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Abstract

In this paper, we propose to adopt the diffusion approximation tools to study the
dynamics of Oja’s iteration which is an online stochastic gradient descent method
for the principal component analysis. Oja’s iteration maintains a running estimate
of the true principal component from streaming data and enjoys less temporal
and spatial complexities. We show that the Oja’s iteration for the top eigenvector
generates a continuous-state discrete-time Markov chain over the unit sphere. We
characterize the Oja’s iteration in three phases using diffusion approximation and
weak convergence tools. Our three-phase analysis further provides a finite-sample
error bound for the running estimate, which matches the minimax information
lower bound for principal component analysis under the additional assumption of
bounded samples.

1 Introduction

In the procedure of Principal Component Analysis (PCA) we aim at learning the principal leading
eigenvector of the covariance matrix of a d-dimensional random vector Z from its independent
and identically distributed realizations Z1, . . . ,Zn. Let E[Z] = 0, and let the eigenvalues of Σ be
λ1 > λ2 ≥ · · · ≥ λd > 0, then the PCA problem can be formulated as minimizing the expectation of
a nonconvex function:

minimize −w>E
[
ZZ>

]
w,

subject to ‖w‖ = 1,w ∈ Rd,
(1.1)

where ‖ · ‖ denotes the Euclidean norm. Since the eigengap λ1 − λ2 is nonzero, the solution to
(1.1) is unique, denoted by w∗. The classical method of finding the estimator of the first leading
eigenvector w∗ can be formulated as the solution to the empirical covariance problem as

ŵ(n) = argmin
‖w‖=1

−w>Σ̂(n)w, where Σ̂(n) ≡ 1

n

n∑
i=1

Z(i)
(
Z(i)

)>
.

In words, Σ̂(n) denotes the empirical covariance matrix for the first n samples. The estimator ŵ(n)

produced via this process provides a statistical optimal solution ŵ(n). Precisely, [43] shows that the
angle between any estimator w̃(n) that is a function of the first n samples and w∗ has the following
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Figure 1: Left: an objective function for the top-1 PCA, where we use both the radius and heatmap to
represent the function value at each point of the unit sphere. Right: A quiver plot on the unit sphere
denoting the directions of negative gradient of the PCA objective.

minimax lower bound

inf
w̃(n)

sup
Z∈M(σ2

∗,d)

E
[
sin2 ∠(w̃(n),w∗)

]
≥ c · σ2

∗ ·
d− 1

n
, (1.2)

where c is some positive constant. Here the infimum of w̃(n) is taken over all principal eigenvector
estimators, andM(σ2

∗, d) is the collection of all d-dimensional subgaussian distributions with mean
zero and eigengap λ1 − λ2 > 0 satisfying λ1λ2/(λ1 − λ2)2 ≤ σ2

∗. Classical PCA method has time
complexity O(nd2) and space complexity O(d2). The drawback of this method is that, when the
data samples are high-dimensional, computing and storage of a large empirical covariance matrix can
be costly.

In this paper we concentrate on the streaming or online method for PCA that processes online data
and estimates the principal component sequentially without explicitly computing and storing the
empirical covariance matrix Σ̂. Over thirty years ago, Oja [30] proposed an online PCA iteration that
can be regarded as a projected stochastic gradient descent method as

w(n) = Π
[
w(n−1) + βZ(n)(Z(n))>w(n−1)

]
. (1.3)

Here β is some positive learning rule or stepsize, and Π is defined as Πw = ‖w‖−1w for each
nonzero vector w, namely, Π projects any vector onto the unit sphere Sd−1 = {w ∈ Rd | ‖w‖ = 1}.
Oja’s iteration enjoys a less expensive time complexity O(nd) and space complexity O(d) and
thereby has been used as an alternative method for PCA when both the dimension d and number of
samples n are large.

In this paper, we adopt the diffusion approximation method to characterize the stochastic algorithm
using Markov processes and its differential equation approximations. The diffusion process approxi-
mation is a fundamental and powerful analytic tool for analyzing complicated stochastic process. By
leveraging the tool of weak convergence, we are able to conduct a heuristic finite-sample analysis of
the Oja’s iteration and obtain a convergence rate which, by carefully choosing the stepsize β, matches
the PCA minimax information lower bound. Our analysis involves the weak convergence theory for
Markov processes [11], which is believed to have a potential for a broader class of stochastic algo-
rithms for nonconvex optimization, such as tensor decomposition, phase retrieval, matrix completion,
neural network, etc.

Our Contributions We provide a Markov chain characterization of the stochastic process {w(n)}
generated by the Oja’s iteration with constant stepsize. We show that upon appropriate scalings, the
iterates as a Markov process weakly converges to the solution of an ordinary differential equation
system, which is a multi-dimensional analogue to the logistic equations. Also locally around the
neighborhood of a stationary point, upon a different scaling the process weakly converges to the
multidimensional Ornstein-Uhlenbeck processes. Moreover, we identify from differential equation
approximations that the global convergence dynamics of the Oja’s iteration has three distinct phases:
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Figure 2: A simulation plot of Oja’s method, marked with the three phases.

(i) The initial phase corresponds to escaping from unstable stationary points;

(ii) The second phase corresponds to fast deterministic crossing period;

(iii) The third phase corresponds to stable oscillation around the true principal component.

