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Abstract

This work provides performance guarantees for the greedy solution of experimen-
tal design problems. In particular, it focuses on A- and E-optimal designs, for
which typical guarantees do not apply since the mean-square error and the maxi-
mum eigenvalue of the estimation error covariance matrix are not supermodular.
To do so, it leverages the concept of approximate supermodularity to derive non-
asymptotic worst-case suboptimality bounds for these greedy solutions. These
bounds reveal that as the SNR of the experiments decreases, these cost functions
behave increasingly as supermodular functions. As such, greedy A- and E-optimal
designs approach (1− e−1)-optimality. These results reconcile the empirical suc-
cess of greedy experimental design with the non-supermodularity of the A- and
E-optimality criteria.

1 Introduction

Experimental design consists of selecting which experiments to run or measurements to observe
in order to estimate some variable of interest. Finding good designs is an ubiquitous problem with
applications in regression, semi-supervised learning, multivariate analysis, and sensor placement [1–
10]. Nevertheless, selecting a set of k experiments that optimizes a generic figure of merit is NP-
hard [11, 12]. In some situations, however, an approximate solution with optimality guarantees can
be obtained in polynomial time. For example, this is possible when the cost function possesses
a diminishing returns property known as supermodularity, in which case greedy search is near-
optimal. Greedy solutions are particularly attractive for large-scale problems due to their iterative
nature and because they have lower computational complexity than typical convex relaxations [11,
12].

Supermodularity, however, is a stringent condition not met by important performance metrics. For
instance, it is well-known that neither the mean-square error (MSE) nor the maximum eigenvalue of
the estimation error covariance matrix are supermodular [1, 13, 14]. Nevertheless, greedy algorithms
have been successfully used to minimize these functions despite the lack of theoretical guarantees.
The goal of this paper is to reconcile these observations by showing that these figures of merit, used
in A- and E-optimal experimental designs, are approximately supermodular. To do so, it introduces
different measures of approximate supermodularity and derives near-optimality results for these
classes of functions. It then bounds how much the MSE and the maximum eigenvalue of the error
covariance matrix violate supermodularity, leading to performance guarantees for greedy A- and
E-optimal designs. More to the point, the main results of this work are:

1. The greedy solution of the A-optimal design problem is within a multiplicative (1− e−α)

factor of the optimal with α ≥ [1 +O(γ)]
−1, where γ upper bounds the signal-to-noise

ratio (SNR) of the experiments (Theorem 3).
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2. The value of the greedy solution of an E-optimal design problem is at most (1 −
e−1)(f(D?) + kε), where ε ≤ O(γ) (Theorem 4).

3. As the SNR of the experiments decreases, the performance guarantees for greedy A- and
E-optimal designs approach the classical 1− 1/e.

This last observation is particularly interesting since careful selection of experiments is more impor-
tant in low SNR scenarios. In fact, unless experiments are highly correlated, designs have similar
performances in high SNR. Also, note that the guarantees in this paper are not asymptotic and hold
in the worst-case, i.e., hold for problems of any dimension and for designs of any size.

Notation Lowercase boldface letters represent vectors (x), uppercase boldface letters are matri-
ces (X), and calligraphic letters denote sets/multisets (A). We write #A for the cardinality of A
and P(B) to denote the collection of all finite multisets of the set B. To say X is a positive semi-
definite (PSD) matrix we writeX � 0, so that forX,Y ∈ Rn×n,X � Y ⇔ bTXb ≤ bTY b, for
all b ∈ Rn. Similarly, we writeX � 0 whenX is positive definite.

2 Optimal experimental design

Let E be a pool of possible experiments. The outcome of experiment e ∈ E is a multivariate
measurement ye ∈ Rne defined as

ye = Aeθ + ve, (1)
where θ ∈ Rp is a parameter vector with a prior distribution such that E [θ] = θ̄ and E(θ − θ̄)(θ −
θ̄)T = Rθ � 0;Ae is an ne × p observation matrix; and ve ∈ Rne is a zero-mean random variable
with arbitrary covariance matrix Re = EvevTe � 0 that represents the experiment uncertainty.
The {ve} are assumed to be uncorrelated across experiments, i.e., EvevTf = 0 for all e 6= f , and
independent of θ. These experiments aim to estimate

z = Hθ, (2)

whereH is anm×pmatrix. Appropriately choosingH is important given that the best experiments
to estimate θ are not necessarily the best experiments to estimate z. For instance, if θ is to be used
for classification, then H can be chosen so as to optimize the design with respect to the output of
the classifier. Alternatively, transductive experimental design can be performed by taking H to be
a collection of data points from a test set [6]. Finally, H = I , the identity matrix, recovers the
classical θ-estimation case.

The experiments to be used in the estimation of z are collected in a multiset D called a design.
Note that D contains elements of E with repetitions. Given a design D, it is ready to compute an
optimal Bayesian estimate ẑD. The estimation error of ẑD is measured by the error covariance
matrixK(D). An expression for the estimator and its error matrix in terms of the problem constants
is given in the following proposition.
Proposition 1 (Bayesian estimator). Let the experiments be defined as in (1). For Me =
AT
eR
−1
e Ae and a design D ∈ P(E), the unbiased affine estimator of z with the smallest error

covariance matrix in the PSD cone is given by

ẑD = H

[
R−1
θ +

∑
e∈D

Me

]−1 [∑
e∈D

AT
eR
−1
e ye +R−1

θ θ̄

]
. (3)

The corresponding error covariance matrix K(D) = E
[
(z − ẑD)(z − ẑD)T | θ, {Me}e∈D

]
is

given by the expression

K(D) = H

[
R−1
θ +

∑
e∈D

Me

]−1

HT . (4)

Proof. See extended version [15].

