
A Partition Function

We recall two easily verified facts about determinants that will be useful in our analysis:

det(K + uv>) = det(K)(1 + u>K�1v), for K 2 GLn(R), (A.1)

am�n
det(AA>

+ aIn) = det(A>A+ aIm), for A 2 Rn⇥m
(n  m), and a > 0. (A.2)

The first one is known as matrix determinant lemma.

The partition function of P (·;A), happens to have a pleasant closed-form formula. Although this
formula is known [6], and follows immediately by an application of the Cauchy-Binet identity,
we present an alternative proof based on the perturbation argument for its conceptual value and
subsequent use.
Theorem 11 (Partition Function [6]). Given A 2 Rn⇥m where r(A) = n and n  |S| = k  m,
we have

X

|S|=k,S✓[m]

det(ASA
>
S) =

✓
m� n
k � n

◆
det(AA>

). (A.3)

Proof. First note that for n  |S| = k  m and any " > 0, by (A.2) we have

det(ASA
>
S + "In) =

1

"k�n
det(A>

SAS + "Ik)

Taking limits as " ! 0 on both sides we have

det(ASA
>
S) = lim

"!0

det(ASA
>
S + "In) = lim

"!0

1

"k�n
det(A>

SAS + "Ik).

Let us focus on det(A>
SAS + "Ik). We construct an identity matrix Im 2 Rm⇥m, then we have

det(A>
SAS + "Ik) = det(A>

SAS + "I>S IS) = det(A>
SAS + (

p
"IS)

>p"IS)

= det

 
ASp
"(Im)S

�> 
ASp
"(Im)S

�!
/ bP

✓
S;


Ap
"Im

�◆
.

(A.4)

In other words, this value is proportional to the probability of sampling columns from


Ap
"Im

�

using volume sampling. Therefore, using the definition of ek we have

1

"k�n

X

|S|=k,S✓[m]

det(A>
SAS + "Ik) =

1

"k�n
ek(A

>A+ "Im)

=

1

"k�n
ek(Diag([(�2

1

(A) + "), (�2

2

(A) + "), . . . , (�2

n(A) + "), ", . . . , "]))

=

✓
m� n

k � n

◆Yn

i=1

(�2

i (A) + ") +O(").

Now taking the limit as " ! 0 we obtain
X

|S|=k,S✓[m]

det(ASA
>
S) = lim

"!0

✓
m� n

k � n

◆Yn

i=1

(�2

i (A) + ") +O(") =

✓
m� n

k � n

◆
det(AA>

).

B Marginal Probability

Proof. The marginal probability of a set T ✓ [m] for dual volume sampling is

P (T ✓ S;A) =

P
S◆T,|S|=k det(ASA>

S)P
|S0|=k det(AS0A>

S0)
.

11

Theorem 11 shows how to compute the denominator, thus our main effort is devoted to the nominator.
We have X

S◆T,|S|=k

det(ASA
>
S) =

X

R\T=;,|R|=k�|T |

det(AT[RA
>
T[R)

Using the "-trick we have
X

R\T=;,|R|=k�|T |

det(AT[RA
>
T[R) = lim

"!0

X

R\T=;,|R|=k�|T |

det(AT[RA
>
T[R + "In)

= lim

"!0

1

"k�n

X

R\T=;,|R|=k�|T |

det(A>
T[RAT[R + "Ik).

By decomposing det(A>
T[RAT[R + "Ik) we have

det(A>
T[RAT[R + "Ik)

= det(A>
TAT + "I|T |) det

�
A>

RAR + "I|R| �A>
RAT (A

>
TAT + "I|T |)

�1A>
TAR

�
.