Lastly, this is the first work that analyze the global rate of convergence analysis of Oja’s iteration,
i.e., the convergence rate does not have any initialization requirements.

Related Literatures This paper is a natural companion to paper by the authors’ recent work [23]
that gives explicit rate analysis using a discrete-time martingale-based approach. In this paper, we
provide a much simpler and more insightful heuristic analysis based on diffusion approximation
method under the additional assumption of bounded samples.

The idea of stochastic approximation for PCA problem can be traced back to Krasulina [19] published
almost fifty years ago. His work proposed an algorithm that is regarded as the stochastic gradient
descent method for the Rayleigh quotient. In contrast, Oja’s iteration can be regarded as a projected
stochastic gradient descent method. The method of using differential equation tools for PCA appeared
in the first papers [19, 31] to prove convergence result to the principal component, among which, [31]
also analyze the subspace learning for PCA. See also [16, Chap. 1] for a gradient flow dynamical
system perspective of Oja’s iteration.

The convergence rate analysis of the online PCA iteration has been very few until the recent big data
tsunami, when the need to handle massive amounts of data emerges. Recent works by [6, 10, 17, 34]
study the convergence of online PCA from different perspectives, and obtain some useful rate results.
Our analysis using the tools of diffusion approximations suggests a rate that is sharper than all existing
results, and our global convergence rate result poses no requirement for initialization.

More Literatures Our work is related to a very recent line of work [3, 13, 21, 33, 38–41] on
the global dynamics of nonconvex optimization with statistical structures. These works carefully
characterize the global geometry of the objective functions, and in special, around the unstable
stationary points including saddle points and local maximizers. To solve the optimization problem
various algorithms were used, including (stochastic) gradient method with random initialization or
noise injection as well as variants of Newton’s method. The unstable stationary points can hence be
avoided, enabling the global convergence to desirable local minimizers.

Our diffusion process-based characterization of SGD is also related to another line of work [8, 10, 24,
26, 37]. Among them, [10] uses techniques based on martingales in discrete time to quantify the global
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convergence of SGD on matrix decomposition problems. In comparison, our techniques are based on
Stroock and Varadhan’s weak convergence of Markov chains to diffusion processes, which yield the
continuous-time dynamics of SGD. The rest of these results mostly focus on analyzing continuous-
time dynamics of gradient descent or SGD on convex optimization problems. In comparison, we are
the first to characterize the global dynamics for nonconvex statistical optimization. In particular, the
first and second phases of our characterization, especially the unstable Ornstein-Uhlenbeck process,
are unique to nonconvex problems. Also, it is worth noting that, using the arguments of [26], we can
show that the diffusion process-based characterization admits a variational Bayesian interpretation of
nonconvex statistical optimization. However, we do not pursue this direction in this paper.

In the mathematical programming and statistics communities, the computational and statistical
aspects of PCA are often studied separately. From the statistical perspective, recent developments
have focused on estimating principal components for very high-dimensional data. When the data
dimension is much larger than the sample size, i.e., d� n, classical method using decomposition of
the empirical convariance matrix produces inconsistent estimates [18, 29]. Sparsity-based methods
have been studied, such as the truncated power method studied by [45] and [44]. Other sparsity
regularization methods for high dimensional PCA has been studied in [2, 7, 9, 18, 25, 42, 43, 46], etc.
Note that in this paper we do not consider the high-dimensional regime and sparsity regularization.

From the computational perspective, power iterations or the Lanczos method are well studied. These
iterative methods require performing multiple products between vectors and empirical covariance
matrices. Such operation usually involves multiple passes over the data, whose complexity may scale
with the eigengap and dimensions [20, 28]. Recently, randomized algorithms have been developed to
reduce the computation complexity [12, 35, 36]. A critical trend today is to combine the computational
and statistical aspects and to develop algorithmic estimator that admits fast computation as well as
good estimation properties. Related literatures include [4, 5, 10, 14, 27].

Organization §2 introduces the settings and distributional assumptions. §3 briefly discusses the
Oja’s iteration from the Markov processes perspective and characterizes that it globally admits
ordinary differential equation approximation upon appropriate scaling, and also stochastic differential
equation approximation locally in the neighborhood of each stationary point. §4 utilizes the weak
convergence results and provides a three-phase argument for the global convergence rate analysis,
which is near-optimal for the Oja’s iteration. Concluding remarks are provided in §5.

2 Settings

In this section, we present the basic settings for the Oja’s iteration. The algorithm maintains a running
estimate w(n) of the true principal component w∗, and updates it while receiving streaming samples
from exterior data source. We summarize our distributional assumptions.

Assumption 2.1. The random vectors Z ≡ Z(1), . . . ,Z(n) ∈ Rd are independent and identically
distributed and have the following properties:

(i) E[Z] = 0 and E
[
ZZ>

]
= Σ;

(ii) λ1 > λ2 ≥ · · · ≥ λd > 0;

(iii) There is a constant B such that ‖Z‖2 ≤ B.