The experimental design problem consists of selecting a design D of cardinality at most k that
minimizes the overall estimation error. This can be explicitly stated as the problem of choosing D
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with #D ≤ k that minimizes the error covariance K(D) whose expression is given in (4). Note
that (4) can account for unregularized (non-Bayesian) experimental design by removing Rθ and
using a pseudo-inverse [16]. However, the error covariance matrix is no longer monotone in this
case—see Lemma 1. Providing guarantees for this scenario is the subject of future work.

The minimization of the PSD matrix K(D) in experimental design is typically attempted using
scalarization procedures generically known as alphabetical design criteria, the most common of
which are A-, D-, and E-optimal design [17]. These are tantamount to selecting different figures of
merit to compare the matricesK(D). Our focus in this paper is mostly on A- and E-optimal designs,
but we also consider D-optimal designs for comparison. A designD with k experiments is said to be
A-optimal if it minimizes the estimation MSE which is given by the trace of the covariance matrix,

minimize
|D|≤k

Tr
[
K(D)

]
− Tr

[
HRθH

T
]

(P-A)

Notice that is customary to say a design is A-optimal when H = I in (P-A), whereas the notation
V-optimal is reserved for the case when H is arbitrary [17]. We do not make this distinction here
for conciseness.

A design is E-optimal if instead of minimizing the MSE as in (P-A), it minimizes the largest eigen-
value of the covariance matrixK(D), i.e.,

minimize
|D|≤k

λmax

[
K(D)

]
− λmax

[
HRθH

T
]
. (P-E)

Since the trace of a matrix is the sum of its eigenvalues, we can think of (P-E) as a robust ver-
sion of (P-A). While the design in (P-A) seeks to reduce the estimation error in all directions,
the design in (P-E) seeks to reduce the estimation error in the worst direction. Equivalently, given
that λmax(X) = max‖u‖2=1 u

TXu, we can interpret (P-E) with H = I as minimizing the MSE
for an adversarial choice of z.

A D-optimal design is one in which the objective is to minimize the log-determinant of the estima-
tor’s covariance matrix,

minimize
|D|≤k

log det
[
K(D)

]
− log det

[
HRθH

T
]
. (P-D)

The motivation for using the objective in (P-D) is that the log-determinant of K(D) is proportional
to the volume of the confidence ellipsoid when the data are Gaussian. Note that the trace, maximum
eigenvalue, and determinant ofHRθH

T in (P-A), (P-E), and (P-D) are constants and do not affect
the respective optimization problems. They are subtracted so that the objectives vanish whenD = ∅,
the empty set. This simplifies the exposition in Section 4.

Although the problem formulations in (P-A), (P-E), and (P-D) are integer programs known to be
NP-hard, the use of greedy methods for their solution is widespread with good performance in
practice. In the case of D-optimal design, this is justified theoretically because the objective of (P-D)
is supermodular, which implies greedy methods are (1 − e−1)-optimal [2, 11, 12]. The objectives
in (P-A) and (P-E), on the other hand, are not be supermodular in general [1, 13, 14] and it is not
known why their greedy optimization yields good results in practice—conditions for the MSE to be
supermodular exist but are restrictive [1]. The goal of this paper is to derive performance guarantees
for greedy solutions of A- and E-optimal design problems. We do so by developing different notions
of approximate supermodularity to show that A- and E-optimal design problems are not far from
supermodular.
Remark 1. Besides its intrinsic value as a minimizer of the volume of the confidence ellipsoid,
(P-D) is often used as a surrogate for (P-A), when A-optimality (MSE) is considered the appropriate
metric. It is important to point out that this is only justified when the problem has some inherent
structure that suggests the minimum volume ellipsoid is somewhat symmetric. Otherwise, since the
volume of an ellipsoid can be reduced by decreasing the length of a single principal axis, using (P-D)
can lead to designs that perform well—in the MSE sense—along a few directions of the parameter
space and poorly along all others. Formally, this can be seen by comparing the variation of the
log-determinant and trace functions with respect to the eigenvalues of the PSD matrixK,

∂ log det(K)

∂λj(K)
=

1

λj(K)
and

∂ Tr(K)

∂λj(K)
= 1.
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The gradient of the log-determinant is largest in the direction of the smallest eigenvalue of the error
covariance matrix. In contrast, the MSE gives equal weight to all directions of the space. The latter
therefore yields balanced, whereas the former tends to flatten the confidence ellipsoid unless the
problem has a specific structure.

3 Approximate supermodularity

Consider a multiset function f : P(E) → R for which the value corresponding to an arbitrary
multiset D ∈ P(E) is denoted by f(D). We say the function f is normalized if f(∅) = 0 and we
say f is monotone decreasing if for all multisetsA ⊆ B it holds that f(A) ≥ f(B). Observe that if a
function is normalized and monotone decreasing it must be that f(D) ≤ 0 for all D. The objectives
of (P-A), (P-E), and (P-D) are normalized and monotone decreasing multiset functions, since adding
experiments to a design decreases the covariance matrix uniformly in the PSD cone—see Lemma 1.

We say that a multiset function f is supermodular if for all pairs of multisets A,B ∈ P(E), A ⊆ B,
and elements u ∈ E it holds that

f(A)− f(A ∪ {u}) ≥ f(B)− f(B ∪ {u}).

