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A Density Evolution of SVGD Dynamics

A.1 Proof of Lemma[3.1]

Proof. Recall that g(x,z') = Sg"l @ k(2',z), and @7, ,(2) = Eprnp[g(z, 2)], we have Ty, ,(x) =
x + €Eyprnplg(z, 2')]. Therefore,

||Tu7p(l") - Tu7p(y)||2

| Ty, plILip = max
zFy

|z — yll2
- ]E:v’N ) ") — ) !
= o 1T =Y+ Banplg(@, 2) — g(y, 2)]]l2
Yy |z — yll2
<1+ €llgllLips (A1)

and for V z,
T pup(2) = Top(@)ll2 = €l|Barnpg(z,2') — Eornvg(z, 2')||2 < ellgllsL BL(p, v).  (A2)

For any h with ||h||g1, = max(||h||ec, ||R||Lip) < 1, we have

[Ea, ) [P] = B, ) [1]]

= |Eu[h ol —Eyfho Tu,p”

< |EuhoTup —EBulhoTpypl| + [Eu[hoT,p] —Ey[hoTy,)|
We just need to bound these two terms. For the first term,

’E“[h © Tu,p] —E,[ho Tu.,pH <|lho Tu,pHBL BL(p, v)

< max (HhHom ||h||LipHTmp||Lip) BL(p, v)
< (1+ €||g||Lip)BL(p, v),  //by Equation[A.T]

For the second term,
|IE,,[h oT, ] —Ey[ho T,,,p]| < max |h oT, p(x)—ho T,,,p(:v)|
< [Plleip max [T p(2) = T p (@)l
< €l|g||sL BL(p, v), /by Equation[A.2]

Therefore,

BL(®, (), ®,(v)) < (1 + €llgllLip + €llgllBL) BL(u, v) < (1 + 2¢€[|g[sr) BL(x, v).
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A.2  Proof of Theorem

Proof. Denote by pi, = pp° for notation convenience.
KL(pega [ vp) = KL(pee || v)

= KL(T,, it || vp) — KL(pe [ vp)

=KL(ue || T M oVp) — KL(ue || vp) /by Lemma[A7]

= —Esp, [logp(Ty, p(2)) + log det(VTy,, ,(x)) — log p(z)]. (A3)
Note that T, ,(v) = = + e}, ,(z). We have the follow version of Taylor approximation:

2
log p(x) = 10g (T, (7)) < =€V logp(e) @}, ,(2) + FIIVIogplluis - 18], 4l (A4)
This is because, deﬁning Ty =z + sed,,, ,(v),Ys €[0,1],
log p(x) —1og p(T i, p (%))

/ Vs logp(zs)d

_ / V. logp(zs) " (e, (x)) ds
0
1
= eV, logp(z) T, () / (V. log plzs) — Vs logp(e)) T (et ,(2))ds
0
1
< eV, 1ogp(a) 9], p(0) + €IV Iogpluiy 18], @I [ sds
0

2
€ *
=~V logp(a) ¢y, ,(z) + 5\|V10gp\|Lip'H%[,p(x)ﬂa

where we used the fundamental theorem of calculus, which holds for weakly differentiable functions
[20, Theorem 3.60, page 77]. In addition, Take B = V¢Z£’p(x) in bound (A.9) of Lemma and

take e < 1/(2p(B + B")), we have
log |det(VTy, »(2))| = € tr(Vay, ,(x)) — 26|V, ,(2)||%

—GV ¢Mg p( ) 262||v¢;w p( )||2F (AS)
Combining (A-4) and (A23) gives

KL(pte41 || Vp) — KL (e || Vp) < —€Ey, [S ¢M p] + A
= —eD(ue || v)* + A,

where A is a residual term:
1 .
A= EBpnyy [2IIV10gpllLip Ny, (@)1 + 21V, (o)l F

We need to bound ||¢;,, p( )|z and ||V, ,(x)||F. This can be done using the reproducing property:
let ¢, , = [¢1, - ,da] ; recall that ¢; € Ho and @', € H = H{, then

He,p
¢i(x) = (Di(), k(x, Nros O, 0il@) = (Di(1), O, k(@, )2,  Vij=1,....d, z€X.
Also note that ||y, |5, = > | p3]15,, = D(pe || vp)?, we have by Cauchy-Swarchz inequality,

d
16, ()13 = Zaﬁi(m)Q

—Z ()0)?
<Z|Ik Wit - 103l

= k(fv,x) 7l
= k(z,2)  D(pe || vp)?,



and

IV, (@[5 = Zﬁ% ¢i(x)?
72 (On, k(. -), $i())no)?
<leaz7k N, - il
—Zaw 2,0 ) amar - 11l 3,

= vxm/k(zaz) : H(b/w,p |§-L

= Vawk(z,z) - D(pe || vp)?. (A.6)
Therefore,
1
82 Dl |5 Eoms 17 10g plhigh(z,2) + 2V k(o)
= RD (e || vp)*.
This gives

KL(pes1 [ vp) = KL(pe [| vp) < =€ (1= eR) D(pae || v)*.

