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A Proof of Theorem 1

∇θ\jZ1 = ∇θ\j

∫
p̃\j(w)lj(w)

tdw

=

∫
(ϕ(w)−∇θ\jgt(θ

\j))p̃es
\j
(w)lj(w)

tdw

=

∫
ϕ(w)p̃es

\j
(w)lj(w)

tdw −∇θ\jgt(θ
\j)

∫
p̃es

\j
(w)lj(w)

tdw

Using the definition Z2 =
∫
p̃es

\j
(w)(lj(w))

tdw, and η = ∇θgt(θ),

∇θ\jZ1 = ηZ2 − η\jZ2

Therefore,

η = η\j +
1

Z2
∇θ\jZ1.

B Proof of Theorem 2

Here, we consider a one-dimensional case, but we can consider this in the same way as for a
multivariate case. Considering the unnormalized t-exponential family, expt(⟨Φ(w), θ⟩ − g), and g
is a constant, not a true log partition function. We integrate this expression as follows,∫ ∞

−∞
expt(⟨Φ(w), θ⟩ − g)dw =

∫ ∞

−∞
(1 + Ψ(−2µ⊤Kw + w⊤Kw)− (1− t)g)

1
1−t dw

=

∫ ∞

−∞
(1−Ψµ⊤Kµ− (1− t)g +Ψ(w − µ)⊤K(w − µ))

1
1−t dw

= (1−Ψµ⊤Kµ− (1− t)g)
1

1−t

∫ ∞

−∞

(
1 +

Ψ(x− µ)⊤K(x− µ)

1−Ψµ⊤Kµ− (1− t)g

) 1
1−t

dw

Here, for simplicity, we put (1−Ψµ⊤Kµ− (1− t)g) = A, and use the formula,
∫∞
0

xm

(1+x2)n dx =
1
2B
(
2n−m−1

2 , m+1
2

)
, where B denote the beta function. We can get the expression,∫ ∞

−∞
expt(⟨Φ(w), θ⟩ − g)dw =

1

2
B
( 3− t

2(t− 1)
,
1

2

)(Ψ
A
K
)− 1

2

A
1

1−t
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We can proceed with the calculation by using the definition ofΨ,B(x, y) = Γ(x)Γ(y)
Γ(x+y) , andΓ( 12 ) =

√
π

as follows, ∫ ∞

−∞
expt(⟨Φ(w), θ⟩ − g)dw = Ψ−

(
1
2+

1
1−t

)
A

1
2+

1
1−t

Here, by using the definition ofA and the true log partition function gt(θ) = 1
1−t

(
1−Ψ(µ⊤Kµ+1)

)
,

A
1
2+

1
1−t = (1−Ψµ⊤Kµ− (1− t)g)

1
2+

1
1−t

= (Ψ + (1− t)(gt(θ)− g))
1
2+

1
1−t

= Ψ
1
2+

1
1−t (1 + (1− t)(gt(θ)− g)/Ψ)

1
2+

1
1−t

Therefore, by substituting this expression into the above integral result, we get the following.∫ ∞

−∞
expt(⟨Φ(w), θ⟩ − g)dw =

(
expt(gt(θ)/Ψ− g/Ψ)

) 3−t
2

C Deriving the Marginal likelihood

ZEP =

∫
p(0)(w)⊗t

∏
i

⊗t l̃i(w)dw

=

∫
expt

(∑
i

logt C̃i + ⟨Φ(w), θ⟩ − gpriort (θ)
)
dw

=

(
expt

(∑
i

logt C̃i/Ψ+ gt(θ)/Ψ− gpriort (θ)/Ψ
)) 3−t

2

.

D Bayes Point Machine

In this section, we show the details of the update rule of ADF and EP for the Bayes point machine.

D.1 ADF update rule for BPM

The detailed update rules of ADF for BPM in t-exponential family are derived [1].

µi = Eq[w] = µi−1 + αyiΣ
i−1xi (1)

Σi = Eq[ww
⊤]− Eq[w]Eq[w

⊤] = rΣi−1 − (Σi−1xi)

(
αyi⟨xi, µi⟩
x⊤i Σ

i−1xi

)
(Σi−1xi)

⊤, (2)

where q̃i(w) ∝ p̃i(w)
t, qi(w) ∝ p̃i−1(w)

t(li(w))
t, and

z =
yi⟨xi, µi−1⟩√
x⊤i Σ

i−1xi
(3)

Z1 =

∫
p̃i−1(w)(li(w))

tdw = ϵt + ((1− ϵ)t − ϵt)