Supermodular functions encode a notion of diminishing returns as the sets grow. Their relevance
in this paper is due to the celebrated bound on the suboptimality of their greedy minimization [18].
Specifically, construct a greedy solution by starting with G0 = ∅ and incorporating elements (ex-
periments) e ∈ E greedily so that at the h-th iteration we incorporate the element whose addition
to Gh−1 results in the largest reduction in the value of f :

Gh = Gh−1 ∪ {e}, with e = argmin
u∈E

f (Gh−1 ∪ {u}) . (5)

The recursion in (5) is repeated for k steps to obtain a greedy solution with k elements. Then, if f is
normalized, monotone decreasing, and supermodular,

f(Gk) ≤ (1− e−1)f(D?), (6)

where D? , argmin|D|≤k f(D) is the optimal design selection of cardinality not larger than k [18].
We emphasize that in contrast to the classical greedy algorithm, (5) allows the same element to be
selected multiple times.

The optimality guarantee in (6) applies to (P-D) because its objective is supermodular. This is
not true of the cost functions of (P-A) and (P-E). We address this issue by postulating that if a
function does not violate supermodularity too much, then its greedy minimization should have close
to supermodular performance. To formalize this idea, we introduce two measures of approximate
supermodularity and derive near-optimal bounds based on these properties. It is worth noting that as
intuitive as it may be, such results are not straightforward. In fact, [19] showed that even functions δ-
close to supermodular cannot be optimized in polynomial time.

We start with the following multiplicative relaxation of the supermodular property.
Definition 1 (α-supermodularity). A multiset function f : P(E) → R is α-supermodular, for α :
N× N→ R, if for all multisets A,B ∈ P(E), A ⊆ B, and all u ∈ E it holds that

f (A)− f (A ∪ {u}) ≥ α(#A,#B) [f (B)− f (B ∪ {u})] . (7)

Notice that for α ≥ 1, (7) reduces the original definition of supermodularity, in which case we refer
to the function simply as supermodular [11, 12]. On the other hand, when α < 1, f is said to be
approximately supermodular. Notice that if f is decreasing, then (7) always holds for α ≡ 0. We
are therefore interested in the largest α for which (7) holds, i.e.,

α(a, b) = min
A,B∈P(E)
A⊆B, u∈E

#A=a, #B=b

f (A)− f (A ∪ {u})
f (B)− f (B ∪ {u})

(8)

Interestingly, α not only measures how much f violates supermodularity, but it also quantifies the
loss in performance guarantee incurred from these violations.
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Theorem 1. Let f be a normalized, monotone decreasing, and α-supermodular multiset function.
Then, for ᾱ = mina<`, b<`+k α(a, b), the greedy solution from (5) obeys

f(G`) ≤

[
1−

`−1∏
h=0

(
1− 1∑k−1

s=0 α(h, h+ s)−1

)]
f(D?) ≤ (1− e−ᾱ`/k)f(D?). (9)

Proof. See extended version [15].

Theorem 1 bounds the suboptimality of the greedy solution from (5) when its objective is α-
supermodular. At the same time, it quantifies the effect of relaxing the supermodularity hypothesis
typically used to provide performance guarantees in these settings. In fact, if f is supermodu-
lar (α ≡ 1) and for ` = k, we recover the 1 − e−1 ≈ 0.63 guarantee from [18]. On the other
hand, for an approximately supermodular function (ᾱ < 1), the result in (9) shows that the 63%
guarantee can be recovered by selecting a set of size ` = ᾱ−1k. Thus, α not only measures how
much f violates supermodularity, but also gives a factor by which the cardinality constraint must be
violated to obtain a supermodular near-optimal certificate. Similar to the original bound in [18], it
worth noting that (9) is not tight and that better results are typical in practice (see Section 5).

Although α-supermodularity gives a multiplicative approximation factor, finding meaningful bounds
on α can be challenging for certain multiset functions, such as the E-optimality criterion in (P-E).
It is therefore useful to look at approximate supermodularity from a different perspective as in the
following definition.

Definition 2 (ε-supermodularity). A multiset function f : P(E) → R is ε-supermodular, for ε :
N× N→ R, if for all multisets A,B ∈ P(E), A ⊆ B, and all u ∈ E it holds that

f (A)− f (A ∪ {u}) ≥ f (B)− f (B ∪ {u})− ε (#A,#B) . (10)

Again, we say f is supermodular if ε(a, b) ≤ 0 for all a, b and approximately supermodular other-
wise. As with α, we want the best ε that satisfies (10), which is given by

ε (a, b) = max
A,B∈P(E)
A⊆B, u∈E

#A=a, #B=b

f (B)− f (B ∪ {u})− f (A) + f (A ∪ {u}) . (11)

In contrast to α-supermodularity, we obtain an additive approximation guarantee for the greedy
minimization of ε-supermodular functions.

Theorem 2. Let f be a normalized, monotone decreasing, and ε-supermodular multiset function.
Then, for ε̄ = maxa<`, b<`+k ε(a, b), the greedy solution from (5) obeys

f(G`) ≤

[
1−

(
1− 1

k

)`]
f(D?) +

1

k

k−1∑
s=0

`−1∑
h=0

ε(h, h+ s)

(
1− 1

k

)`−1−h

≤ (1− e−`/k)(f(D?) + kε̄)

(12)

Proof. See extended version [15].

As before, ε quantifies the loss in performance guarantee due to relaxing supermodularity. Indeed,
(12) reveals that ε-supermodular functions have the same guarantees as a supermodular function
up to an additive factor of Θ(kε̄). In fact, if ε̄ ≤ (ek)−1|f(D?)| (recall that f(D?) ≤ 0 due
to normalization), then taking ` = 3k recovers the 63% approximation factor of supermodular
functions. This same factor is obtained for α ≥ 1/3-supermodular functions.