Now we let AT = QT⌃TV >
T be the singular value decomposition of AT where QT 2 Rn⇥r(AT),

⌃T 2 Rr(AT)⇥|T | and VT 2 R|T |⇥|T |. Plugging the decomposition in the equation we obtain
A>

RAT (A
>
TAT + "I|T |)

�1A>
TAR = A>

RQT⌃TV
>
T (VT⌃

>
T⌃TV

>
T + "I|T |)

�1VT⌃
>
TQ

>
TAR

= A>
RQT⌃T (⌃

>
T⌃T + "I|T |)

�1

⌃

>
TQ

>
TAR

= A>
RQT

2

6666664

�2
1(AT)

�2
1(AT)+"

0 . . . 0

0

�2
2(AT)

�2
2(AT)+"

. . . 0

...
...

. . .
...

0 0 . . .
�2
r(AT)(AT)

�2
r(AT)

(AT)+"

3

7777775
Q>

TAR

= A>
RQTQ

>
TAR � "A>

RQT

2

66664

1

�2
1(AT)+"

0 . . . 0

0

1

�2
2(AT)+"

. . . 0

...
...

. . .
...

0 0 . . . 1

�2
r(AT)

(AT)+"

3

77775
Q>

TAR.

Thus it follows that
A>

RAR+"I|R| �A>
RAT (A

>
TAT + "I|T |)

�1A>
TAR

= A>
R(I �QTQ

>
T)AR + "A>

RQT

2

664

1

�2
1(AT)+"

0 . . .

0

1

�2
2(AT)+"

. . .
...

...
. . .

3

775Q>
TAR + "I|R|

= B>
RBR + "C>

RCR + "I|R|,

where BR is the projection of columns of AR on the orthogonal space of columns of AT . Let
Q?

T 2 Rn⇥(n�r(AT)) be the complement column space of QT , then we have BR = (Q?
T)

>AR 2
R(n�r(AT))⇥|R|. Moreover,

CR =

2

664

1p
�2
1(AT)+"

0 . . .

0

1p
�2
2(AT)+"

. . .

...
...

. . .

3

775Q>
TAR 2 Rr(AT)⇥|R|.

We further let BTc = (Q?
T)

>ATc 2 R(n�r(AT))⇥(m�|T |) and

CTc =

2

664

1p
�2
1(AT)+"

0 . . .

0

1p
�2
2(AT)+"

. . .

...
...

. . .

3

775Q>
TATc 2 Rr(AT)⇥(m�|T |)

12

where Tc = [m]\T . Then we have
X

R\T=;,|R|=k�|T |

det(A>
T[RAT[R + "Ik)

= det(A>
TAT + "I|T |)

X

R\T=;,|R|=k�|T |

det(B>
RBR + "C>

RCR + "I|R|)

= det(A>
TAT + "I|T |)⇥ ek�|T |

0

B@

2

4
BTcp
"UTcp
"CTc

3

5

2

4
BTcp
"UTcp
"CTc

3

5
>
1

CA

where we construct an orthonormal matrix U 2 R(m�|T |)⇥(m�|T |) whose columns are basis vectors.

Since we are free to chose any orthonormal U , we simply let it be I . Let WTc =


ITc

CTc

�
, we have

0

B@

2

4
BTcp
"UTcp
"CTc

3

5

2

4
BTcp
"UTcp
"CTc

3

5
>
1

CA =

 
BTcp
"WTc

� 
BTcp
"WTc

�>!

= FTc 2 R(m+n�|T |)⇥(m+n�|T |)

The properties of characteristic polynomials imply that

ek�|T |(FTc) =

X

|S|=k�|T |

det((FTc)S,S)

=

X

S1,S2

det((FTc)S1,S1) det((FTc)S2,S2 � (FTc)S2,S1(FTc)
�1

S1,S1
(FTc)S1,S2)

where S
1

= S \ [r(BTc)] and S
2

= [m+ n� |T |]\S
1

. Further we have
X

S1,S2

det((FTc)S1,S1) det((FTc)S2,S2 � (FTc)S2,S1(FTc)
�1

S1,S1
(FTc)S1,S2)

