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Abstract

This paper considers a number of related inverse filtering problems for hidden
Markov models (HMMs). In particular, given a sequence of state posteriors and
the system dynamics; i) estimate the corresponding sequence of observations,
ii) estimate the observation likelihoods, and iii) jointly estimate the observation
likelihoods and the observation sequence. We show how to avoid a computation-
ally expensive mixed integer linear program (MILP) by exploiting the algebraic
structure of the HMM filter using simple linear algebra operations, and provide
conditions for when the quantities can be uniquely reconstructed. We also propose a
solution to the more general case where the posteriors are noisily observed. Finally,
the proposed inverse filtering algorithms are evaluated on real-world polysomno-
graphic data used for automatic sleep segmentation.

1 Introduction

The hidden Markov model (HMM) is a cornerstone of statistical modeling [1–4]. In it, a latent (i.e.,
hidden) state evolves according to Markovian dynamics. The state of the system is only indirectly
observed via a sensor that provides noisy observations. The observations are sampled independently,
conditioned on the state of the system, according to observation likelihood probabilities. Of paramount
importance in many applications of HMMs is the classical stochastic filtering problem, namely:

Given observations from an HMM with known dynamics and observation likelihood
probabilities, compute the posterior distribution of the latent state.

Throughout the paper, we restrict our attention to discrete-time finite observation-alphabet HMMs.
For such HMMs, the solution to the filtering problem is a recursive algorithm known as the HMM
filter [1, 4].

In this paper, we consider the inverse of the above problem. In particular, our aim is to provide
solutions to the following inverse filtering problems:

Given a sequence of posteriors (or, more generally, noisily observed posteriors)
from an HMM with known dynamics, compute (estimate) the observation likelihood
probabilities and/or the observations that generated the posteriors.

To motivate these problems, we give several possible applications of our results below.
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Applications The underlying idea of inverse filtering problems (“inform me about your state
estimate and I will know your sensor characteristics, including your measurements”) has potential
applications in, e.g., autonomous calibration of sensors, fault diagnosis, and detecting Bayesian
behavior in agents. In model-based fault-detection [5, 6], sensor information together with solutions
to related inverse filtering problems are used to detect abnormal behavior. (As trivial examples; i)
if the true sequence of observations is known from a redundant sensor, it can be compared to the
reconstructed sequence; if there is a miss-match, something is wrong, or ii) if multiple data batches
are available, then change detection can be performed on the sequence of reconstructed observation
likelihoods.) They are also of relevance in a revealed preference context in microeconomics where
the aim is to detect expected utility maximization behavior of an agent; estimating the posterior given
the agent’s actions is a crucial step, see, e.g., [7].

Recent advances in wearables and smart-sensor technology have led to consumer grade products
(smart watches with motion and heart-beat monitoring, sleep trackers, etc.) that produce vast amounts
of personal data by performing state estimation. This information can serve as an indicator of health,
fitness and stress. It may be very difficult, or even impossible, to access the raw sensor data since the
sensor and state estimator usually are tightly integrated and encapsulated in intelligent sensor systems.
Inverse filtering provides a framework for reverse engineering and performing fault detection of such
sensors. In Section 5, we demonstrate our proposed solutions on a system that performs automatic
sequencing of sleep stages based on electroencephalogram (EEG) data – the outputs of such an
automatic system are exactly posteriors over the different sleep stages [8].

Another important application of the inverse filtering problem arises in electronic warfare and cyber-
physical security. How can one determine how accurate an enemy’s sensors are? In such problems,
the state of the underlying Markov chain is usually known (a probing sequence), and one observes
actions taken by the enemy which are based on filtered posterior distributions. The aim is to estimate
the observation likelihood probabilities of the enemy, i.e., determine how accurate its sensors are.

Our contributions It is possible to obtain a solution to the inverse filtering problem for HMMs by
employing a brute-force approach (see Section 2.3) – essentially by testing observations from the
alphabet, and at the same time finding system parameters consistent with the data. However, this
leads to a computationally expensive combinatorial optimization problem. Instead, we demonstrate
in this paper an efficient solution based on linear algebra by exploiting the inherent structure of the
problem and the HMM filter. In particular, the contributions of this paper are three-fold:

1. We propose analytical solutions to three inverse filtering problems for HMMs that avoid
computationally expensive mixed integer linear program (MILP) formulations. Moreover,
we establish theorems guaranteeing unique identifiability.

2. We consider the setting where the output of the HMM filter is corrupted by noise, and
propose an inverse filtering algorithm based on clustering.