With the certificates of Theorems 1 and 2 in hand, we now proceed with the study of the A- and E-
optimality criteria. In the next section, we derive explicit bounds on their α- and ε-supermodularity,
respectively, thus providing near-optimal performance guarantees for greedy A- and E-optimal de-
signs.
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4 Near-optimal experimental design

Theorems 1 and 2 apply to functions that are (i) normalized, (ii) monotone decreasing, and (iii) ap-
proximately supermodular. By construction, the objectives of (P-A) and (P-E) are normalized [(i)].
The following lemma establishes that they are also monotone decreasing [(ii)] by showing thatK is
a decreasing set function in the PSD cone. The definition of Loewner order and the monotonicity of
the trace operator readily give the desired results [16].

Lemma 1. The matrix-valued set functionK(D) in (4) is monotonically decreasing with respect to
the PSD cone, i.e., A ⊆ B ⇔K(A) �K(B).

Proof. See extended version [15].

The main results of this section provide the final ingredient [(iii)] for Theorems 1 and 2 by bounding
the approximate supermodularity of the A- and E-optimality criteria. We start by showing that the
objective of (P-A) is α-supermodular.

Theorem 3. The objective of (P-A) is α-supermodular with

α(a, b) ≥ 1

κ(H)2
·

λmin
[
R−1
θ

]
λmax

[
R−1
θ

]
+ a · `max

, for all b ∈ N, (13)

where `max = maxe∈E λmax(Me), Me = AT
eR
−1
e Ae, and κ(H) = σmax / σmin is the `2-norm

condition number of H , with σmax and σmin denoting the largest and smallest singular values of H
respectively.

Proof. See extended version [15].

Theorem 3 bounds the α-supermodularity of the objective of (P-A) in terms of the condition number
of H , the prior covariance matrix, and the measurements SNR. To facilitate the interpretation of
this result, let the SNR of the e-th experiment be γe = Tr[Me] and suppose Rθ = σ2

θI , H = I ,
and γe ≤ γ for all e ∈ E . Then, for ` = k greedy iterations, (13) implies

ᾱ ≥ 1

1 + 2kσ2
θγ

,

for ᾱ as in Theorem 1. This deceptively simple bound reveals that the MSE behaves as a supermod-
ular function at low SNRs. Formally, α→ 1 as γ → 0. In contrast, the performance guarantee from
Theorem 3 degrades in high SNR scenarios. In this case, however, greedy methods are expected
to give good results since designs yield similar estimation errors (as illustrated in Section 5). The
greedy solution of (P-A) also approaches the 1 − 1/e guarantee when the prior on θ is concen-
trated (σ2

θ � 1), i.e., when the problem is heavily regularized.

These observations also hold for a generic H as long as it is well-conditioned. Even if κ(H)� 1,
we can replace H by H̃ = DH for some diagonal matrix D � 0 without affecting the design,
since z is arbitrarily scaled. The scalingD can be designed to minimize the condition number of H̃
by leveraging preconditioning and balancing methods [20, 21].

Proceeding, we derive guarantees for E-optimal designs using ε-supermodularity.

Theorem 4. The cost function of (P-E) is ε-supermodular with

ε(a, b) ≤ (b− a)σmax(H)2 λmax (Rθ)
2
`max, (14)

where `max = maxe∈E λmax(Me), Me = AT
eR
−1
e Ae, and σmax(H) is the largest singular value

ofH .

Proof. See extended version [15].

Under the same assumptions as above, Theorem 4 gives

ε̄ ≤ 2kσ4
θγ,
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Figure 1: A-optimal design: (a) Thm. 3; (b) A-optimality (low SNR); (c) A-optimality (high SNR).
The plots show the unnormalized A-optimality value for clarity.
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Figure 2: E-optimal design: (a) Thm. 4; (b) E-optimality (low SNR); (c) E-optimality (high SNR).
The plots show the unnormalized E-optimality value for clarity.

for ε̄ as in Theorem 2. Thus, ε→ 0 as γ → 0. In other words, the behavior of the objective of (P-E)
approaches that of a supermodular function as the SNR decreases. The same holds for concentrated
priors, i.e., limσ2

θ→0 ε̄ = 0. Once again, it is worth noting that when the SNRs of the experiments
are large, almost every design has the same E-optimal performance as long as the experiments are
not too correlated. Thus, greedy design is also expected to give good results under these conditions.

Finally, the proofs of Theorems 3 and 4 suggest that better bounds can be found when the designs are
constructed without replacement, i.e., when only one of each experiment is allowed in the design.

5 Numerical examples

In this section, we illustrate the previous results in some numerical examples. To do so, we draw the
elements of Ae from an i.i.d. zero-mean Gaussian random variable with variance 1/p and p = 20.
The noise {ve} are also Gaussian random variables with Re = σ2

vI . We take σ2
v = 10−1 in high

SNR and σ2
v = 10 in low SNR simulations. The experiment pool contains #E = 200 experiments.

Starting with A-optimal design, we display the bound from Theorem 3 in Figure 1a for multivariate
measurements of size ne = 5 and designs of size k = 40. Here, “equivalent α” is the single α̂ that
gives the same near-optimal certificate (9) as using (13). As expected, α̂ approaches 1 as the SNR
decreases. In fact, for −10 dB is is already close to 0.75 which means that by selecting a design
of size ` = 55 we would be within 1 − 1/e of the optimal design of size k = 40. Figures 1b
and 1c compare greedy A-optimal designs with the convex relaxation of (P-A) in low and high SNR
scenarios. The designs are obtained from the continuous solutions using the hard constraint, with
replacement method of [10] and a simple design truncation as in [22]. Therefore, these simulations
consider univariate measurements (ne = 1). For comparison, a design sampled uniformly at ran-
dom with replacement from E is also presented. Note that, as mentioned before, the performance
difference across designs is small for high SNR—notice the scale in Figures 1c and 2c—, so that
even random designs perform well.