=

X

S1,S2

"k�|T |�|S1|
det((BTc)S1(BTc)

>
S1
)⇥

det((WTc)S2(WTc)
>
S2

� (WTc)S2(BTc)
>
S1
((BTc)S1(BTc)

>
S1
)

�1

(BTc)S1(WTc)
>
S2
)

Hence it follows that

lim

"!0

1

"k�n

X

R\T=;,|R|=k�|T |

det(A>
T[RAT[R + "Ik) = lim

"!0

1

"k�n
det(A>

TAT + "I|T |)⇥ ek�|T |(FTc)

= lim

"!0

1

"k�n
"|T |�r(AT)

2

4
r(AT)Y

i=1

(�2

i (AT) + ")

3

5⇥
X

|S|=k�|T |

"k�|T |�|S1|
det((BTc)S1(BTc)

>
S1
)⇥

det((WTc)S2(WTc)
>
S2

� (WTc)S2(BTc)
>
S1
((BTc)S1(BTc)

>
S1
)

�1

(BTc)S1(WTc)
>
S2
)

(Since r(AT) + r(BTc) = n and |S
1

|  r(BTc))

= lim

"!0

1

"k�n
"|T |�r(AT)

2

4
r(AT)Y

i=1

(�2

i (AT) + ")

3

5⇥
X

|S|=k�|T |

"k�|T |�r(BTc)
det(BTcB

>
Tc
) det((WTc)S2(WTc)

>
S2

� (WTc)S2B
>
Tc
(BTcB

>
Tc
)

�1BTc(WTc)
>
S2
) +O(")

=

2

4
r(AT)Y

i=1

�2

i (AT)

3

5⇥
2

4
r(BTc)Y

j=1

�2

j (BTc)

3

5
X

S2

det((WTc)S2(WTc)
>
S2

� (WTc)S2B
>
Tc
(BTcB

>
Tc
)

�1BTc(WTc)
>
S2
)

13

where S
2

✓ [m+ n� |T |]\[r(BTc)] and |S
2

| = k � |T |� r(BTc).

Let QBTc
diag(�2

i (BTc))Q
>
BTc

be the eigenvalue decomposition of B>
Tc
BTc where QBTc

2
R|Tc|⇥r(BTc). Further, let Q?

BTc
be the complement column space of QBTc

, thus we have


Q>
BTc

(Q?
BTc

)

>

� ⇥
QBTc

Q?
BTc

⇤
= I|Tc| = In�|T |

Then for any S
2

✓ [m+ n� |T |]\[r(BTc)] we have
det((WTc)S2(WTc)

>
S2

� (WTc)S2B
>
Tc
(BTcB

>
Tc
)

�1BTc(WTc)
>
S2
) = det(WS2(In�|T | �QBTc

Q>
BTc

)(WTc)
>
S2
)

= det((WTc)S2(Q
?
BTc

(Q?
BTc

)

>
)(WTc)

>
S2
)

It follows thatX

S2

det(WS2(WTc)
>
S2

� (WTc)S2B
>
Tc
(BTcB

>
Tc
)

�1BTc(WTc)
>
S2
) = ek�|T |�r(BTc)

(WTc((Q
?
BTc

)

>Q?
BTc

)W>
Tc
)

= ET

Combining all the above derivations, we obtain that

Pr(T ✓ S|S ⇠ P (S;A)) =

hQr(AT)

i=1

�2

i (AT)

i
⇥
hQr(BTc)

j=1

�2

j (BTc)

i
⇥ �T

✓
n�m
k �m

◆
det(AA>

)

.

C Approximate Sampling via Volume Sampling

Corollary 12 (Approximate DVS via Random Projection). For any " > 0 and �
2

> 0 there is an
algorithm that, in time eO(

k2nm
�22

+

k7m
�62

), samples a subset from an approximate distribution eP (·;A)

with �
1

= max|S|=k(1 +
"

�2
min(AS)

)

n � 1 ⇡ n"
�2
min(AS)

and

eP (S;A)

(1 + �
1

)(1 + �
2

)

 P (S;A)  (1 + �
1

)(1 + �
2

)

eP (S;A); 8S ✓ [m].