3. We evaluate the algorithm on real-world data for automatic segmentation of the sleep cycle.

Related work There are only two known cases where the optimal filter allows a finite dimensional
characterization: the HMM filter for (discrete) HMMs, and the Kalman filter [9, 10] for linear
Gaussian state-space models. Inverse filtering problems for the Kalman filter have been considered
in, e.g., [5, 6, 10], however, inverse filtering for HMMs has, to the best knowledge of the authors,
received much less attention.

The inverse filtering problem has connections to a number of other inverse problems in various fields.
For example, in control theory, the fundamental inverse optimal control problem, whose formulation
dates back to 1964 [11], studies the question: given a system and a policy, for what cost criteria is the
policy optimal? In microeconomic theory, the related problem of revealed preferences [12] asks the
question: given a set of decisions made by an agent, is it possible to determine if a utility is being
maximized, and if so, which?

In machine learning, there are clear connections to, e.g., apprenticeship learning, imitation learning
and inverse reinforcement learning, see, e.g., [13–17], which recently have received much attention.
In these, the reward function of a Markov decision process (MDP) is learned by observing an expert
demonstrating the task that an agent wants to learn to perform.

The key difference between these works and our work is the set of system parameters we aim to learn.
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2 Preliminaries

In this section, we formulate the inverse filtering problems, discuss how these can be solved using
combinatorial optimization, and state our assumptions formally. With regards to notation, all vectors
are column vectors, unless transposed. The vector 1 is the vector of all ones. † denotes the
Moore–Penrose pseudoinverse.

2.1 Hidden Markov models (HMMs) and the HMM filter

We consider a discrete-time finite observation-alphabet HMM. Denote its state at time k as xk ∈
{1, . . . , X} and the corresponding observation yk ∈ {1, . . . , Y }. The underlying Markov chain xk
evolves according to the row-stochastic transition probability matrix P ∈ RX×X , where [P ]ij =
Pr[xk+1 = j|xk = i]. The initial state x0 is sampled from the probability distribution π0 ∈ RX ,
where [π0]i = Pr[x0 = i]. The noisy observations of the underlying Markov chain are obtained from
the row-stochastic observation likelihood matrix B ∈ RX×Y , where [B]ij = Pr[yk = j|xk = i] are
the observation likelihood probabilities. We denote the columns of the observation likelihood matrix
as {bi}Yi=1, i.e., B = [b1 . . . bY ].

In the classical stochastic filtering problem, the aim is to compute the posterior distribution πk ∈ RX
of the latent state (Markov chain, in our case) at time k, given observations from the system up to
time k. The HMM filter [1, 4] computes these posteriors via the following recursive update:

πk =
BykP

Tπk−1
1TBykP

Tπk−1
, (1)

initialized by π0, where [πk]i = Pr[xk = i|y1, . . . , yk] is the posterior distribution at time k,
Byk = diag(byk) ∈ RX×X , and {yk}Nk=1 is a set of observations.

2.2 Inverse HMM filtering problem formulations

The inverse filtering problem for HMMs is not a single problem – multiple variants can be formulated
depending on what information is available a priori. We pose and consider a number of variations of
increasing levels of generality depending on what data we can extract from the sensor system. To
restrict the scope of the paper, we assume throughout that the transition matrix P is known, and is the
same in both the system and the HMM filter (i.e, we do not consider miss-matched HMM filtering
problems). Formally, the inverse filtering problems considered in this paper are as follows:
Problem 1 (Inverse filtering problem with unknown observations). Consider the known data D ={
P,B, {πk}Nk=0

}
, where the posteriors have been generated by an HMM-filter sensor. Reconstruct

the observations {yk}Nk=1.
Problem 2 (Inverse filtering problem with unknown sensor). Consider the known data D ={
P, {yk}Nk=1, {πk}Nk=0

}
, where the posteriors have been generated by an HMM-filter sensor. Recon-

struct the observation likelihood matrix B.

Combining these two formulations yields the general problem:
Problem 3 (Inverse filtering problem with unknown sensor and observations). Consider the known
data D =

{
P, {πk}Nk=0

}
, where the posteriors have been generated by an HMM-filter sensor.

Reconstruct the observations {yk}Nk=1 and the observation likelihood matrix B.