For the E-optimality criterion, the bound from Theorem 4 is shown in Figure 2a, again for multi-
variate measurements of size ne = 5 and designs of size k = 40. Once again, “equivalent ε” is the
single value ε̂ that yields the same guarantee as using (14). In this case, the bound degradation in
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high SNR is more pronounced. This reflects the difficulty in bounding the approximate supermodu-
larity of the E-optimality cost function. Still, Figures 2b and 2c show that greedy E-optimal designs
have good performance when compared to convex relaxations or random designs. Note that, though
it is not intended for E-optimal designs, we again display the results of the sampling post-processing
from [10]. In Figure 2b, the random design is omitted due to its poor performance.

5.1 Cold-start survey design for recommender systems

Recommender systems use semi-supervised learning methods to predict user ratings based on few
rated examples. These methods are useful, for instance, to streaming service providers who are inter-
ested in using predicted ratings of movies to provide recommendations. For new users, these systems
suffer from a “cold-start problem,” which refers to the fact that it is hard to provide accurate recom-
mendations without knowing a user’s preference on at least a few items. For this reason, services
explicitly ask users for ratings in initial surveys before emitting any recommendation. Selecting
which movies should be rated to better predict a user’s preferences can be seen as an experimen-
tal design problem. In the following example, we use a subset of the EachMovie dataset [23] to
illustrate how greedy experimental design can be applied to address this problem.

We randomly selected a training and test set containing 9000 and 3000 users respectively. Following
the notation from Section 2, each experiment in E represents a movie (|E| = 1622) and the observa-
tion vector Ae collects the ratings of movie e for each user in the training set. The parameter θ is
used to express the rating of a new user in term of those in the training set. Our hope is that we can
extrapolate the observed ratings, i.e., {ye}e∈D, to obtain the rating for a movie f /∈ D as ŷf = Af θ̂.
Since the mean absolute error (MAE) is commonly used in this setting, we choose to work with the
A-optimality criterion. We also let H = I and take a non-informative prior θ̄ = 0 and Rθ = σ2

θI
with σ2

θ = 100.

As expected, greedy A-optimal design is able to find small sets of movies that lead to good predic-
tion. For k = 10, for example, MAE = 2.3, steadily reducing until MAE < 1.8 for k ≥ 35. These
are considerably better results than a random movie selection, for which the MAE varies between 2.8
and 3.3 for k between 10 and 50. Instead of focusing on the raw ratings, we may be interested in
predicting the user’s favorite genre. This is a challenging task due to the heavily skewed dataset.
For instance, 32% of the movies are dramas whereas only 0.02% are animations. Still, we use the
simplest possible classifier by selecting the category with highest average estimated ratings. By us-
ing greedy design, we can obtain a misclassification rate of approximately 25% by observing 100
ratings, compared to over 45% error rate for a random design.

6 Related work

Optimal experimental design Classical experimental design typically relies on convex relax-
ations to solve optimal design problems [17, 22]. However, because these are semidefinite pro-
grams (SDPs) or sequential second-order cone programs (SOCPs), their computational complexity
can hinder their use in large-scale problems [5, 7, 22, 24]. Another issue with these relaxations
is that some sort of post-processing is required to extract a valid design from their continuous so-
lutions [5, 22]. For D-optimal designs, this can be done with (1 − e−1)-optimality [25, 26]. For
A-optimal designs, [10] provides near-optimal randomized schemes for large enough k.

Greedy optimization guarantees The (1 − e−1)-suboptimality of greedy search for supermod-
ular minimization under cardinality constraints was established in [18]. To deal with the fact that
the MSE is not supermodular, α-supermodularity with constant α was introduced in [27] along
with explicit lower bounds. This concept is related to the submodularity ratio introduced by [3]
to obtain guarantees similar to Theorem 1 for dictionary selection and forward regression. How-
ever, the bounds on the submodularity ratio from [3, 28] depend on the sparse eigenvalues of K or
restricted strong convexity constants of the A-optimal objective, which are NP-hard to compute. Ex-
plicit bounds for the submodularity ratio of A-optimal experimental design were recently obtained
in [29]. Nevertheless, neither [27] nor [29] consider multisets. Hence, to apply their results we must
operate on an extended ground set containing k unique copies of each experiment, which make the
bounds uninformative. For instance, in the setting of Section 5, Theorem 3 guarantees 0.1-optimality
at 0 dB SNR whereas [29] guarantees 2.5×10−6-optimality. The concept of ε-supermodularity was

8



first explored in [30] for a constant ε. There, guarantees for dictionary selection were derived by
bounding ε using an incoherence assumption on the Ae. Finally, a more stringent definition of ap-
proximately submodular functions was put forward in [19] by requiring the function to be upper and
lower bounded by a submodular function. They show strong impossibility results unless the func-
tion is O(1/k)-close to submodular. Approximate submodularity is sometimes referred to as weak
submodularity (e.g., [28]), though it is not related to the weak submodularity concept from [31].

7 Conclusions

Greedy search is known to be an empirically effective method to find A- and E-optimal experimental
designs despite the fact that these objectives are not supermodular. We reconciled these observations
by showing that the A- and E-optimality criteria are approximately supermodular and deriving near-
optimal guarantees for this class of functions. By quantifying their supermodularity violations,
we showed that the behavior of the MSE and the maximum eigenvalue of the error covariance
matrix becomes increasingly supermodular as the SNR decreases. An important open question is
whether these results can be improved using additional knowledge. Can we exploit some structure
of the observation matrices (e.g., Fourier, random)? What if the parameter vector is sparse but
with unknown support (e.g., compressive sensing)? Are there practical experiment properties other
than the SNR that lead to small supermodular violations? Finally, we hope that this approximate
supermodularity framework can be extended to other problems.
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A Proofs

Proof of Proposition 1. Start by lifting the problem to make the proof more concise by defining the
stacked quantities ỹD = [ye]e∈D, an n×1 vector, ÃD = [Ae]e∈D, an n×p matrix, ṽD = [ve]e∈D,
an n× 1 vector, and R̃D = blkdiag(Re)e∈D, an n× n block diagonal matrix, with n =

∑
j∈D nj .