For the easiness of presentation, we transform the iterates w(n) and define the rescaled samples, as
follows. First we let the eigendecomposition of the covariance matrix be

Σ = E
[
ZZ>

]
= UΛU>,

where Λ = diag(λ1, λ2, . . . , λd) is a diagonal matrix with diagonal entries λ1, λ2, . . . , λd, and U is
an orthogonal matrix consisting of column eigenvectors of Σ. Clearly the first column of U is equal
to the principal component w∗. Note that the diagonal decomposition might not be unique, in which
case we work with an arbitrary one. Second, let

Y (n) = U>Z(n),v(n) = U>w(n),v∗ = U>w∗. (2.1)
One can easily verify that

E[Y ] = 0, E
[
Y Y >

]
= Λ;
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The principal component of the rescaled random variable Y , which we denote by v∗, is equal to e1,
where {e1, . . . , ed} is the canonical basis of Rd. By applying the orthonormal transformation U>

to the stochastic process {w(n)}, we obtain an iterative process {v(n) = U>w(n)} in the rescaled
space:

v(n) = U>w(n) = Π

{
U>w(n−1) + βU>Z(n)

(
Z(n)

)>
UU>w(n−1)

}
= Π

{
v(n−1) + βY (n)

(
Y (n)

)>
v(n−1)

}
.

(2.2)

Moreover, the angle processes associated with {w(n)} and {v(n)} are equivalent, i.e.,

∠(w(n),w∗) = ∠(v(n),v∗). (2.3)

Therefore it would be sufficient to study the rescaled iteration v(n) in (2.2) and the transformed
iteration Y (n) throughout the rest of this paper.

3 A Theory of Diffusion Approximation for PCA

In this section we show that the stochastic iterates generated by the Oja’s iteration can be approximated
by the solution of an ODE system upon appropriate scaling, as long as β is small. To work on the
approximation we first observe that the iteration v(n), n = 0, 1, . . . generated by (2.2) forms a
discrete-time, time-homogeneous Markov process that takes values on Sd−1. Furthermore, v(n)

holds strong Markov property.

3.1 Global ODE Approximation

To state our results on differential equation approximations, let us define a new process, which is
obtained by rescaling the time index n according to the stepsize β

Ṽ β(t) ≡ vβ,(btβ
−1c). (3.1)

We add the superscript β in the notation to emphasize the dependence of the process on β. We will
show that Ṽ β(t) converges weakly to a deterministic function V (t), as β → 0+.

Furthermore, we can identify the limit V (t) as the closed-form solution to an ODE system. Under
Assumption 2.1 and using an infinitesimal generator analysis we have∣∣Ṽ β(t+ β)− Ṽ β(t)

∣∣ = O(Bβ).

It follows that, as β → 0+, the infinitesimal conditional variance tends to 0:

β−1var
[
Ṽ β(t+ β)− Ṽ β(t)

∣∣ Ṽ β(t) = v
]

= O(Bβ),

and the infinitesimal mean is

β−1E
[
Ṽ β(t+ β)− Ṽ β(t)

∣∣ Ṽ β(t) = v
]

=
(
Λ− V >ΛV

)
V +O(B2β2).

Using the classical weak convergence to diffusion argument [11, Corollary 4.2 in §7.4], we obtain
the following result.

Theorem 3.1. If vβ,(0) converges weakly to some constant vector V o ∈ Sd−1 as β → 0+ then the
Markov process vβ,(btβ

−1c) converges weakly to the solution V = V (t) to the following ordinary
differential equation system

dV

dt
=
(
Λ− V >ΛV

)
V , (3.2)

with initial values V (0) = V o.

We can straightforwardly check for sanity that the solution vector V (t) lies on the unit sphere
Sd−1, i.e., ‖V (t)‖ = 1 for all t ≥ 0. Written in coordinates V (t) = (V1(t), . . . , Vd(t))

>, the ODE
is expressed for k = 1, . . . , d

dVk
dt

= Vk

d∑
i=1

(λk − λi)V 2
i .
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One can straightforwardly verify that the solution to (3.2) has

Vk(t) = (Z(t))
−1/2

Vk(0) exp(λkt), (3.3)
where Z(t) is the normalization function

Z(t) =

d∑
i=1

(V oi )
2

exp(2λit).

To understand the limit function given by (3.3), we note that in the special case where λ2 = · · · = λd

Z(t) = (V o1 )
2

exp(2λ1t) +
(

1− (V o1 )
2
)

exp(2λ2t),

and

(V1(t))
2

=
(V o1 )

2
exp(2λ1t)

(V o1 )
2

exp(2λ1t) +
(

1− (V o1 )
2
)

exp(2λ2t)
. (3.4)

This is the formula of the logistic curve. Hence analogously, V (t) in (3.3) is namely the generalized
logistic curves.

3.2 Local Approximation by Diffusion Processes

The weak convergence to ODE theorem introduced in §3.1 characterizes the global dynamics of the
Oja’s iteration. Such approximation explains many behaviors, but neglected the presence of noise that
plays a role in the algorithm. In this section we aim at understanding the Oja’s iteration via stochastic
differential equations (SDE). We refer the readers to [32] for more on basic concepts of SDE.

In this section, we instead show that under some scaling, the process admits an approximation
of multidimensional Ornstein-Uhlenbeck process within a neighborhood of each of the unstable
stationary points, both stable and unstable. Afterwards, we develop some weak convergence results
to give a rough estimate on the rate of convergence of the Oja’s iteration. For purposes of illustration
and brevity, we restrict ourselves to the case of starting point v(0) being the stationary point ek for
some k = 1, . . . , d, and denote an arbitrary vector xk to be a (d− 1)-dimensional vector that keeps
all but the kth coordinate of x. Using theory from [11] we conclude the following theorem.