Finally, we consider the more general setting where the posteriors we obtain are corrupted by noise
(due to, e.g., quantization, measurement or model uncertainties). In particular, we consider the case
where the following sequence of noisy posteriors is obtained over time:

π̃k = πk + noise, (2)

from the sensor system. We state directly the generalization of Problem 3 (the corresponding
generalizations of Problems 1 and 2 follow as special-cases):
Problem 4 (Noise-corrupted inverse filtering problem with unknown sensor and observations).
Consider the data D =

{
P, {π̃k}Nk=0

}
, where the posteriors πk have been generated by an HMM-

filter sensor, but we obtain noise-corrupted measurements π̃k. Estimate the observations {yk}Nk=1
and the observation likelihood matrix B.
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2.3 Inverse filtering as an optimization problem

It is possible to formulate Problems 1-4 as optimization problems of increasing levels of generality.
As a first step, rewrite the HMM filter equation (1) as:1

(1) ⇐⇒ bTykP
Tπk−1πk = diag(byk)PTπk−1. (3)

In Problem 3 we need to find what observation occurred at each time instant (a combinatorial
problem), and at the same time reconstruct an observation likelihood matrix consistent with the
data. To be consistent with the data, equation (3) has to be satisfied. This feasibility problem can be
formulated as the following mixed-integer linear program (MILP):

min
{yk}Nk=1,{bi}

Y
i=1

N∑
k=1

‖bTykP
Tπk−1πk − diag(byk)PTπk−1‖∞

s.t. yk ∈ {1, . . . , Y }, for k = 1, . . . , N,

bi ≥ 0, for i = 1, . . . , Y,

[b1 . . . bY ]1 = 1, (4)

where the choice of norm is arbitrary since for noise-free data it is possible to exactly fit observations
and an observation likelihood matrix. In Problem 1, the bi:s are dropped as optimization variables and
the problem reduces to an integer program (IP). In Problem 2, where the sequence of observations is
known, the problem reduces to a linear program (LP) .

Despite the ease of formulation, the down-side of this approach is that, even though Problems 1 and 2
are computationally tractable, the MILP-formulation of Problem 3 can become computationally very
expensive for larger data sets. In the following sections, we will outline how the problems can be
solved efficiently by exploiting the structure of the HMM filter.

2.4 Assumptions

Before providing solutions to Problems 1-4, we state the assumptions that the HMMs in this paper
need to satisfy to guarantee unique solutions. The first assumption serves as a proxy for ergodicity of
the HMM and the HMM filter – it is a common assumption in statistical inference for HMMs [18, 4].

Assumption 1 (Ergodicity). The transition matrix P and the observation matrix B are elementwise
(strictly) positive.

The second assumption is a natural rank assumption on the observation likelihoods. The assumption
says that the conditional distribution of any observation is not a linear combination of the conditional
distributions of any other observations.

Assumption 2 (Distinguishable observation likelihoods). The observation likelihood matrix B is full
column rank.

We will see that this assumption can be relaxed to the following assumption in problems where only
the sequence of observations is to be reconstructed:

Assumption 3 (Non-parallel observation likelihoods). No pair of columns of the observation likeli-
hood matrix B is colinear, i.e., bi 6= κbj for any real number κ and any i 6= j.

Without Assumption 3, it is impossible to distinguish between observation i and observation j. Note
also that Assumption 2 implies Assumption 3.

3 Solution to the inverse filtering problem for HMMs in absence of noise

In this section, we detail our solutions to Problems 1-3. We first provide the following two useful
lemmas that will be key to the solutions for Problems 1-4. They give an alternative characterization
of the HMM-filter update equation. (Note that all proofs are in the supplementary material.)

1Multiplication by the denominator is allowed under Assumption 1 – see below.
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Lemma 1. The HMM-filter update equation (3) can equivalently be written(
πk(PTπk−1)T − diag(PTπk−1)

)
byk = 0. (5)

The second lemma characterizes the solutions to (5).

Lemma 2. Under Assumption 1, the nullspace of the X ×X matrix

πk(PTπk−1)T − diag(PTπk−1) (6)

is of dimension one for k > 1.

3.1 Solution to the inverse filtering problem with unknown observations

In the formulation of Problem 1, we assumed that the observation likelihoods B were known, and
aimed to reconstruct the sequence of observations from the posterior data. Equation (5) constrains
which columns of the observation matrix B that are consistent with the update of the posterior vector
at each time instant. Formally, any sequence

ŷk ∈
{
y ∈ {1, . . . , Y } :

(
πk(PTπk−1)T − diag(PTπk−1)

)
by = 0

}
, (7)

for k = 1, . . . , N , is consistent with the HMM filter posterior updates. (Recall that by denotes column
y of the observation matrix B.) Since the problems (7) are decoupled in time k, they can trivially be
solved in parallel.