Since the design is fixed, the dependence on D is omitted throughout the proof for clarity.

Note that all affine estimators of z can be written as ẑ = Lỹ + b, so that the problem reduces to
determining the optimal L? and b?. Using the model in (1), write Lỹ = L

(
Ãθ + ṽ

)
, so that the

error covariance matrix of the estimator has the form

K = E
[
(Hθ −LÃθ −Lṽ − b)(Hθ −LÃθ −Lṽ − b)T | θ, R̃

]
= (H −LÃ)Rθ(H −LÃ)T +LR̃LT

+
[
(H −LÃ)θ̄ − b

] [
(H −LÃ)θ̄ − b

]T
,

where all terms linear in v̄ vanish since {ve,θ} are independent for all e ∈ E . It is ready that the
last term is minimized by taking

b? = (H −LÃ)θ̄.
Suffices now to minimize the sum of the first two terms.

To do so, note that for b = b?, we have K = (H − LÃ)Rθ(H − LÃ)T . Therefore, taking L =
L? + (L−L?) with

L? = H
(
R−1
θ + Ã

T
R̃
−1
Ã
)−1

Ã
T
R̃
−1

,

and expanding gives

K =
(
H −L?Ã

)
Rθ

(
H −L?Ã

)T
+L?R̃L?T

+ (L−L?)
(
ÃRθÃ

T
+ R̃

)
(L−L?)T

+ (L−L?)
[
L?R̄−

(
H −L?Ã

)
RθÃ

T
]T

+
[
L?R̃−

(
H −L?Ã

)
RθÃ

T
]

(L−L?)T

= K? + (L−L?)
(
ÃRθÃ

T
+ R̃

)
(L−L?)T , (15)

where the two last terms vanish and K? = (H − L?Ã)Rθ(H − L?Ã)T + L?R̃L?T . Clearly,
the minimum value of (15) is K?, attained for L = L?. Finally, ẑ = L?ỹ + b? and K? can be
unstacked and rearranged to yield (3) and (4).

Proof of Theorem 1. Since f is monotone decreasing, it holds for every Gh that

f(D?) ≥ f(D? ∪ Gh) = f(Gh) +

k−1∑
s=0

f(Ts ∪ {e?s})− f(Ts), (16)

where Ts = Gh ∪ {e?0, . . . , e?s−1}, with T0 = Gh, and e?s is the s-th experiment in D?. The equality
comes from expressing the set function as a telescopic sum. Since f is α-supermodular and Gh ⊆ Ts
for all s, the incremental gains in (16) can be bounded using (7) to get

f(D?) ≥ f(Gh) +

k−1∑
s=0

α(h, h+ s)−1 [f(Gh ∪ {e?s})− f(Gh)] .

Given that Gh+1 is construct from Gh so as to minimize f(Gh+1) [as in (5)], it holds that

f(D?) ≥ f(Gh) + [f(Gh+1)− f(Gh)]

k−1∑
s=0

α(h, h+ s)−1. (17)
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A recursion is obtained by taking δh = f(Gh)− f(D?), so that (17) can be written as

δh ≤ αt(h) (δh − δh+1)⇒ δh+1 ≤
(

1− 1

αt(h)

)
δh,

with αt(h) =
∑k−1
s=0 α(h, h + s)−1. Considering that f is normalized, δ0 = −f(D?) and the

solution of this recursion is

f(G`) ≤

[
1−

`−1∏
h=0

(
1− 1

αt(h)

)]
f(D?).

Since ᾱ ≤ α(h, h + s) for h < ` and s < k, it holds that αt(h) ≤ ᾱ−1k. Then, using the fact
that 1− x ≤ e−x yields (9).

Proof of Theorem 2. Given that f is monotone decreasing,

f(D?) ≥ f(D? ∪ Gh) = f(Gh) +

k−1∑
s=0

f(Ts ∪ {e?s})− f(Ts), (18)

where Ts = Gh ∪ {e?0, . . . , e?s−1}, with T0 = Gh, and e?s is the s-th experiment in D?. Since f
is ε-supermodular and Gh ⊆ Ts for all s, (10) can be used to bound the incremental gains in (18).
Explicitly,

f(D?) ≥ f(Gh) +

k−1∑
s=0

[f(Gh ∪ {e?s})− f(Gh) + ε(h, h+ s)] .

Since Gh+1 is chosen greedily to minimize f(Gh+1) [see (5)], it holds that

f(D?) ≥ f(Gh) + k [f(Gh+1)− f(Gh)] +

k−1∑
s=0

ε(h, h+ s). (19)

The following recursion is obtained from (19) by letting δh = f(Gh)− f(D?):

δh ≤ k (δh − δh+1)− εt(h)⇒ δh+1 ≤
(

1− 1

k

)
δh +

εt(h)

k

with εt(h) =
∑k−1
s=0 ε(h, h + s). Since f is normalized, δ0 = −f(D?), and solving this recursion

yields

f(G`) ≤

[
1−

(
1− 1

k

)`]
f(D?) +

1

k

`−1∑
h=0

εt(h)

(
1− 1

k

)`−1−h

.

Using the fact that ε̄ ≥ ε(h, h+ s) for h < ` and s < k then gives

f(G`) ≤

[
1−

(
1− 1

k

)`]
f(D?) + ε̄

`−1∑
h=0

(
1− 1

k

)h
,

from which (12) obtains using the closed form of the geometric series and 1− x ≤ e−x.