Theorem 3.2. Let k = 1, . . . , d be arbitrary. If β−1/2v
β,(0)
k converges weakly to some Uo

k ∈ Rd−1

as β → 0+, then the Markov process

β−1/2v
β,(btβ−1c)
k

converges weakly to the solution of the multidimensional stochastic differential equation

dUk(t) = −(λkId−1 −Λk)Uk dt+
(
λkΛk

)1/2
dBk(t), (3.5)

with initial values Uk(0) = Uo
k. Here Bk(t) is a standard (d− 1)-dimensional Brownian motion. 1

The solution to (3.5) can be solved explicitly. We let for a matrix A ∈ Rn×n the matrix expo-
nentiation exp(A) as exp(A) =

∑∞
n=0(1/n!)An. Also, let Λ1/2 = diag

(
λ

1/2
1 , . . . , λ

1/2
d

)
for the

positive semidefinite diagonal matrix Λ = diag(λ1, . . . , λd). The solution to (3.5) is hence

Uk(t) = exp
[
−t(λkId−1 −Λk)

]
Uo
k +

(
λkΛk

)1/2 ∫ t

0

exp
[
(s− t)(λkId−1 −Λk)

]
dBk(s),

which is known as the multidimensional Ornstein-Uhlenbeck process, whose behavior depends on
the matrix −(λkId−1 −Λk) and is discussed in details in §4.

Before concluding this section, we emphasize that the weak convergence to diffusions results in
§3.1 and §3.2 should be distinguished from the convergence of the Oja’s iteration. From a random
process theoretical perspective, the former one treats the weak convergence of finite dimensional
distributions of a sequence of rescaled processes as β tends to 0, while the latter one charaterizes the
long-time behavior of a single realization of iterates generated by algorithm for a fixed β > 0.

1 The reason we have a (d− 1)-dimensional Ornstein-Uhlenbeck process is because the objective function
of PCA is defined on a (d− 1)-dimensional manifold Sd−1 and has d− 1 independent variables.

6



4 Global Three-Phase Analysis of Oja’s Iteration

Previously §3.1 and §3.2 develop the tools of weak convergence to diffusion under global and local
scalings. In this section, we apply these tools to analyze the dynamics of online PCA iteration in
three phases in sequel. For purposes of illustration and brevity, we restrict ourselves to the case of
starting point v(0) that is near a saddle point ek. Let Aβ . Bβ denotes lim supβ→0+ Aβ/Bβ ≤ 1,
a.s., and Aβ � Bβ when both Aβ . Bβ and Bβ . Aβ hold.

4.1 Phase I: Noise Initialization

In consideration of global convergence, we analyze the initial phase where the iteration starts at a
point on or around Se and eventually escapes an O(1)-neighborhood of the set

Se =
{
v ∈ Sd−1 : v1 = 0

}
.

When thinking the sphere Sd−1 as the globe with±e1 being the north and south poles, Se corresponds
to the equator of the globe. Therefore, all unstable stationary points (including saddle points and
local maximizers) lie on the equator Se.

4.2 Phase II: Deterministic Crossing

In Phase II, the iteration escapes from the neighborhood of equator Se and converges to a basin of
attraction of the local minimizer v∗. From strong Markov property of the Oja’s iteration introduced
in the beginning of §3, one can forget the iteration steps in Phase I and analyze the iteration from
the final iterate of Phase I. Suppose we have an initial point v(0) that satisfies (v

(0)
1 )2 � δ, where

δ is a fixed constant in (0, 1/2), Theorem 3.1 concludes that the iteration moves in a deterministic
pattern and quickly evolves into a small neighborhood of the principal component e1 such that
(v

(n)
1 )2 � 1− δ.

4.3 Phase III: Convergence to Principal Component

In Phase III, the iteration quickly converges to and fluctuates around the true principal component
v∗ = e1. We start our iteration from a neighborhood around the principal component, where
v(0) has (v

(0)
1 )2 = 1 − δ. Letting k = 1 in (3.5) and taking the limit t → ∞, we have the limit

E‖U1(∞)‖2 = trE
([
U1(t)U1(t)>

])
= (λ1/2) tr

(
Λ1(λ1Id−1 −Λ1)−1

)
. Rescaling the Markov

process along with some calculations gives as n→∞, in very rough sense,

lim
n→∞

E sin2 ∠(v(n),v∗) � β · E‖U1(∞)‖2 = β · λ1

2
tr
(
Λ1(λ1Id−1 −Λ1)−1

)
= β ·

d∑
k=2

λ1λk
2(λ1 − λk)

.

(4.1)

The above display implies that there will be some nondiminishing fluctuations, variance being
proportional to the constant stepsize β, as time goes to infinity or at stationarity. Therefore in terms of
angle, at stationarity the Markov process concentrates within a O(β1/2)-radius neighborhood of zero.

4.4 Crossing Time Estimate

We turn to estimate the running time, namely the crossing time, which is the number of iterates
required for the iteration to cross the corresponding regions in different phases. We will use the
relation v(n) ≈ V (nβ) to bridge the discrete-time algorithm and its continuous-time approximation.