Theorem 1. Under Assumptions 1 and 3, the set in the right-hand side of equation (7) is a singleton,
and is equal to the true observation, i.e.,

ŷk = yk, (8)

for k > 1.

3.2 Solution to the inverse filtering problem with unknown sensor

The second inverse filtering problem we consider is when the sequence of observations is known, but
the observation likelihoods B are unknown (Problem 2). This problem can be solved by exploiting
Lemmas 1 and 2.

Computing a basis for the nullspace of the coefficient matrix in formulation (5) of the HMM filter
recovers, according to Lemmas 1 and 2, the direction of one column of B. In particular, the direction
of the column corresponding to observation yk, i.e., byk . From such basis vectors, we can construct a
matrix C ∈ RX×Y where the yth column is aligned with by. Note that to be able to fully construct
this matrix, every observation from the set {1, . . . , Y } needs to have been observed at least once.

Due to being basis vectors for nullspaces, the columns of C are only determined up to scalings, so
we need to exploit the structure of the observation matrix B to properly normalize them. To form an
estimate B̂ from C, we employ that the observation likelihood matrix is row-stochastic. This means
that we should rescale each column:

B̂ = C diag(α) (9)

for some α ∈ RY , such that B̂1 = 1. Details are provided in the following theorem.

Theorem 2. If Assumption 1 holds, and every possible observation has been observed (i.e., that
{1, . . . , Y } ⊂ {yk}Nk=1), then:

i) there exists α ∈ RY such that B̂ = B,

ii) if Assumption 2 holds, then the choice of α is unique, and B̂ is equal to B. In particular,
α = C†1.
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3.3 Solution to the inverse filtering problem with unknown sensor and observations

Finally, we turn to the general formulation in which we consider the combination of the previous
two problems: both the sequence of observations and the observation likelihoods are unknown
(Problem 3). Again, the solution follows from Lemmas 1 and 2. Note that there will be a degree of
freedom since we can arbitrarily relabel each observation and correspondingly permute the columns
of the observation likelihood matrix.

As in the solution to Problem 2, computing a basis vector, say c̄k, for the nullspace of the coefficient
matrix in equation (5) recovers the direction of one column of the B matrix. However, since the
sequence of observations is unknown, we do not know which column. To circumvent this, we
concatenate such basis vectors in a matrix2

C̄ = [c̄2 . . . c̄N ] ∈ RX×(N−1). (10)

For sufficiently large N – essentially when every possible observation has been processed by the
HMM filter – the matrix C̄ in (10) will contain Y columns out of which no pair is colinear (due
to Assumption 3). All the columns that are parallel correspond to one particular observation. Let
{σ1, . . . , σY } be the indices of Y such columns, and construct

C = C̄Σ (11)

using the selection matrix

Σ = [eσ1 . . . eσY
] ∈ R(N−1)×Y , (12)

where ei is the ith Cartesian basis vector.

Lemma 3. Under Assumption 1 and Assumption 3, the expected number of samples needed to be
able to construct the selection matrix Σ is upper-bounded by

β−1 (1 + 1/2 + · · ·+ 1/Y ) , (13)

where B ≥ β > 0 elementwise.

With C constructed in (11), we have obtained the direction of each column of the observation matrix.
However, as before, they need to be properly normalized. For this, we exploit the sum-to-one property
of the observation matrix as in the previous section. Let

B̂ = C diag(α), (14)

for α ∈ RY , such that B̂1 = 1. Details on how to find α are provided in the theorem below.

This solves the first part of the problem, i.e., reconstructing the observation matrix. Secondly, to
recover the sequence of observations, take

ŷk ∈
{
y ∈ {1, . . . , Y } : b̂y = κc̄k for some real number κ

}
, (15)

for k > 1. In words; check which columns of B̂ that the nullspace of the HMM filter coefficient-
matrix (6) is colinear with at each time instant.

Theorem 3. If Assumptions 1 and 3 hold, and the number of samples N is sufficiently large – see
Lemma 3 – then:

i) there exists α ∈ RY in equation (14) such that B̂ = BP , where P is a permutation matrix.

ii) the set on the right-hand side of equation (15) is a singleton. Moreover, the reconstructed
observations ŷk are, up to relabellings corresponding to P , equal to the true observations
yk.

iii) if Assumption 2 holds, then the choice of α is unique, and B̂ = BP . In particular, α = C†1.