∫ z

−∞
St(x; 0, 1, v)dx (4)

Z2 =

∫
q̃i−1(w)(li(w))

tdw = ϵt + ((1− ϵ)t − ϵt)

∫ z

∞
St(x; 0, v/(v + 2), v + 2)dx (5)

r =
Z1

Z2
(6)

α =
((1− ϵ)t − ϵt)St(z; 0, 1, v)

Z2

√
x⊤i Σ

i−1xi
(7)
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D.2 EP update rule for BPM

As for the EP update rule, natural parameters of Student-t distribution St(w; v, µ,Σ) is [θ1, θ2],

θ1 = −2
ΨKµ

1− t
(8)

θ2 =
ΨK

1− t
(9)

where, K = (vΣ)−1. From these, we can calculate EP update rules through ΨKµ and ΨK.
For the BPM, we consider that the whole approximation is k-dimensional St(w;mw, Vw, v), and the
site approximation as one-dimensional Student-t like function, expt(⟨Φ(w), θ⟩), where ⟨Φ(w), θ⟩ =
Ψi

1−t

(
(w⊤xi)

⊤(vσi)
−1(w⊤xi)− 2mi(ṽσi)

−1(w⊤xi)
)
∝ Ψi

1−t ṽ
−1σ−1

i (w⊤xi −mi)
2.

Note that the whole posterior approximation is the k-dimensional, but the site approximation is the
one-dimensional, therefore the degree of freedom are different from the total approximation and the
site approximation to make t consistent. The relation between v, ṽ, and t is given as

1

t− 1
=
v + k

2
=
ṽ + 1

2
. (10)

We denote by Ψi and Ki the Ψ and K which is related to site i. Here, since σi is scalar, we ca
express Ki = (ṽσi)

−1. If we express Ψ = (α/|Σ|1/2)1−t, then we ca express Ψi = (αi/σ
1/2
i )1−t.

We denote by Ψw and Kw Ψ and K of whole approximation.
Let us consider the update of site j. The first step is calculation of cavity distribution, which can be
done by

Ψ\jK\j = Ψw(vVw)
−1 −Ψj(ṽσi)

−1xjx
⊤
j , (11)

Ψ\jK\jm\j = Ψw(vVw)
−1mw −Ψj(ṽσi)

−1mjxj . (12)

Next step is moment matching. This is calculated in the same way as the ADF update rules. To
use the ADF update rule, we have to convert Ψ\jK\j and Ψ\jK\jm\j to V \j and m\j , which are
covariance matrix and mean of cavity distribution. When calculating V \j from Ψ\jK\j , we have to
be careful that Ψ\j contains the determinant of V \j . From the definition,

Ψ\jK\j =
( αj

|V \j |1/2
)1−t

(vV \j)−1. (13)

Since αj and v is the constant, when we put V \j−1

|V \j |(1−t)/2 = B, following relation holds,

|V \j | =
(
|B| 1k

) 1
t−1
2

− 1
k . (14)

Using this relation, we get V \j and m\j .
After moment matching, we get Vnew and mnew. Next step is the exclusion step of site other than j.
This step is calculated in the same way as the step of cavity distribution.

ΨjKj = ΨnewKnew −Ψ\jK\j , (15)
ΨjKjm̃j = ΨnewKnewmnew −Ψ\jK\jm\j . (16)

To update site parameters, we have to convert ΨjKj and ΨjKjm̃j into σj and mj , which are scalar
values. This can be done easily by using the fact that Kj is proportional to σ−1

j xjx
⊤
j .

These steps are the update rules for the site approximation. We have to iterate these steps until site
parameters converge.

E Expectation Propagation for Student-t Process Classification

In this section, we show the details of the derivation of EP for the Student-t process classification.
The derivation procedure is similar to that of the Gaussian process [5, 4, 2, 3].
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E.1 Deriving Update Rules for Student-t Process Classification

In this subsection, we show the detailed derivation of the update rules for the Student-t process
classification. We denote the prior as p(f |X). In the case of Gaussian process, the prior distribution
is the multivariate Gaussian distribution whose covariance is specified by the kernel function. In
the case of Student-t process, the prior distribution is the multivariate Student-t distribution which
is specified by the covariance kernel k(x, x) and the degree of freedom v. The posterior distribution
is given by p(f |X, y) = 1

Z p(f |X)
∏

i p(yi|fi), where the marginal likelihood is given as Z =

p(y|X) =
∫
p(f |X)