Phase I. For illustrative purposes we only consider the special case where v is close to ek the kth
coordinate vector, which is a saddle point that has a negative Hessian eigenvalue. In this situation, the
SDE (3.5) in terms of the first coordinate U(t) of Uk reduces to

dU(t) = (λ1 − λk)U(t) dt+ (λ1λk)
1/2

dB(t), (4.2)
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with initial value U(0) = 0. Solution to (4.2) is known as unstable Ornstein-Uhlenbeck process [1]
and can be expressed explicitly in closed-form, as

U(t) = W β(t) exp ((λ1 − λk)t) , where W β(t) ≡ (λ1λk)
1/2
∫ t

0

exp (−(λ1 − λk)s) dB(s).

Rescaling the time back to the discrete-time iteration, we let n = tβ−1 and obtain

v
(n)
1 � β1/2W β(nβ) exp (β(λ1 − λk)n) . (4.3)

In (4.3), the term W β(nβ) is approximately distributed as t = nβ →∞

W β(nβ) �
(

λ1λk
2(λ1 − λk)

)1/2

χ,

where χ stands for a standard normal variable. We have

v
(n)
1 � β1/2

(
λ1λk

2(λ1 − λk)

)1/2

χ exp (β(λ1 − λk)n) . (4.4)

In order to have (v
(n)
1 )2 = δ in (4.4), we have as β → 0+ the crossing time is approximately

Nβ
1 � (λ1 − λk)

−1
β−1 log

(
δ|χ|−1

)
+ (λ1 − λk)

−1
β−1 log

((
λ1λd

2(λ1 − λd)

)−1/2

β−1/2

)
.

(4.5)
Therefore we have whenever the smallest eigenvalue λd is bounded away from 0, then asymptotically
Nβ

1 � 0.5 (λ1 − λk)
−1
β−1 log

(
β−1

)
. This suggests that the noise helps the iteration to move away

from ek rapidly.

Phase II. We turn to estimate the crossing time Nβ
2 in Phase II. (3.3) together with simple calculation

ensures the existence of a constant T , that depends only on δ such that V 2
1 (T ) ≥ 1− δ. Furthermore

T has the following bounds:
(λ1 − λd)−1 log ((1− δ)/δ) . T . (λ1 − λ2)−1 log ((1− δ)/δ) . (4.6)

Translating back to the timescale of the iteration, it takes asymptotically

Nβ
2 . (λ1 − λ2)−1β−1 log ((1− δ)/δ)

iterates to achieve (v
(Nβ2 )
1 )2 ≥ 1 − δ. Theorem 3.1 indicates that when β is positively small, the

iterates needed for the first coordinate squared to cross from δ to 1−δ isO(β−1). This is substantiated
by simulation results [4] suggesting that the Oja’s iteration moves fast from the warm initialization.

Phase III. To estimate the crossing time Nβ
3 or the number of iterates needed in Phase III, we restart

our counter and have from the approximation in Theorem 3.2 and (3.5) that

E(v
(n)
k )2 = (v

(0)
k )2 exp (−2(λ1 − λk)βn) + βλ1λk

∫ βn

0

exp (−2(λ1 − λk)(t− s)) ds

= β ·
d∑
k=2

λ1λk
2(λ1 − λk)

+

d∑
k=2

(
(v

(0)
k )2 − β · λ1λk

2(λ1 − λk)

)
exp (−2β(λ1 − λk)n)

� β ·
d∑
k=2

λ1λk
2(λ1 − λk)

+ δ exp (−2β(λ1 − λ2)n) .

In terms of the iterations v(n), note the relationship E sin2 ∠(v, e1) =
∑d
k=2 v

2
k = 1− v2

1 . The end
of Phase II implies that E sin2 ∠(v(0), e1) = 1− (v

(0)
1 )2 = δ, and hence by setting

E sin2 ∠(v(Nβ3 ), e1) = β ·
d∑
k=2

λ1λk
2(λ1 − λk)

+ o(β),

we conclude that as β → 0+

Nβ
3 � 0.5(λ1 − λ2)−1β−1 log

(
δβ−1

)
. (4.7)
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4.5 Finite-Sample Rate Bound

In this subsection we establish the global finite-sample convergence rate using the crossing time
estimates in the previous subsection. Starting from v(0) = ek where k = 2, . . . , d is arbitrary, the
global convergence time Nβ = Nβ

1 +Nβ
2 +Nβ

3 as β → 0+ such that, by choosing δ ∈ (0, 1/2) as a
small fixed constant,

Nβ � (λ1 − λ2)
−1
β−1 log

(
β−1

)
,

with the following estimation on global convergence rate as in (4.1)

sin2 ∠(v(Nβ),v∗) = β ·
d∑
k=2

λ1λk
2(λ1 − λk)

.