2We start with c̄2, since we make no assumption on the positivity of π0 – see the proof of Lemma 2.
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4 Solution to the inverse filtering problem for HMMs in presence of noise

In this section, we discuss the more general setting where the posteriors obtained from the sensor
system are corrupted by noise. We will see that this problem naturally fits in a clustering framework
since every posterior update will provide us with a noisy estimate of the direction of one column of
the observation likelihood matrix. We consider an additive noise model of the following form:
Assumption 4 (Noise model). The posteriors are corrupted by additive noise wk:

π̃k = πk + wk, (16)
such that 1T π̃k = 1 and π̃k > 0.

This noise model is valid, for example, when each observed posterior vector has been subsequently
renormalized after noise that originates from quantization or measurement errors has been added.

In the solution proposed in Section 3.3 for the noise-free case, the matrix C̄ in equation (10) was
constructed by concatenating basis vectors for the nullspaces of the coefficient matrix in equation (5).
With perturbed posterior vectors, the corresponding system of equations becomes(

π̃k(PT π̃k−1)T − diag(PT π̃k−1)
)
c̃k = 0, (17)

where c̃k is now a perturbed (and scaled) version of byk . That this equation is valid is guaranteed by
the generalization of Lemma 2:
Lemma 4. Under Assumptions 1 and 4, the nullspace of the matrix

π̃k(PT π̃k−1)T − diag(PT π̃k−1) (18)
is of dimension one for k > 1.
Remark 1. In case Assumption 4 does not hold, the problem can instead be interpreted as a perturbed
eigenvector problem. The vector c̃k should then be taken as the eigenvector corresponding to the
smallest eigenvalue.

Lemma 4 says that we can construct a matrix C̃ (analogous to C̄ in Section 3.3) by concatenating the
basis vectors from the one-dimensional nullspaces in (17). Due to the perturbations, every solution to
equation (17) will be a perturbed version of the solution to the corresponding noise-free version of the
equation. This means that it will not be possible to construct a selection matrix Σ as was done for C̄
in equation (12). However, because there are only Y unique solutions to the noise-free equations (5),
it is natural to circumvent this (assuming that the perturbations are small) by clustering the columns
of C̃ into Y clusters. As the columns of C̃ are only unique up to scaling, the clustering has to be
performed with respect to their angular separations (using, e.g., the spherical k-means algorithm
[19]).

Let C ∈ RX×Y be the matrix of the Y centroids resulting from running a clustering algorithm on the
columns of C̃. Each centroid can be interpreted as a noisy estimate of one column of the observation
likelihood matrix. To obtain a properly normalized estimate of the observation likelihood matrix, we
take

B̂ = CA, (19)
where A ∈ RY×Y . Note that, since C now contains noisy estimates of the directions of the columns
of the observation likelihood matrix, we are not certain to be able to properly normalize it by purely
rescaling each column (i.e., taking A to be a diagonal matrix as was done in Sections 3.2 and 3.3). A
logical choice is the solution to the following LP,

min
A∈RY ×Y

max
i 6=j

∣∣[A]ij
∣∣

s.t. CA ≥ 0,

CA1 = 1, (20)
which tries to minimize the off-diagonal elements of A. The resulting rescaling matrix A guarantees
that B̂ = CA is a proper stochastic matrix (non-negative and has row-sum equal to one), as well as
that the discrepancy between the directions of the columns of C and B̂ are minimized.

The second part of the problem – reconstructing the sequence of observations – follows naturally
from the clustering algorithm; an estimate of the sequence is obtained by checking to what cluster the
solution c̃k of equation (17) belongs in for each time instant.
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5 Experimental results for sleep segmentation

In this section, we illustrate the inverse filtering problem on real-world data.

Background Roughly one third of a person’s life is spent sleeping. Sleep disorders are becoming
more prevalent and, as public awareness has increased, the usage of sleep trackers is becoming
wide-spread. The example below illustrates how the inverse filtering formulation and associated
algorithms can be used as a step in real-time diagnosis of failure of sleep-tracking medical equipment.

During the course of sleep, a human transitions through five different sleep stages [20]: wake, S1,
S2, slow wave sleep (SWS) and rapid eye movement (REM). An important part of sleep analysis is
obtaining a patient’s evolution over these sleep stages. Manual sequencing from all-night polysomno-
graphic (PSG) recordings (including, e.g., electroencephalogram (EEG) readings) can be performed
according to the Rechtschaffen and Kales (R&K) rules by well-trained experts [8, 20]. However,
this is costly and laborious, so several works, e.g., [8, 20, 21], propose automatic sequencing based
on HMMs. These systems usually output a posterior distribution over the sleep stages, or provide a
Viterbi path.

