) = exr)—r(Br,) Wr.(QB,,) " QB,, )WT.)
Sa

Combining all the above derivations, we obtain that

Pr(T C S|S ~ P(S; A)) = [HZL?T) JZZ(AT)] X {Hg(:BlTC) U?(BTC)} x Tp

C Approximate Sampling via Volume Sampling

Corollary 12 (Approximate DVS via Random Projection). For any € > 0 and 65 > 0 there is an

o : e
algorithm that, in time O(* 2t k 50 ), samples a subset from an approximate distribution P(-; A)
2 2

with 0y = max|s|—x(1 + 7T75)" — 1~ o725 and

min (

P(S; A)
(1 + (51)(1 + (52)
It may happen in practice that n < m but k is of the same order as n. In such case we can transform

the dual volume sampling to slightly distorted volume sampling based on (A.2) and then take the
advantage of determinant-preserving projections to accelerate the sampling procedure.

< P(S;A) < (14 6,)(1+0,)P(S; A); VS C [m).

Concretely, instead of sampling column subset S with probability proportional to det(AgAl), we
sample with probability proportional to a distorted value det(AsAg +el,) for small € > 0. Denoting
this distorted distribution as P-(.S; A), we have

1 R
P.(S;A) = gy det(AL Ag +el}) = g [[(e7(As) + ).
i=1
Letting omin(Ag) > 0 be the minimum singular value, we have

[T, (0} (As) + ) £
1< 5= <1+ ="
T, 74y = Moz g
We further let
€ , ne

~

= 1+ —— O\ -1~
o= e+ o) o2, (A5)’

|S|=k Ofin

when ¢ sufficiently small. Sampling from P. will yield (1 + d; )-approximate dual volume sampling
(in the sense of [17] and our Theorem 12). We can sample from P. via volume sampling with

distribution P (S; [ \/EAI } ). With the volume sampling algorithm proposed in [17], the resulting

running time would be O (km?).

To accelerate sampling procedure, we consider random projection techniques that preserve volumes.
[32] showed that Gaussian random projections indeed preserve volumes as we need:
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Theorem 13 (Random Projection [32]). Forany X € R"*™, 1 <k <mand 0 < §; < 1/2, the
random Gaussian projection of R™ — R? where

2
1o (Lhmn),
62

det(Xd Xg) < det(Xd Xg) < (14 05) det(Xd Xs) (C.1)

satisfies

forall S C [n] and |S| < k where X is the projected matrix.

This theorem completes what we need to prove Corollary 12.

Proof. (Corollary 12) The idea is to project { \/24] } to a lower-dimensional space in a way that
the values for submatrix determinants are preserved up to a small multiplicative factor. Then we

perform volume sampling. We project columns of [ \/?I ] . which is in R™*™_ to vectors in R?
m

where d = O (]“215#) so as to achieve a (1 + ) approximation by Theorem 13. Let G be a
2

d x (m + n)-dimensional i.i.d. Gaussian random matrix, then we have
A
G[ JEI } = GaA+eG) (C.2)

where G 4 € R¥™ and G'; € R?¥*™ are two independent Gaussian random matrix. The projected
matrix can be computed in O(dnm) = O(k*nmn/62) time. After that, if we use volume sampling
algorithm proposed in [17] the resulting running time would be O(kd3m) = O(k"m/8%). Thus the
total running time would be (’)( kQ"m + k5§” ). O

Remarks. An interesting observation is that the resulting running time is independent of §;, which
means one can set ¢ arbitrarily small so as to make the approximation in the first step as accurate
as possible, without affecting the running time. However, in practice, a very small € can result in
numerical problems. In addition, the dimensionality reduction is only efficient if d < m + n.