Given a fixed number of samples T , by choosing β as

β = β̄(T ) ≡ log T

(λ1 − λ2)T
(4.8)

we have T � (λ1 − λ2)−1β̄(T )−1 log
(
β̄(T )

)−1
= N β̄(T ). Plugging in β as in (4.8) we have, by

the angle-preserving property of coordinate transformation (2.3), that

E sin2 ∠(w(N β̄(T )),w∗) = E sin2 ∠(v(N β̄(T )),v∗) ≤
d∑
k=2

λ1λk
2(λ1 − λk)

· log T

(λ1 − λ2)T
. (4.9)

The finite sample bound in (4.9) is sharper than any existing results and matches the information lower
bound. Moreover, (4.9) implies that the rate in terms of sine-squared angle is sin2 ∠(w(T ),w∗) ≤
C ·λ1λ2/(λ1−λ2)2 ·d log T/T, which matches the minimax information lower bound (up to a log T
factor), see for example, Theorem 3.1 of [43]. Limited by space, details about the rate comparison is
provided in the supplementary material.

5 Concluding Remarks

We make several concluding remarks on the global convergence rate estimations, as follows.

Crossing Time Comparison. From the crossing time estimates in (4.5), (4.6), (4.7) we conclude

(i) As β → 0+ we have Nβ
2 /N

β
1 → 0. This implies that the algorithm demonstrates the cutoff

phenomenon which frequently occur in discrete-time Markov processes [22]. In words,
the Phase II where the objective value in Rayleigh quotient drops from 1 − δ to δ is an
asymptotically a phase of short time, compared to Phases I and III, so the convergence curve
occurs instead of an exponentially decaying curve.

(ii) As β → 0+ we have Nβ
3 /N

β
1 � 1. This suggests that for the high-d case that Phase I of

escaping from the equator consumes roughly the same iterations as in Phase III.

To summarize from above, the cold initialization iteration roughly takes twice the number of steps
than the warm initialization version which is consistent with the simulation discussions in [31].

Subspace Learning. In this work we primarily concentrates on the problem of finding the top-
1 eigenvector. It is believed that the problem of finding top-k eigenvectors, a.k.a. the subspace
PCA problem, can be analyzed using our approximation methods. This will involve a careful
characterization of subspace angles and is hence more complex. We leave this for future investigations.
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A Proofs of Auxiliary Results

This section provides the proofs of auxilary Propositions. For brevity, we use the following notations
throughout Section A of the Appendix: (i) The C’s with subscripts denotes some positive numerical
constants; (ii) The C, C ′, C ′′’s (without subscripts) are positive numerical constants whose values
may change between lines; (iii) The v ≡ v(n) and Y ≡ Y (n+1); (iv) For generic function f(v) the
∆f(v) = f(v(n+1))− f(v(n)).

Also in this section, we let Fn = σ(v(k) : k = 0, 1, . . . , n) be the filtration of the algorithm
iterates, i.e. the σ-field generated by the stochastic iterates by n.

A.1 Analysis of Algorithm

To analyze the algorithm from the view of a Markov chain, we need to understand the increments on
each coordinate at each step.

Proposition A.1. Under Assumption 2.1, for each k = 1, 2, . . . , d and n ≥ 0 we have for all
β ≤ (3B)−1 the following:

(i) There exists a random variable Qk with |Qk| ≤ CA.1,1B
2β2 almost surely, such that the

increment on coordinate k at iterate n v(n+1)
k − v(n)

k can be represented as

v
(n+1)
k − v(n)

k = β
(

(v(n) >Y (n+1))Y
(n+1)
k − v(n)

k (v(n) >Y (n+1))2
)

+Qk; (A.1)

(ii) The increment has the following bound∣∣∣v(n+1)
k − v(n)

k

∣∣∣ ≤ CA.1,2Bβ; (A.2)

(iii) There exists a deterministic function E1,k(v) with

sup
v∈Sd−1

|E1,k(v)| ≤ CA.1,1B2β2,

such that for all v ∈ Sd−1,

E
[
v

(n+1)
k − v(n)

k

∣∣v(n) = v
]

= βvk
(
λk − v>Λv

)
+ E1,k(v). (A.3)

To prove Proposition A.1 we first come to show

Lemma A.2. For each n ≥ 0∣∣∣∣‖v + β(v>Y )Y ‖−1 − 1 + β(v>Y )2 +
1

2
β2(v>Y )2‖Y ‖2

∣∣∣∣ ≤ CA.2β2(v>Y )4.

Proof. Since

‖v + β(v>Y )Y ‖−1 =
(
1 + 2β(v>Y )2 + β2(v>Y )2‖Y ‖2

)−1/2
, (A.4)

Taylor expansion suggests for |x| < 1

(1 + x)
−1/2

=

∞∑
n=0

(
− 1

2

n

)
xn = 1− 1

2
x+

3

8
x2 − 5

16
x3 + · · ·

which is an alternating series for x ∈ [0, 1), whereas the absolute terms approach to 0 monotonically∣∣∣∣( − 1
2

n+ 1

)
xn+1

∣∣∣∣ ≤ ∣∣∣∣(− 1
2

n

)
xn
∣∣∣∣ .

Hence the error bound gives∣∣∣∣(1 + x)−1/2 − 1 +
1

2
x

∣∣∣∣ ≤ 3

8
x2, x ∈ [0, 1). (A.5)

Noting |v>Y | ≤ ‖Y ‖ we have for all β

2β(v>Y )2 + β2(v>Y )2‖Y ‖2 ≤ 2Bβ +B2β2.
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The above display is strictly less than 1 when β ≤ (3B)−1, and hence (A.5) applies. Combined with
(A.4) we have∣∣∣∣‖v + β(v>Y )Y ‖−1 − 1 +

1

2

(
2β(v>Y )2 + β2(v>Y )2‖Y ‖2

)∣∣∣∣ ≤ 3

8

(
3β(v>Y )2

)2
.