A malfunction of such an automatic system could have problematic consequences since medical
decisions would be based on faulty information. The inverse filtering problem arises naturally for
such reasons of fault-detection. Joint knowledge of the transition matrix can be assumed, since it is
possible to obtain, from public sources, manually labeled data from which an estimate of P can be
computed.

Setup A version of the automatic sleep-staging system in [8, 20] was implemented. The mean
frequency over the 0-30 Hz band of the EEG (over C3-A2 or C4-A1, according to the international
10-20 system) was used as observations. These readings were encoded to five symbols using a vector-
quantization based codebook. The model was trained on data from nine patients in the PhysioNet
CAP Sleep Database [22, 23]. The model was then evaluated on another patient – see Fig. 1 – over
one full-night of sleep. The manually labeled stages according to K&R-rules are dashed-marked in
the figure. To summarize the resulting posterior distributions over the sleep stages, we plot the mean
state estimate when equidistant numbers have been assigned to each state.

For the inverse filtering, the full posterior vectors were elementwise corrupted by Gaussian noise of
standard deviation σ, and projected back to the simplex (to ensure a valid posterior probability vector)
– simulating a noisy reading from the automatic system. A total of one hundred noise realizations
were simulated. The noise can be a manifestation of measurement or quantization noise in the sensor
system, or noise related to model uncertainties (in this case, an error in the transition probability
matrix P ).

Results After permuting the labels of the observations, the error in the reconstructed observation
likelihood matrix, as well as the fraction of correctly reconstructed observations, were computed. This
is illustrated in Fig. 2. For the 1030 quantized EEG samples from the patient, the entire procedure
takes less than one second on a 2.0 Ghz Intel Core 2 Duo processor system.

0 1 2 3 4 5 6 7 8
WAKE

S1
S2

SWS
REM

hours since bedtime

Figure 1: One night of sleep in which polysomnographic (PSG) observation data has been manually
processed by an expert sleep analyst according to the R&K rules to obtain the sleep stages ( ).
The posterior distribution over the sleep stages, resulting from an automatic sleep-staging system, has
been summarized to a mean state estimate ( ).
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Figure 2: Result of inverse filtering for various noise standard deviations σ. The vector of posterior
probabilities is perturbed elementwise with Gaussian noise. Right: Error in the recovered observation
likelihood matrix after permuting the columns to find the best match to the true matrix. Left: Fraction
of correctly reconstructed observations. As the signal-to-noise ratio increases, the inverse filtering
algorithm successfully reconstructs the sequence of observations and estimates the observation
likelihoods.

From Fig. 2, we can see that as the variance of the noise decreases, the left hand side of equation
(17) converges to that of equation (5) and the true quantities are recovered. On the other extreme,
as the signal-to-noise ratio becomes small, the estimated sequence of observations tends to that of
a uniform distribution at 1/Y = 0.2. This is because the clusters in C̃ become heavily intertwined.
The discontinuous nature of the solution of the clustering algorithm is apparent by the plateau-like
behaviour in the middle of the scale – a few observations linger on the edge of being assigned to the
correct clusters.

In conclusion, the results show that it is possible to estimate the observation sequence processed by
the automatic sleep-staging system, as well as, its sensor’s specifications. This is an important step in
performing fault detection for such a device: for example, using several nights of data, it is possible
to perform change detection on the observation likelihoods to detect if the sleep monitoring device
has failed.

6 Conclusions

In this paper, we have considered several inverse filtering problems for HMMs. Given posteriors
from an HMM filter (or more generally, noisily observed posteriors), the aim was to reconstruct the
observation likelihoods and also the sample path of observations. It was shown that a computationally
expensive solution based on combinatorial optimization can be avoided by exploiting the algebraic
structure of the HMM filter. We provided solutions to the inverse filtering problems, as well as
theorems guaranteeing unique identifiability. The more general case of noise-corrupted posteriors
was also considered. A solution based on clustering was proposed and evaluated on real-world data
based on a system for automatic sleep-staging from EEG readings.

In the future, it would be interesting to consider other variations and generalizations of inverse
filtering. For example, the case where the system dynamics are unknown and need to be estimated, or
when only actions based on the filtered distribution can be observed.
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A Proofs

In this appendix, we provide proofs that were omitted in the paper.