It may happen in practice that n ⌧ m but k is of the same order as n. In such case we can transform
the dual volume sampling to slightly distorted volume sampling based on (A.2) and then take the
advantage of determinant-preserving projections to accelerate the sampling procedure.

Concretely, instead of sampling column subset S with probability proportional to det(ASA>
S), we

sample with probability proportional to a distorted value det(ASA>
S +"In) for small " > 0. Denoting

this distorted distribution as P"(S;A), we have

P"(S;A) =

1

"k�n
det(A>

SAS + "Ik) =
1

"k�n

nY

i=1

(�2

i (AS) + ").

Letting �
min

(AS) > 0 be the minimum singular value, we have

1 
Qn

i=1

(�2

i (AS) + ")Qn
i=1

(�2

i (AS))
 (1 +

"

�2

min

(AS)
)

n.

We further let
�
1

= max

|S|=k
(1 +

"

�2

min

(AS)
)

n � 1 ⇡ n"

�2

min

(AS)
,

when " sufficiently small. Sampling from P" will yield (1 + �
1

)-approximate dual volume sampling
(in the sense of [17] and our Theorem 12). We can sample from P" via volume sampling with

distribution bP (S;


Ap
"Im

�
). With the volume sampling algorithm proposed in [17], the resulting

running time would be eO(km4

).

To accelerate sampling procedure, we consider random projection techniques that preserve volumes.
[32] showed that Gaussian random projections indeed preserve volumes as we need:

14

Theorem 13 (Random Projection [32]). For any X 2 Rn⇥m, 1  k  m and 0 < �
2

 1/2, the
random Gaussian projection of Rm ! Rd where

d = O
✓
k2 log n

�2
2

◆
,

satisfies

det(X>
S XS)  det(

eX>
S
eXS)  (1 + �

2

) det(X>
S XS) (C.1)

for all S ✓ [n] and |S|  k where eX is the projected matrix.

This theorem completes what we need to prove Corollary 12.

Proof. (Corollary 12) The idea is to project


Ap
"Im

�
to a lower-dimensional space in a way that

the values for submatrix determinants are preserved up to a small multiplicative factor. Then we

perform volume sampling. We project columns of


Ap
"Im

�
, which is in Rm+n, to vectors in Rd

where d = O
⇣

k2
logm
�22

⌘
so as to achieve a (1 + �

2

) approximation by Theorem 13. Let G be a
d⇥ (m+ n)-dimensional i.i.d. Gaussian random matrix, then we have

G


Ap
"I

�
= GAA+

p
"G0

A (C.2)

where GA 2 Rd⇥n and G0
A 2 Rd⇥n are two independent Gaussian random matrix. The projected

matrix can be computed in O(dnm) =

eO(k2nmn/�2
2

) time. After that, if we use volume sampling
algorithm proposed in [17] the resulting running time would be O(kd3m) =

eO(k7m/�6
2

). Thus the
total running time would be eO(

k2nm
�22

+

k7m
�62

).

Remarks. An interesting observation is that the resulting running time is independent of �
1

, which
means one can set " arbitrarily small so as to make the approximation in the first step as accurate
as possible, without affecting the running time. However, in practice, a very small " can result in
numerical problems. In addition, the dimensionality reduction is only efficient if d < m+ n.