Noticing |v>Y | ≤ ‖Y ‖, triangle inequality suggests∣∣‖v + β(v>Y )Y ‖−1 − 1 + β(v>Y )2
∣∣ ≤ Cβ2‖Y ‖4 ≤ CB2β2,

completing the proof.

Proof of Proposition A.1. Setting Q = ‖v + β(v>Y )Y ‖−1 − 1 + β(v>Y )2. Then

∆vk = ‖v + β(v>Y )Y ‖−1
(
vk + βv>Y Yk

)
− vk

=
(
1− β(v>Y )2 +Q

) (
vk + βv>Y Yk

)
− vk

= β
(
(v>Y )Yk − vk(v>Y )2

)
+Qk,

where
Qk =

(
vk + βv>Y Yk

)
Q− β2(v>Y )3Yk. (A.6)

Note the term
β
[
(v>Y )Yk − vk(v>Y )2

]
is absolutely bounded by 2Bβ, and taking expectation gives

E
[
(v>Y )Yk − vk(v>Y )2

]
= vkλk − vkE(v>Y )2

= vkλk − vkv>E(Y Y >)v> = vk
(
λk − v>Λv

)
.

To this stage, we have verified

∆vk = β
(
(v>Y )Yk − vk(v>Y )2

)
+Qk. (A.7)

(A.1) as long as Eqs. (A.2) and (A.3) in Proposition A.1 can be concluded if
|Qk| ≤ CB2β2, (A.8)

since this implies for E1,k(v) = EQk we have |E1,k(v)| ≤ E|Qk| ≤ CB2β2. To conclude (A.8),
note that β ≤ (3B)−1 and hence∣∣vk + βv>Y Yk

∣∣ ≤ 1 + βB ≤ 4

3
.

Lemma A.2 implies
|Q| ≤ CA.2β2(v>Y )4 ≤ CA.2B2β2.

Therefore the first term on RHS of (A.6) is absolutely bounded by 2CA.2B
2β2. For the second term

in (A.6) we have
|β2(v>Y )3 Yk| ≤ B2β2.

We thereby verified (A.8) by taking C = 2CA.2 + 1, which completes all the proof of Proposition
A.1.

A.2 Proof of Theorem 3.1

Proof. Let V βk (t) = v
β,[tβ−1]
k , the Proposition A.1 implies for V βk (t) = v the change for coordinate

k at t = nβ is
V βk (t+ β)− V βk (t) = β

(
(v>Y )Yk − vk(v>Y )2

)
+Rk,

where |Rk| ≤ CB2β2. (A.3) implies that the infinitesimal mean is
d

dt
EV βk (t) = β−1E

[
V βk (t+ β)− V βk (t)

∣∣V βk (t) = v
]

= vk
(
λk − v>Λv

)
+O(β),
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Using (A.2) we can compute the infinitesimal variance
d

dt
E(V βk (t)− vk)2 = β−1E

[
(V βk (t+ β)− V βk (t))2

∣∣V βk (t) = v
]

≤ β−1 · C2
A.1,2B

2β2 → 0.

Let Vk(t) be the solution to ODE system (3.2) with initial values Vk(0) = v
(0)
k . Applying standard

infinitesimal generator argument [11, Corollary 4.2 in Sec. 7.4] one can conclude that as β → 0+,
the Markov process V βk (t) converges weakly to Vk(t).

A.3 Proof of Theorem 3.2

Proof. Let Uβi (t) = β−0.5v
β,(btβ−1c)
i . Proposition A.1 implies for V β(t) = ek + O(β0.5) the

change for coordinate i 6= k at t = nβ is

Uβi (t+ β)− Uβi (t) = β−0.5 · β
(
(v>Y )Yi − (v>Y )2vi

)
+O(B2β1.5).

Hence (A.3) allows us to compute the infinitesimal mean as
d

dt
EUβk,i(t) = β−1E

[
Uβk,i(t+ β)− Uβk,i(t)

∣∣Uβ
k (t) = U

]
= (λi − λk) · β0.5 · vi +O(β1.5) = − (λk − λi) · Uβk,i +O(β).

Using (A.2) we can compute the infinitesimal variance for coordinates i, j 6= k 2

d

dt
E
[(
Uβk,i(t+ β)− Uβk,i(t)

)(
Uβk,j(t+ β)− Uβk,j(t)

) ∣∣Uβ
k (t) = U

]
= β−1 · β

(
Y 2
k YiYj

)
+O(β)→ λ2

kλ
2
i 1i 6=j .

Thus by applying infinitesimal generator argument [11, Corollary 4.2 in Sec. 7.4] one can conclude
that as β → 0+, the Markov process β−1/2v

β,(btβ−1c)
k converges weakly to Uk(t).

B Miscellaneous

Rate in Rayleigh Quotient. From (4.9), the convergence rate in terms of the angle between
w(N β̄(T )) and a1 is C · (d · log T/T )

1/2. Such a rate of convergence is well-known as nearly optimal
in T , as indicated in [43]. In terms of the objective function as Rayleigh quotient, once the Oja’s
iteration dives into the neighborhood of principal component its distribution is approximately the
stationary distribution

vk ∼ N
(

0,
λ1λk

2 (λ1 − λk)
β

)
.