A.1 Proof of Lemma 1

Proof. Consider row i of equation (3):

[bTykP
Tπk−1πk]i = [diag(byk)PTπk−1]i ⇐⇒

X∑
j=1

[byk ]j [P
Tπk−1]j [πk]i =

X∑
j=1

[diag(byk)]ij [P
Tπk−1]j ⇐⇒

X∑
j=1

[byk ]j [P
Tπk−1]j [πk]i =

X∑
j=1

δij [byk ]j [P
Tπk−1]j ⇐⇒

X∑
j=1

(
[PTπk−1]j [πk]i − δij [PTπk−1]j

)
[byk ]j = 0 ⇐⇒[(

πk(PTπk−1)T − diag(PTπk−1)
)
byk

]
i

= 0, (21)

where δij is equal to one if i = j, and zero otherwise.

A.2 Proof of Lemma 2

Proof. For k > 1, πk−1 > 0 under the assumptions of positive P and B. Hence, diag(PTπk−1) is a
non-singular matrix. The term πk(PTπk−1)T = πkπ

T
k−1P is a rank-1 update. Therefore,3

rank(πk(PTπk−1)T − diag(PTπk−1)) ≥ X − 1. (22)

However, since

1T
(
πk(PTπk−1)T − diag(PTπk−1)

)
= (PTπk−1)T − (PTπk−1)T = 0, (23)

we have that
rank(πk(PTπk−1)T − diag(PTπk−1)) ≤ X − 1. (24)

A.3 Proof of Theorem 1

Proof. The true observation is, of course, consistent with the observed data, so it will be an element
of the set in (7). From Lemma 2, we know that the only solutions (with respect to by) consistent with
the data lie on a one-dimensional subspace. However, since no pair of columns of B are colinear (by
Assumption 3), a unique column of B will fulfill the equation – implying that the set is singleton.

3Here we employ the fact that

rank(A−B) ≥ rank(A)− rank(B),

where, in this case, rank(A) = X (full rank) and rank(B) = 1 (rank-1 update). This inequality can be derived
by replacing A by (A−B) in the well-known inequality

rank(A+B) ≤ rank(A) + rank(B),

as follows:

rank((A−B) +B) ≤ rank(A−B) + rank(B) =⇒
rank(A) ≤ rank(A−B) + rank(B) =⇒

rank(A−B) ≥ rank(A)− rank(B).
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Remark: Since we make no assumption on the positivity of π0, we can not formally guarantee that
we can recover the first observation y1 uniquely; the dimension of the nullspace of the matrix in
Lemma 2 can be larger than one.

A.4 Proof of Theorem 2

Proof. The matrix C is constructed in such a way that, by Lemmas 1 and 2, every column of C is
a scaled version of the corresponding column of B. This implies that there exists a set of unique
numbers α∗i 6= 0, such that bi = α∗i ci for i = 1, . . . , Y , where ci denotes column i of C. In vector
notation, this means that there exists a unique α∗ ∈ RY such that

C diag(α∗) = B. (25)
Multiplying this equation from the right by 1, we obtain

C diag(α∗) = B =⇒
C diag(α∗)1 = B1 = 1 ⇐⇒

Cα∗ = 1. (26)

Proof of i): To normalize our estimate B̂ = C diag(α), we seek an α that fulfills the condition
B̂1 = 1. This is equivalent to finding an α fulfilling

C diag(α)1 = Cα = 1. (27)
Since α∗ solves this equation, the existence of a solution is guaranteed.

Proof of ii): The solution to
Cα = 1 (28)

is unique if and only if C has full column rank. From equation (25) and the fact that α∗ has non-zero
elements, this is equivalent to B having full column rank. However, B has full column rank by
Assumption 2. The unique solution can in this case be obtained as

α = (CTC)−1CT1 = C†1. (29)
Since the solution to equation (28) is unique, and α∗ is a solution by equation (26), we conclude that
α = α∗, so that B̂ = C diag(α) = C diag(α∗) = B.

A.5 Proof of Lemma 3

Proof. To be able to construct the selection matrix Σ, every observation from the set {1, . . . , Y }
needs to have been observed at least once. Since B ≥ β elementwise, each observation will be
sampled at every time instant with at least probability β, independently of what state the system is in.

We upper bound the expected time it takes to have observed all observations with the following i.i.d
process (which can be interpreted as a variation of the coupon collector’s problem, e.g., [24]). At
every time instant we, either, i) obtain observation i with probability β (for i = 1, . . . , Y ), or, ii)
obtain no observation at all, with probability 1− Y β.