Proof of Lemma 1. Start by noting thatK in (4) can be written as

K(D) = HK̄(D)HT ,

with K̄(D) = Y (D)−1 and Y (D) = R−1
θ +

∑
e∈DMe. Since K and K̄ are congruent, suffices

to show thatK is a monotonically decreasing (with respect to the PSD cone) set function [16].

To do so, note that Y (A∪B) = Y (A)+
∑
e∈B\AMe. Then, sinceMe = AT

eR
−1
e Ae andRe � 0,

Y is a sum of PSD matrices, which implies thatA ⊆ B ⇒ Y (A) � Y (B), i.e., Y is monotonically
increasing. From the antitonicity of the matrix inverse [32], it follows that K̄ is monotonically
decreasing.
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Proof of Theorem 3. This proof relies on the fact that α depends only on rank-one updates of the
covariance matrix. Therefore, we can use the matrix inversion lemma to obtain a closed-form ex-
pression for the increments required to evaluate (8). Spectral inequalities are then used to bound the
increments ratio.

Explicitly, start by expressing the error covariance matrix from (4) as K(D) = HY (D)−1HT ,
with Y (D) = R−1

θ +
∑
e∈DMe and define g(D) = Tr[K(D)]. Then, notice that α only depends

on the incremental gains ∆u(X ) = g(X )− g(X ∪ {u}). Indeed, (8) can be rewritten as

α(a, b) = min
A,B∈P(E)
A⊆B, u∈E

#A=a, #B=b

∆u(A)

∆u(B)
. (20)

Using the additivity of Y gives g(X ∪ {u}) = Tr
[
H (Y (X ) +Mu)

−1
HT

]
, which suggests

that the matrix inversion lemma can be used to obtain a simpler expression for ∆. However, al-
though Y (X ) � 0 due to Rθ � 0, the matrices Mu need not be invertible. Thus, we use the
inversion lemma version from [33] to get

g(X ∪ {u}) = Tr
[
HY (X )−1HT −HY (X )−1Mu [Y (X ) +Mu]

−1
HT

]
.

Finally, the linearity of the trace operator implies

∆u(X ) = Tr
[
HY (X )−1Mu [Y (X ) +Mu]

−1
HT

]
. (21)

Our goal is now to explicitly lower bound (20) by exploiting the expression in (21) and spectral
bounds. We do so by using the following result:

Lemma 2. For all X ⊆ P(E) and u ∈ E , it holds that for ∆ as in (21)

λmin
[
HHT

]
λmin

[
Y (X )−1

]
Tr
[
Mu [Y (X ) +Mu]

−1
]
≤ ∆u(X ) ≤

≤ λmax
[
HHT

]
λmax

[
Y (X )−1

]
Tr
[
Mu [Y (X ) +Mu]

−1
]

. (22)

Before proving Lemma 2, let us see how it leads to the desired result. Using (22) we can bound (20)
as in

α(a, b) ≥ min
A,B∈P(E)
A⊆B, u∈E

#A=a, #B=b

λmin
(
HHT

)
λmin

[
Y (A)−1

]
Tr
[
Mu [Y (A) +Mu]

−1
]

λmax (HHT )λmax [Y (B)−1] Tr
[
Mu [Y (B) +Mu]

−1
] .

Then, let κ(X) = σmax(X)/σmin(X) be the `2-norm condition number with respect to inversion,
where {σt(X)} are the singular values ofX . Using the fact that λt(HTH) = σ2

t (H) yields

α(a, b) ≥ κ(H)−2 min
A,B∈P(E)
A⊆B, u∈E

#A=a, #B=b

λmin [Y (B)]

λmax [Y (A)]
×

Tr
[
Mu [Y (A) +Mu]

−1
]

Tr
[
Mu [Y (B) +Mu]

−1
] . (23)

To proceed, recall from Lemma (1) that Y −1 is a decreasing set function, so that A ⊆ B ⇒
[Y (A) +Mu]

−1 � [Y (B) +Mu]
−1. Since Mu � 0, the last term in (23) is lower bounded by

one, giving

α(a, b) ≥ κ(H)−2 min
A,B∈P(E)
A⊆B

#A=a, #B=b

λmin [Y (B)]

λmax [Y (A)]
, (24)

which no longer depends on u, i.e., on which experiment is added to the design. We now remove the
constraint A ⊆ B, which increases the feasible set and therefore reduces the value of the right-hand
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side of (24). By also using the fact that λmin [Y (X )] ≥ λmin [Y (∅)] = λmin
[
R−1
θ

]
for every X ∈

P(E), we can eliminate the dependence on B obtaining

α(a, b) ≥ κ(H)−2 min
#A=a
#B=b

λmin [Y (B)]

λmax [Y (A)]
≥

κ(H)−2 λmin
[
R−1
θ

]
max#A=a λmax [Y (A)]

. (25)

Finally, the lower bound in (13) is obtained using Weyl’s inequality to get λmax [Y (A)] ≤
λmax

[
R−1
θ

]
+
∑
e∈A λmax [Me] and letting

∑
e∈A λmax [Me] ≤ a`max.