O

Lemma A.1. Let B be a square matrix and ||B||p = \/3_,; b}, its Frobenius norm. Let ¢ be a
positive number that satisfies 0 < € < m, where p(-) denotes the spectrum radius. Then
I + €(B + BT) is positive definite, and

B|[?
log | det (I B>tB—2||—F. A7
Ogl e( +e€ )|_er() elfep(BJrBT) (A7)

Therefore, take an even smaller € such that 0 < e < m, we get

log | det(I + eB)| > etr(B) — 2¢2|| B||%. (A.8)

Proof. When e < m, we have p(I+e(B+B")) >1—ep(B+B") > 0,50 +e(B+BT)

is positive definite.

By the property of matrix determinant, we have

1
log | det(I + eB)| = ilogdet((I—i-eB)(I—I— eB)")
1
=3 logdet(I +¢(B+ B")+¢BB")
1
> ilogdet(I—I—e(B—i-BT)L (A.9)

where (A.T0) holds because both I + ¢(B + BT) and e2BB" are positive semi-definite.
Let A= B+ B'. We can establish

2 A 2
log det(I + eA) > etr(A) — & ||A]I%



which holds for any symmetric matrix A and 0 < e < 1/p(A). This is because, assuming {); } are
the eigenvalues of A,

logdet(I + €A) — etr(A) = Z[log(l +eX;) — €A

i

1
EAi
= ———ds —€\;
Z[/O 14 se); 5~ Al
——Z/ 862)\2

- 1—1—36/\

€2\? !

> — —_t d
- ;lfemaxi|/\i| 0 s

€2\?
> _ 3
- 21:2(1—6maxi\)\i|)

_e Al

2 1—ep(A)
Take A= B + B in (A1) and combine it with (A-10), we get

1
log | det(I + €¢B)| > 3 logdet(I +¢(B+B"))

€ e ||IB+BT|J2
> _tr(B+B")—- ——_"— '~ WF
=5 BB ) = T B BT
B 2
26'61‘(3)*62 H HF

1—ep(B+BT)’
where we used the fact that tr(B) = tr(BT) and ||[B+ B"||r < ||B||r + ||BT||r = 2||B||r. O
Lemma A.2. Let T be a one-to-one map, and v and v two probability measures. We have
KL(Ty || v) = KL(u || v),
given that the KL divergence between i and v exists.

Proof. We prove this for f-divergence in general, which includes KL divergence as a special case.
Given a convex function f such that f(1) = 0, the f-divergence is defined

Dy | v) = B 7 (T2

Assume f* is the convex conjugate of f, we have a variational representation for f-divergence:
Dy(pullv) = Sup {E.lg(2)] = Eu[f(g9(2))]},
where g is over the set of all measurable functions. Therefore, we have
Dy(Tpllv) = Sup {Eulg o T(2)] — B [f"(g(x))]}

= sup {Eu[g(2)] =E.[f*(goT ' (2))]}  //MDefine j=goT.

=Dy(u|| T v).

A.3  Proof of Fokker-Planck Equation (13)

Proof. Recall that T, ,(z) = = + €@, ,(z) and we denote by ¢ the density of measure 1. Assume €

is sufficiently small so that VT, (z) = I + eV, ,(z) is positive definite (See Lemma|A.1). By
the implicit function theorem, we have

T;;)(x) =z — e¢;p(x) + o(e).



Therefore We have
log ¢ (z) = log q(T;;(x)) + log det(VxT;;,(x))
=logq(z —e- ¢Z,p(ff)) + logdet(I — eVm¢>z’p(x)) + o(e)
=logq(z) — Vg, logq(z) " ¢}, , () — eq(z) - tr(Vaby, ,(2)) + o(e)
= logq(z) — eSQQSZ,p(a:) + o(e).

Therefore,
q'(x) 6— q(z) _ q(log Q(x)e—long)) +ofe)
= —q(2)Sg9g, ,(x) + o(e)
==V (g, p(@)a(x)) + o(e).
Taking € — 0 gives the result. O

A.4 Proof of Theorem 3.3

Proof. Since ¢’ = q + ¢fdt is equivalent to transforming the variable by T'(z) = = + P, pdt, the
corresponding change on KL divergence is

F(q+ qfdt) = F(q) + Eg[Spth, ¢]dt
= F(q) + (9gp ¥ p)ndl
=F(q) +(V - (9,,9), V- (¥, 19))qn,dt
= F(q) +(V - (¢3,9), ¢f)qn,dt
This proves that V - (¢, ,q) is the covariant functional gradient. O
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