D Conditional Expectation

Proof. We use Aj denote the matrix A
[n]\{j},:, namely matrix A with row j deleted. We have

E
h
kA†

Sk2F | s
1

= i
1

, . . . , st�1

= it�1

i

=

X

(it,...,ik)2[m]

k�t+1

kA†
Sk2F

�!
P (s

1

= i
1

, . . . , sk = ik;A | s
1

= i
1

, . . . , st�1

= it�1

)

=

X

(it,...,ik)2[m]

k�t+1

kA†
Sk2F

�!
P (s

1

= i
1

, . . . , sk = ik;A)

�!
P (s

1

= i
1

, . . . , st�1

= it�1

;A)

=

P
(it,...,ik)2[m]

k�t+1 det(A{i1,...,ik}A
>
{i1,...,ik})kA

†
{i1,...,ik}k2FP

(it,...,ik)2[m]

k�t+1 det(A{i1,...,ik}A
>
{i1,...,ik})

=

Pn
j=1

P
(it,...,ik)2[m]

k�t+1 det(A
j
{i1,...,ik}(A

j
{i1,...,ik})

>
)

P
(it,...,ik)2[m]

k�t+1 det(A{i1,...,ik}A
>
{i1,...,ik})

While the denominator is the (unnormalized) marginal distribution P (T ✓ S | S ⇠ P (S;A)), the
numerator is the summation of (unnormalized) marginal distribution P (T ✓ S | S ⇠ P (S;Aj

)) for
j = 1, . . . , n. By Theorem 2 we can compute this expectation in O(nm3

) time.

15

Algorithm 2 Derandomized Dual Volume Sampling for Column Subset Selection.
Input: Matrix A 2 Rn⇥m to sample columns from, m  k  n the target size
Output: Set S such that |S| = k with the guarantee

kA†
Sk

2
F  m� n+ 1

k � n+ 1
kA†k2F ; kA†

Sk
2
2  n(m� n+ 1)

k � n+ 1
kA†k22

Initialize
�!
S as empty tuple

for i = 1 to k do
for j /2 �!

S do
Compute conditional expectation Ej = E

h

kA†
T k

2
F | t1 = s1, . . . , ti�1 = si�1, ti = j

i

with Corol-
lary 4.

end for
Choose j = argmin

j /2�!
S
Ej

�!
S =

�!
S � j

end for
Output

�!
S as a set S

E Greedy Derandomization

Theorem 14. Algorithm 2 is a derandomization of dual volume sampling that selects a set S of
columns satisfying

kA†
Sk2F  m� n+ 1

k � n+ 1

kA†k2F ; kA†
Sk22  n(m� n+ 1)

k � n+ 1

kA†k2
2

.

Proof. Observe that at each iteration t, we have

E
⇥kA†

T k2F | t
1

= s
1

, . . . , ti�1

= si�1

⇤

=

X
j /2�!

S

�!
P (ti = j|t

1

= s
1

, . . . , ti�1

= si�1

)E
h
kA†

T k2F | t
1

= s
1

, . . . , ti�1

= si�1

, ti = j
i
,

and we choose j such that E
⇥kA†

T k2F | t
1

= s
1

, . . . , ti�1

= si�1

, ti = j
⇤

is minimized. Since at the
beginning we have

E
⇥kA†

T k2F
⇤  m� n+ 1

k � n+ 1

kA†k2F ; T ⇠ P (T ;A),

it follows that the conditional expectation satisfies

E
⇥kA†

T k2F | t
1

= s
1

, . . . , ti�1

= si�1

, ti = j
⇤  m� n+ 1

k � n+ 1

kA†k2F .

Hence we have

kA†
Sk2F = E

⇥kA†
T k2F | t

1

= s
1

, . . . , tk�1

= sk�1

, tk = sk
⇤  m� n+ 1

k � n+ 1

kA†k2F .

Further, by using standard bounds relating the operator norm to the Frobenius norm, we obtain

kA†
Sk22  kA†

Sk2F  m� n+ 1

k � n+ 1

kA†k2F  n(m� n+ 1)

k � n+ 1

kA†k2
2

.

F Initialization

Set " = min|S|=k �
2

n(AS) > 0, whereby

det(ASA
>
S + "In) = "n�k

det(A>
SAS + "Ik) / V olSmpl

�
S; [A> p

"Im]

>�.