∏
i P (yi|fi)df in the i.i.d. situation. In this paper, we consider a binary

classification, and we use
p(yi|fi) = li(fi) = ϵ+ (1− 2ϵ)Θ(yifi). (17)

This is actually the same as BPM, where the input to step function is given as a linear model. In
the Student-t process, the input is given as the nonlinear probabilistic process. In this setting, the
posterior is intractable. Therefore, we have to approximate it.
Following the EP framework, we approximate the posterior consisting from site approximation. We
define the factorizing term that corresponds to data i as follows.

l̃i(fi|C̃i, µ̃i, σ̃
2
i ) := C̃i ⊗ St(fi; µ̃i, σ̃

2
i , ṽ) (18)

For simplicity, we express the unnormalized Student-t like function by St(fi; µ̃i, σ̃
2
i , ṽ). This is equiv-

alent to expt(⟨Φ(fi), θ⟩), where ⟨Φ(fi), θ⟩ = Ψi

1−t (f
⊤
i Kifi − 2µ̃⊤

i Kifi) = Ψi

1−t (f
⊤
i (vσ̃i)

−1fi −
2µ̃⊤

i (vσ̃i)
−1fi). These data corresponding factorizing terms are one-dimensional. Note that the

whole posterior approximation is the k-dimensional, and site approximation is the one dimensional,
the same relation as in the BPM between v, ṽ, and t holds as 1

t−1 = v+k
2 = ṽ+1

2 .

The q products of this data corresponding term can be expressed as follows:∏
i

⊗t l̃i(fi) = St(µ̃, Σ̃, v)⊗t

∏
i

⊗tC̃i (19)

Here, we used the property that q products of Student-t distribution become a Student-t distribution.
In the above expression, µ̃ is the vector of µ̃i and Σ̃ is the diagonal and following relations are given,

K̃−1 = (vΣ̃), (20)
Ψ̃K̃ = diag(Ψ1K1 . . .ΨnKn), (21)

where Ψ̃ =

(
Γ((v + k)/2)

(πv)k/2Γ(v/2)|Σ̃|1/2
.

)1−t

. (22)

Therefore, the total form of the approximation of the posterior can be expressed as follows.

q(f |X, y) = St(µ,Σ, v) ∝ p(f |X)⊗t

(∏
i

⊗t l̃i(fi)
)

(23)

From this following relations are obtained,

ΨK = Ψ0K0 + Ψ̃K̃, (24)
ΨKµ = Ψ̃K̃µ̃. (25)

We consider the case that we update site i. For implementation, natural parameter based update rule
is preferable. Therefore we define the parameter as follows,

τ̃i = Ψ̃iK̃i, (26)

which is the (i,i) element of Ψ̃K̃. We also define,

ν̃i = Ψ̃iK̃iµ̃i. (27)
For the cavity distribution, we define in the same way as,

τ−i = Ψ−iσ
−2
−i ṽ

−1, (28)
ν−i = τ−iµ−i. (29)
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The first step is to calculate the cavity distribution, we eliminate the effect of site i. To do so, we first
integrate out non i terms by using the following formula. Let X and Y are random variable that obey
the Student-t distribution,(

X
Y

)
∼ St

((
µx

µy

)
,

(
Σxx Σxy

Σyx Σyy

)
, v

)
. (30)

The marginal distribution X is given as,
X ∼ St

(
µx,Σxx, v

)
(31)

By utilizing the above formula, we get

q−i(fi) ∝
∫
p(f |X)⊗t

∏
j ̸=i

⊗tlj(fj)dfj (32)

∝ St(µi, σ
2
i , v). (33)

where, µi is the ith element of µ and σ2
i is the (i, i) element of Σ. In the above expression, the

degree of freedom is v in both the joint distribution and marginal distribution. This is unfavorable
for our Student-t process. To make the EP procedure consistent with t, we approximate as q−i(fi) ∝
St(µi, σ

′2
i , ṽ), σ′2

i = σ2
i v/ṽ. This is because for a one-dimensional Student-t distribution, its

variance is given by (vσ2
i )

−1, and in this case, ṽ > v, approximation by σ′2
i = σ2

i would result in
the underestimate of the variance.
We calculate the cavity distribution in the following way,

τ−i = ṽ−1σ′−2
i Ψi − τ̃i, (34)

ν−i = ṽ−1σ′−2
i Ψiµi − ν̃i. (35)

Next step is the inclusion of data i to the approximate posterior. This can be done in the same way
of BPM. To derive the update rule, we have to convert τ−i and ν−i into σ2

−i and µ−i. In this case,
the site approximations are one-dimensional, following relation holds,