LetN denote the number of samples it takes in this process to have seen all the Y unique observations.
Let ni denote the number of samples it takes until a new unique observation is seen, after the (i−1)th
was observed. After having observed i− 1 unique observations, the probability of sampling a new
unique observation is

pi = Y β × 1

Y
(Y − (i− 1)) = (Y − (i− 1))β. (30)

Every ni follows a geometric distribution with success probability pi. Hence,
E
{
N
}

= E
{
n1 + · · ·+ nY

}
=

Y∑
i=1

1

pi

=
1

β

Y∑
i=1

1

Y − (i− 1)

= β−1 (1 + · · ·+ 1/Y ) . (31)
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This upper bounds the number of samples, since the probability of sampling each observation is in
fact greater than (or equal to) β.

A.6 Proof of Theorem 3

Proof. By Lemmas 1 and 2, every column of C̄ will be a scaled version of one column of the
observation matrix B. The selection matrix Σ picks Y of these columns, where no pair is colinear.4
Since no two columns of B are parallel – by Assumption 3 – this means that C = C̄Σ will contain
all Y columns of B, but scaled and permuted. Formally,

BP = C diag(α∗), (32)

for some permutation matrix P , which is decided by the choice of Σ, and a (for this P) unique
α∗ ∈ RY with non-zero elements.

Multiplying this equation from the right by 1 yields

BP = C diag(α∗) =⇒
BP1 = C diag(α∗)1 ⇐⇒
B1 = Cα∗ ⇐⇒
1 = Cα∗. (33)

Proof of i) To normalize our estimate B̂, we seek an α that fulfills the condition

1 = B̂1 = C diag(α)1 = Cα, (34)

From (33), we have that α∗ is a solution. This guarantees existence.

Proof of ii) The B̂ matrix is constructed from Y columns where no pair is colinear. Hence, the
nullbasis c̄k can at most be parallel to one of its columns. This implies that the set is a singleton.

Lemmas 1 and 2, together with the fact that no two columns of B are colinear, imply that a single
column of B is in the one-dimensional subspace of the matrix in equation (5). Since the columns of
B̂ are scaled and permuted (according to P) versions of those in B, the true sequence of observations
is obtained by relabeling the estimated sequence according to P .

Proof of iii) The equation we seek to solve to normalize B̂,

Cα = 1, (35)

has a unique solution if and only if C has full column rank. C has full column rank since it is
constructed, essentially, by permuting and scaling the columns of B (which has full column rank by
Assumption 2). The unique solution is given by

α = (CTC)−1CT1 = C†1. (36)

Moreover, since α∗ is a solution – by equation (33) – we conclude that the unique α = α∗, and hence
that

B̂ = C diag(α) = C diag(α∗) = BP. (37)

A.7 Proof of Lemma 4

Proof. The proof is identical to that of Lemma 2.

4One way to construct Σ is to go through the columns of C̄ in turn and include a column if it is not parallel
to any previously selected column, until Y columns have been selected.
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Figure 3: The observation data corresponding to Fig. 1. Top: Continuously valued observations of
the EEG spectral frequency. Bottom: Corresponding discrete observation-data from a quantization
codebook.

B Description of the automatic sleep-staging system

As described in detail in [20], the time-series EEG data was divided into segments of length 30
seconds. The power spectra of the 15 non-overlapping 2-second sub-windows were then computed
and averaged to obtain a smoothed power spectrum PS(·). The spectral frequency, defined as
SF =

∑30
j=0 jPS(j)/

∑30
j=0 PS(j), was taken as the observation for each 30 second interval. This was

computed using data from nine different patients from the PhysioNet CAP Sleep Database [22, 23].
The resulting time-series were subsequently concatenated, and a k-means algorithm was applied to
obtain a codebook of size five.

The same procedure was then performed on another patient, yielding the N = 1030 continuously
valued observations in the top plot of Fig. 3. Every sample is spaced 30 seconds apart. The same
codebook was used to quantize the data – the result can be seen in the lower plot. This is the
observation sequence on which the HMM filter was run to obtain Fig. 1.

The transition matrix P was computed as the maximum-likelihood estimate from manually annotated
state data (also from the PhysioNet CAP Sleep Database [22, 23]). The observation matrix B was
computed using the expectation-maximization (EM) algorithm on the quantized observation-data
constructed above for the nine patients.
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