16

The rhs is a distribution induced by volume sampling. Greedily choosing columns of A one by one
gives a k! approximation to the maximum volume submatrix [15]. This results in a set S such that

det(ASA
>
S) �

1

2

n
det(ASA

>
S + "In) =

1

2

n"k�n
det(A>

SAS + "Ik)

� max

|S|=k

1

2

nk!"k�n
det(A>

SAS + "Ik) = max

|S|=k

1

2

nk!
det(ASA

>
S + "In)

� 1

2

nk!
�m
k

�
X

|S|=k

det(ASA
>
S + "In) � 1

2

nk!
�m
k

�
X

|S|=k

det(ASA
>
S).

Thus, logP (S;A)

�1 � log(2

nk!
�m
k

�
) = O(k logm). Note that in practice it is hard to set " to be

exactly min|S|=k �
2

n(AS), but a small approximate value suffices.

G Experiments

We show full results on CompAct(s), CompAct, Abalone and Bank32NH datasets in Figure 2, 3, 4
and 5 respectively. We also run DVS-*, which is 1

⇤ -generalized DVS algorithm. We observe that
decreasing � sometimes helps but sometimes not. In Figure 5 we observe that optimization- or greedy-
based methods, while taking a huge amount of time to run, perform better than all sampling-based
methods, thus for these selection methods, one is not always superior than another.

k
100 150 200

Er
ro
r

0.15

0.2

0.25

0.3

0.35

0.4
Prediction Error

Unif
Lev
PL
Smpl
Greddy
DVS-1
DVS-5
DVS-20
Fedorov

k
100 150 200

Se
co
nd
s

0

20

40

60

80

100
Running Time

Seconds
0 10 20 30 40 50

Er
ro
r

0.19

0.2

0.21

0.22

0.23

0.24

0.25

0.26

0.27
Time-Error Trade-off

Figure 2: Results on CompAct(s). Note that Unif, Lev, PL and DVS use less than 1 second to finish
experiments.

k
100 150 200

Er
ro
r

0.15

0.2

0.25

0.3

0.35

0.4
Prediction Error

Unif
Lev
PL
Smpl
Greddy
DVS-1
DVS-5
DVS-20
Fedorov

k
100 150 200

Se
co
nd
s

0

50

100

150

200

250

300
Running Time

Seconds
0 10 20 30 40 50

Er
ro
r

0.18

0.19

0.2

0.21

0.22

0.23

0.24

0.25

0.26
Time-Error Trade-off

Figure 3: Results on CompAct. Note that Unif, Lev, PL and DVS use less than 1 second to finish
experiments.

17

k
100 150 200

Er
ro
r

0.215

0.22

0.225

0.23

0.235

0.24

0.245

0.25
Prediction Error

Unif
Lev
PL
Smpl
Greddy
DVS-1
DVS-5
DVS-20
Fedorov

k
100 150 200

Se
co
nd
s

0

10

20

30

40

50

60

70

80
Running Time

Seconds
0 10 20 30 40 50

Er
ro
r

0.22

0.222

0.224

0.226

0.228

0.23

0.232
Time-Error Trade-off

Figure 4: Results on Abalone. Note that Unif, Lev, PL and DVS use less than 1 second to finish
experiments.

k
100 150 200

Er
ro
r

0.6

0.65

0.7

0.75

0.8

0.85

0.9
Prediction Error

Unif
Lev
PL
Smpl
Greddy
DVS-1
DVS-5
DVS-20
Fedorov

k
100 150 200

Se
co
nd
s

0

200

400

600

800

1000
Running Time

Seconds
0 10 20 30 40 50

Er
ro
r

0.64

0.65

0.66

0.67

0.68

0.69

0.7
Time-Error Trade-off

Figure 5: Results on Bank32NH. Note that Unif, Lev, PL and DVS use less than 1 second to finish
experiments.

18