µ̂i = µ−i + σ2
−iα, (36)

σ̂2
i = σ2

−i(r − αµ̂i), (37)

where α =

(
(1− ϵ)t − ϵt

)
St(z :, 0, 1, ṽ)

Z2

√
σ2
−i

and z =
yiµ−i√
σ2
−i

, (38)

where the definition of Z2 and r is same as that of BPM. By using σ2
−i and µ−i, we can include the

data i information.
After the data inclusion step, we exclude the effect other than data i. The calculation of this step can
be done in the same way as that of cavity distribution,

τ̃newi = ṽ−1σ̂−2
i Ψ̂i − τ̃−i, (39)

ν̃newi = ṽ−1σ̂−2
i Ψ̂iµ̂i − ν̃−i. (40)

From this τ̃newi , we can update Ψ̃K̃. Since Ψ̃K̃ is the diagonal matrix, we just update (i, i) element
of Ψ̃K̃.
As a final step, we have to update Σ. To circumvent the calculation of inverse matrix, we put

∆τ = −τ̃newi − τ̃−i + ṽ−1σ̂−2
i Ψ̂i (41)

From this, update of ΨK is given as,
ΨnewKnew = ΨoldKold +∆τeie

⊤
i (42)

whereKnew = (vΣnew)−1 andKold = (vΣold)−1. Here, Σnew is the after the update of Σ and Σold

is the before the update of Σ and ei is the unit vector of i th direction. By using the matrix formula,
that is, for matrix A and B, (A−1 + B−1)−1 = A − A(A + B)−1A, we can get the following
expression,

Ψ−1newvΣnew = Ψ−1oldvΣold − ∆τ

1 + ∆τΨ−1oldvΣold
sis

⊤
i , (43)

where si is the i’s column of Ψ−1oldvΣold. From Ψ−1newvΣnew, we can get Σnew.
These are the update rule of site i. We iterate these steps until parameters converge.
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E.2 Hyperparameter Learning

In this subsection, we refer how to derive hyperparameters, such as the wave-length of covariance
functions.
In the usual exponential family and Gaussian process, the hyperparameters can be derived by gradient
descent for the marginal log likelihood after the EP updates end. Following the discussion [2], we
can derive almost the same expression for the gradient of logt Z

2
3−t

EP . When we consider the gradient
of hyperparameter ψi,

∂ logt Z
2

3−t

EP

∂ψj
= η⊤

∂θprior
∂ψj

− η⊤prior
∂θprior
∂ψj

+
∑
i

∂ logt C̃i

∂ψj
(44)

where, θprior is the natural parameters of prior distribution and ηprior is the expected sufficient
statistics of the prior distribution.

E.3 Prediction Rule

In this subsection, we refer to the method of deriving the prediction for the Student-t process
classification. After the EP updates end, we will obtain the expression of the approximate posterior
distribution as q(f |X, y) = St(µ,Σ, v).
When a new point x∗ is given, we would like to predict its label y∗. First we calculate the latent
variable f∗ of x∗. To get the expression of f∗, we use the following lemma [6]

Lemma 1 If X ∼ St(µ,Σ, v), and x1 ∈ Rn1 , x2 ∈ Rn2 express the first n1 and remaining n2
entries of X respectively. Then

x2|x1 ∼ St
(
µ̃2,

v + β1
v + n1

× Σ̃22, v + n1

)
, (45)

where µ̃2 = Σ21Σ
−1
11 (x1 − µ1) + µ1, Σ̃22 = Σ22 − Σ21Σ

−1
11 Σ12, β1 = (x1 − µ1)

⊤K−1
11 (x1 − µ1).

We consider the following expression,

p(f̃ |X,x∗) =
∫
p(f̃ |f, x∗)p(f |X)df. (46)

The mean of p(f̃ |X,x∗) is given by

E[f̃ ] =

∫
E[p(f̃ |f, x∗)]p(f |X)df (47)

=

∫
k⊤Σ−1fp(f |X)df (48)

= k⊤Σ−1µ (49)

where, k = [k(x∗, x1), . . . k(x
∗, xn)]

⊤. Therefore strict classification of x∗ is given by

sign
(
E[f̃ ]

)
= sign

(
k⊤Σ−1µ) (50)

Using this expression, we get the decision boundary.

F Experimental setting

We use four datasets from the UCI repository which are widely used for binary classification. We
used the cross validation to select the degree of freedom. The range of cross validation for degree of
freedom is from 5 to 15.
As discussed in E.2, we derived hyperparameters in the kernel by gradient descent method, especially
we used Adam.
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