Proof. Start by defining the perturbed gain as ∆ε = Tr
[
HY (X )−1M̄u

(
Y (X ) + M̄u

)−1
HT

]
,

for ε > 0, where M̄u = Mu + εI � 0. We omit the dependence on X and u for clarity. Note
that, ∆ε → ∆ as ε → 0. Using the circular commutation property of the trace and the invertibility
of Y (X ) and M̄u, we obtain

∆ε = Tr
[
(HTH)Z

]
, (26)

where Z = Y (X )−1
(
Y (X )−1 + M̄

−1
i

)−1

Y (X )−1. Notice that (26) is a product of two PSD
matrices, so that we can use the bound from [34] to obtain

λmin(HTH) Tr(Z) ≤ ∆ε ≤ λmax(HTH) Tr(Z). (27)

Let us proceed by bounding Tr(Z). To do so, notice that Y (A)−1 � 0, its square-root Y (A)−1/2

is well-defined and unique [16]. We can therefore use the circular commutation property of the trace
to get

Tr(Z) = Tr

{
Y (X )−1

[
Y (X )−1/2

(
Y (X )−1 + M̄

−1
i

)−1

Y (X )−1/2

]}
. (28)

Since (28) depends again the product of PSD matrices, we can reapply the spectral bound from [34]
and obtain

λmin
[
Y (X )−1

]
Tr

[
Y (X )−1

(
Y (X )−1 + M̄

−1
i

)−1
]
≤ Tr(Z) ≤

≤ λmax
[
Y (X )−1

]
Tr

[
Y (X )−1

(
Y (X )−1 + M̄

−1
i

)−1
]

. (29)

Reversing the manipulations used to get to (26) and combining (27) and (29) finally yields

λmin(HTH)λmin
[
Y (X )−1

]
Tr
[
M̄u

[
Y (A) + M̄u

]−1
]
≤ ∆ε(X ) ≤

≤ λmax(HTH)λmax
[
Y (X )−1

]
Tr
[
M̄u

[
Y (X ) + M̄u

]−1
]

. (30)

The inequalities in (22) are obtained from (30) by continuity as ε→ 0.

Proof of Theorem 4. This proof follows from a homotopy argument, i.e., we define a continuous
map between the increments at A and B in (11) and bound its derivative. The inequality in (14)
follows from applying bounds on the spectrum of Hermitian matrices.

Let ∆u(X ) = λmax [K(X )] − λmax [K(X ∪ {u})] be the gain of adding u to X . Then, for A,B ∈
P(E), A ⊆ B, define the homotopy

hAB(t) = λmax
[
HZ(t)−1HT

]
− λmax

[
H (Z(t) +Mu)

−1
HT

]
(31)

with t ∈ [0, 1] and Z(t) = Y (A) + t [Y (B)− Y (A)]. Note that hAB(0) = ∆u(A) and hAB(1) =

∆u(B). Thus, if ḣ(t) is the derivative of h with respect to t, it is ready that ∆u(B) = ∆u(A) +∫ 1

0
ḣAB(t)dt. Using the definition of ε in (11) then yields

ε(a, b) = max
A,B∈P(E)
A⊆B, u∈E

#A=a, #B=b

∫ 1

0

ḣAB(t)dt. (32)
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In the sequel, we proceed by upper bounding ḣ, thus getting the bound in (14). We omit the depen-
dence on A and B for conciseness. First, to find the derivative of (31), recall from matrix analysis
that d

dtX(t)−1 = −X(t)−1Ẋ(t)X(t)−1 and d
dt λmax[X(t)] = u(t)T d

dtẊ(t)u(t), with u(t) the
eigenvector relative to the maximum eigenvalue ofX(t) [32]. Then,

d

dt
λmax[HZ(t)−1HT ] = u(t)T

[
d

dt
HZ(t)−1HT

]
u(t)

= −ũ(t)TZ(t)−1Ż(t)Z(t)−1ZT ũ(t)

where ũ(t) = HTu(t) and u(t) is the eigenvector for the maximum eigenvalue of HX(t)−1HT .
Thus,

ḣ(t) = w̃(t)T [Z(t) +Mu]
−1 [

Y (B)− Y (A)
]

[Z(t) +Mu]
−1
w̃(t)

− ṽ(t)TZ(t)−1
[
Y (B)− Y (A)

]
Z(t)−1ṽ(t),

(33)

where ṽ(t) = HTv(t), w̃(t) = HTw(t), and v(t) and w(t) are the eigenvectors relative to
the maximum eigenvalues of HZ(t)−1HT and H [Z(t) +Mu]

−1
HT respectively. To upper

bound (33), start by noticing that since Y (A) � Y (B), the second term in (33) is negative. Then,
using the Rayleigh’s inequality yields

ḣ(t) ≤ λmax

[(
Z(t) +Mu

)−1 (
Y (B)− Y (A)

) (
Z(t) +Mu

)−1
]
‖w̃(t)‖22 . (34)

We now find a bound for (34) that does not depend on t, so that we can apply (32). First, given
that w(t) is a unit-norm vector, ‖w̃(t)‖22 = w(t)THHTw(t) ≤ λmax(HHT ) = σ2

max(H),
where σmax(H) is the maximum singular value of H . Then, note that Z(t) � Z(0) =
Y (A). Thus, using the fact that for A,B � 0 it holds that λmax(ABA) = σ2

max(AB1/2) ≤
σ2

max(A)σ2
max(B1/2) = λ2

max(A)λmax(B) yields

ḣ(t) ≤ σmax(H)2 λmin [Y (A) +Mu]
−2
λmax [Y (B)− Y (A)] ,

Thus, from (32),

ε(a, b) ≤ max
A,B∈P(E)
A⊆B, u∈E

#A=a, #B=b

σmax(H)2 λmax [Y (B)− Y (A)]

λmin [Y (A) +Mu]
2 , (35)

The inequality in (14) is obtained using λmax [Y (B)− Y (A)] ≤
∑
e∈B\A λmax(Me) ≤ (b− a)`max

for #A = a and #B = b and λmin [Y (A) +Mu] ≥ λmin
[
R−1
θ

]
.

15


	Introduction
	Optimal experimental design
	Approximate supermodularity
	Near-optimal experimental design
	Numerical examples
	Cold-start survey design for recommender systems

	Related work
	Conclusions
	Proofs