Let F (v) = λ1 − v>Λv =
∑d
k=2(λ1 − λk)v2

k denote the objective function. Hence at stationarity

EF (v(T )) = β ·
d∑
k=2

(λ1 − λk) · λ1λk
2(λ1 − λk)

= β · λ1

2

d∑
k=2

λk.

Hence by choosing β = β̄(T ) as in (4.8) the iteration is approximately at stationarity, and we obtain

EF (v(T )) . C ·
λ1

∑d
k=1 λk − λ2

1

2
· log T

(λ1 − λ2)T
. (B.1)

The term
∑d
k=1 λk is called the effective rank in the PCA literatures. Note the results in (4.9) and

(B.1) do not include each other and can be used as different measures for convergence rate estimation.

Sharpest finite-sample error bound. We summarize all existing rate of convergence results for
online PCA in Table 1. In short, our work provides a finer rate that matches the minimax lower

2Here, we implicitly assume that the fourth-order tensor has a sparse structure which is satisfied for gaussian
distributions, for pure presentation purposes. We have a more general calculation in the full version of this paper.

14



Algorithm sin2 ∠(w(n),w∗) Optimality

Minimax rate [43] C · λ1λ2 · d
(λ1 − λ2)2

· 1

n
Lower bound

Alecton [10] C · Bλ1 · d
(λ1 − λ2)2

· 1

n
No

Block power method [15, 27] C · Bλ2
1

(λ1 − λ2)3
· 1

n
No

Online PCA, Oja [6] C · B2

(λ1 − λ2)2
· 1

n
No

Online PCA, Oja [34] C · B2 · d
(λ1 − λ2)2

· 1

n
No

Online PCA, Oja [17] C · Bλ1

(λ1 − λ2)2
· 1

n
Yes

Online PCA, Oja (this work) C · λ1

λ1 − λ2

d∑
k=2

λk
λ1 − λk

· 1

n
Yes

Table 1: Comparable results on the convergence rate of online PCA. Note that our result matches
the minimax information lower bound [43] in the case where λ2 = · · · = λd. Our result provides a
finer estimate than the minimax lower bound in the more general case where λ2 6= λd. Note that the
constant C hides poly-logarithmic factors of d and n.

bound and suggests the necessity of further work on the minimax theory for PCA [7, 43]. Our
informal derivation above suggests a finer error bound than the recent work [17], whose optimal rate
result depends on sample bound B instead of eigenvalues. Using the same algorithm, our rate of
convergence

C · λ1

λ1 − λ2

d∑
k=2

λk
λ1 − λk

· 1

N

is faster than any existing results.

General SDE from equator. In §4 we only consider the case where the initialization is near a
saddle point. For the general case if we start from some initial measure concentrated around Se, the
approximate SDE (4.2) can be similarly found. Let

L(v) =
v>Λv − λ1v

2
1

1− v2
1

=
v>1 Λ1v1

v>1 v1
.

L(v) ∈ [λd, λ2] can be regarded as a convex combination of (d − 1)-dimensional vector
(λ2, . . . , λd)

> with weights (v2
2/v

2
1 , . . . , v

2
d/v

2
1)>. Recall that Theorem 3.1 has vβ,(btβ

−1c) ≈ V (t),
so we have the following

dU(t) = [λ1 − L(V (t))]U(t) dt+ [λ1 · L(V (t))]
1/2

dB(t). (B.2)
In comparison with (4.2) we replace λ2 by the quantity L(V (t)). The coefficient in the drift term of
(B.2) is λ1 − L(V (t)) which is no less than β(λ1 − λ2). Since the stochastic equation (B.2) is not
in closed-form, so we are in lack of a theory of a weak convergence to justify a result analogous to
Theorem 3.2. This suggests an interesting problem that is left for future research.

Validity of small step-size approximation. Our analysis works in the setting when when the
stepsizes are infinitesimal small. To justify this, we detail the discussions as follows.

(i) Choosing small stepsize is a common practice in nonconvex optimization SGD.
This has many practical reasons. One of the main reason is that if the stepsize is large, a
warm-initialized iteration risks bouncing back to the cold region, while the small stepsize
guarantee the stability of SGD algorithm and ensure a decrease of function value in the long
run.

(ii) The probability of failure is positively correlated to the stepsize.
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We choose the stepsize to be (approximately) inversely proportional toN so the convergence
rate result holds with high probability when sample N is large. The differential equation
approximation method is then very meaningful as it explicitly characterizes what in essence
happens in the algorithm iterations.

16


	Introduction
	Settings
	A Theory of Diffusion Approximation for PCA
	Global ODE Approximation
	Local Approximation by Diffusion Processes

	Global Three-Phase Analysis of Oja's Iteration
	Phase I: Noise Initialization
	Phase II: Deterministic Crossing
	Phase III: Convergence to Principal Component
	Crossing Time Estimate
	Finite-Sample Rate Bound

	Concluding Remarks
	Proofs of Auxiliary Results
	Analysis of Algorithm
	Proof of Theorem 3.1
	Proof of Theorem 3.2

	Miscellaneous