D Conditional Expectation
Proof. We use A’ denote the matrix A\ {4},:» namely matrix A with row j deleted. We have
E[IALI% |51 = i1, ysi1 = e |
- S HALIZ B (51 = i1, ..o s = ik A | 81= 01,0, 801 = ie_1)
(it;--yi) E[m]E—t+1
?(81 :’il,...,Sk :ik;A)
= 1A% 113
S

(it,e.eyi ) E[m]R—tH1

1 =010, 81 =113 A)
i
..... ioeimpe-ei det(Ag i AL o DIAL ol
Z(u, Jig)E[m]k—t+1 det(A{lla Jk}A{ll zk})

Z] lzzt, ik )E[m]k—tt1 det( {i1,.. Lk}(A{Zh_“’,Lk})T)
Z(i,,...,ik)e[m]k*“rl det(A{n,...,m}A{“ ,ik})

While the denominator is the (unnormalized) marginal distribution P(T" C S | S ~ P(S; A)), the
numerator is the summation of (unnormalized) marginal distribution P(T' C S | S ~ P(S; A%)) for
j=1,...,n. By Theorem 2 we can compute this expectation in O(nm?) time. O
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Algorithm 2 Derandomized Dual Volume Sampling for Column Subset Selection.

Input: Matrix A € R™*" to sample columns from, m < k < n the target size
Output: Set S such that |S| = k with the guarantee

—n+1)

’I’L+ 1 t T2 n(m 2
Al — A A < —A
JALIE < T AT 4B IE < A
Initialize ? as empty tuple
for: =1tok do
forj ¢ S do
Compute conditional expectation E; = E [HATTHQF | t1 =81,...,tic1 = Sim1,t; = j] with Corol-
lary 4.
end for

Choose 7 = arg min e E;

§=Toj

end for
Output ? asaset S

E Greedy Derandomization

Theorem 14. Algorithm 2 is a derandomization of dual volume sampling that selects a set S of
columns satisfying

(m—n+1)

n—+1 n(m
7AT Al
e

14515 < S — 1AT13.

Proof. Observe that at each iteration ¢, we have
E[ALI3 [t =51, ticy = si-1]

—Z¢§?t = jltv =1, ticr = si)B [JALE [0 =81, tion = sioasts = G|

and we choose j such that IE[||AT||§J | t1 =s1,...,ti—1 = si—1,t; = j] is minimized. Since at the
beginning we have

n+1
E[lAbI}] < T 14T T~ P(T34),

it follows that the conditional expectation satisfies

) m—-n+1
E[HA}HQF | t1=s1,...,tic1 = si—1,t; = j] < m”ATHQF-

Hence we have
m-n+1

Tt AT

Further, by using standard bounds relating the operator norm to the Frobenius norm, we obtain

1AT]I3.

TAGI: = E[IALIE |6 = 51,00 tpr = sporu b = 5] <

n+1 n(m—n+1)
A2 < 1At 7,4T _
IALI5 < [ A7 < - AT < ———1

F Initialization

Set & = ming|—j, 04 (Ag) > 0, whereby

det(AsAl +el,) = " Fdet(A§ As +ely) o VolSmpl(S; [AT Vel,]T).
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The rhs is a distribution induced by volume sampling. Greedily choosing columns of A one by one
gives a k! approximation to the maximum volume submatrix [15]. This results in a set S such that

1 1
det(ASAg) Z 27 det(ASA—Sr + €In) = W det(A—SrAS + €Ik)
1

; = T
¢ g det(As As +eli) = max 7o det(AsAg +eln)
! 1

2 k|(/€) |S|=k 2 k'(k:) ISI=k

> max
S|=

Thus, log P(S; A)~' > log(2"k!("})) = O(klog m). Note that in practice it is hard to set ¢ to be
exactly min|g|—x 02(Ag), but a small approximate value suffices.

G Experiments

We show full results on CompAct(s), CompAct, Abalone and Bank32NH datasets in Figure 2, 3, 4
and 5 respectively. We also run DVS-*, which is %—generalized DVS algorithm. We observe that
decreasing 8 sometimes helps but sometimes not. In Figure 5 we observe that optimization- or greedy-
based methods, while taking a huge amount of time to run, perform better than all sampling-based
methods, thus for these selection methods, one is not always superior than another.
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Figure 2: Results on CompAct(s). Note that Unif, Lev, PL and DVS use less than 1 second to finish
experiments.
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Figure 3: Results on CompAct. Note that Unif, Lev, PL and DVS use less than 1 second to finish
experiments.
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Figure 4: Results on Abalone. Note that Unif, Lev, PL and DVS use less than 1 second to finish
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Figure 5: Results on Bank32NH. Note that Unif, Lev, PL and DVS use less than 1 second to finish

experiments.
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